
FPGA­Accelerator for DNA Sequence Alignment Based on
an Efficient Data­Dependent Memory Access Scheme

Hasitha Muthumala Waidyasooriya, Masanori Hariyama and Michitaka Kameyama
Graduate School of Information Sciences, Tohoku University

Aoba 6­6­05, Aramaki, Aoba, Sendai, Miyagi, 980­8579, Japan
Email: {hasitha, hariyama, kameyama}@ecei.tohoku.ac.jp

ABSTRACT

The mapping of millions of short DNA fragments to a large
genome is a very important aspect of the modern compu-
tational biology. However, software-based DNA sequence
mapping takes many days to complete. This paper proposes
an FPGA-based hardware accelerator to increase the map-
ping speed. We apply a data encoding scheme that reduces
the genome size by 96%, and propose a hardware decoder
to decode the data in single clock cycle. We also design cus-
tomized data paths to increase the speed for random data
access. According to the experimental results, the speed-up
is 15 times compared to its equivalent software application.

Keywords

Short-read mapping, genome sequence alignment, Burrows-
Wheeler alignment, FPGA.

1. INTRODUCTION
DNA sequence mapping is an extremely important aspect

of modern computational biology. Figure 1 shows the map-
ping process. It uses a reference genome and short DNA
fragments called short-reads. Short-reads are aligned along
the reference genome considering the fact that the genomes
differ only slightly. Although the mapping process looks
simple, it is a very difficult task due to the large size of the
genome. Usually, a human genome is large as 3 billion sym-
bols and require billions of short-reads to map it. Therefore,
the existing software applications such as Maq [1], BFAST
[4], Bowtie [2] and BWA [3] require days or weeks to map a
whole genome.

One major problem in software applications is the slow
memory access. Especially, when the access pattern is ran-
dom, the memory access speed drops considerably. Unfor-
tunately, in CPUs, the data paths are fixed and the cache
memory does not help much when the amount of data is
huge and the access patterns are data dependent. This
problem can be solved effectively by designing custom data-
paths. FPGAs contain millions of programmable logic gates
and are connected to large memories such as 4GB DDR3.
In this paper, we propose an FPGA-based architecture to
accelerate the short-read mapping using “Burrows-Wheeler
alignment (BWA)” [3]. We choose BWA since it is a one
of the fastest mapping tool among software methods and it

This work was presented in part at the international symposium on Highly­

Efficient Accelerators and Reconfigurable Technologies (HEART2014),

Sendai, Japan, June 9­11, 2014.

Figure 1: Short-read mapping

provides a massive parallelism.
This paper is an extension of the work done in [6]. In

[6], the basic architecture for short-read mapping is given
and estimated speed-up is discussed. In this paper, we ex-
plain the FPGA-based accelerator architecture in detail. We
implemented it on an FPGA and performed the evaluation
using real human genome data. We mapped over 200,000
short reads of 90 characters long and discuss the measured
results. According to the experiments, 15 times speed-up is
observed compared to software-based approach.

2. DNA SEQUENCE ALIGNMENT
In this section, we briefly describe the BWAmethod shown

in Algorithm 1. To explain the algorithm, let us consider the
example shown in Fig.2. We have a reference DNA sequence
X and a short-read W as shown in Fig.2(a). The inputs are
C(.) shown in Fig.2(a), the occurrence array O(., .) shown
in Fig.2(b) and short-reads. The number of symbols that
are lexicographically smaller than a is given by C(a) where
a ∈ {A,C,G, T} . The occurrence array is constructed by
applying BW transform to the reference genome X. We rec-
ommend to refer [3] and [6] for detailed description of the
BWA algorithm. BWA algorithm uses the “exact matching”
method explained in [7]. According to [7], if a string W is
a substring of the string X and k(aW ) ≤ l(aW ), string aW
is also a substring of X where aW equals the string {a,W }.
The terms k and l, given by Eqs.(1) and (2) respectively, are
the lower and upper bounds of the suffix array (SA) interval
of X.

k(aW ) = C(a) +O(a, k(W )− 1) + 1 (1)

l(aW ) = C(a) +O(a, l(W )) (2)

Note that, the suffix array shown in Fig.2(b) shows the cor-
responding positions of the elements after the BW transfor-
mation to the reference genome.

The input data for the short-read mapping are created
using the reference genome. In practical problems, the same

127



InexRecur(W, i, z, k, l)
begin

if i < 0 then
return [k, l]

end

I = φ
I = I ∪ InexRecur(W,i− 1, z − 1, k, l)
for each a ∈ {A,C,G, T} do

ka = C (a) +O (a, k − 1) + 1
la = C (a) +O (a, l)
if ka ≤ la then

I = I ∪ InexRecur(W,i, z − 1, ka, la)
if a = W [i] then

I = I ∪ InexRecur(W,i− 1, z, ka, la)
else

I = I ∪ InexRecur(W,i− 1, z − 1, ka, la)
end

end

end

return I

end

Algorithm 1: Short-read mapping algorithm

(a) Reference sequence X,
short-read W and C(a) of X

(b) Occurance array of X

Figure 2: Mapping example

reference genome is used to map different set of short-reads.
Therefore, in this paper, we perform the Burrows-Wheeler
transform and calculate the occurrence array off-line and
just transfer the data to the FPGA for different mappings.

3. ACCELERATOR ARCHITECTURE

3.1 Overall architecture
The overall architecture of the accelerator is shown in

Fig.3. It consists of two DDR3 SDRAMs, a memory con-
troller, and two groups of PEs belong to channel 1 and chan-
nel 2. A channel contains 32 PEs. The parallel data process-
ing is achieved by executing different short-reads in parallel
on 64 PEs. The occurrence array and short-read data are
transferred to the DDR3 memory.

Structure of a PE is given in Fig.4. It consists of a 32-bit
adder, a comparator and pipeline registers to perform the
calculations explained in algorithm 1. After finishing one
“InxRecur” procedure, a new one is loaded from the regis-
ter file. In each “InxRecur” procedure, new calls to the same
procedure are generated as explained in Algorithm 1. The
parameters of such recursive calls are stored in the register
file, so that we can keep a track of all the recursive calls.

Figure 3: Accelerator architecture

Figure 4: Structure of a PE

The “ADD/SUB” unit in PE is used to calculate the map-
ping positions. The comparator and the control path do
all the conditional branches in the “InxRecur” procedure.
New short-reads are fed to the PEs after the old short-reads
are mapped. The mapping result is read by the CPU. The
CPU transfers short-read data gradually while there are be-
ing mapped. Unlike the CPU that has a complex floating-
point ALU and very complicated control circuit, PE is a
very simple unit that specialized only to map a short-read.
It is designed using minimum resources. Therefore, we can
have a lot of PEs in the same FPGA to provide performance
comparable to a super computer that has many CPUs.

3.2 Data encoding
One common problem of the BWA algorithm is the enor-

mous amount of data. To explain this, let us refer the oc-
currence array example in Fig.2(b). Our task is to store
the occurrence array data. There are total of seven entries
from 0 to 6. Each entry gives the number of “A,C,G, T”
symbols. Note that, “$” which represents the end of the ref-
erence genome is stored separately. Considering the worst
case where all the symbols are the same, we need 3 bits each
to represent the number of “A,C,G, T” symbols. Therefore,
a total of 12 bits are required to store one entry and 72
bits for all 6 entries. Applying this calculation, to store the
occurrence array of a genome as large as human, we need
48 GB of data. We could rarely find an FPGA that can
hold such a huge amount of data. To solve this problem,
we encode the occurrence array data, and build a hardware
decoder to decode any entry in a single clock cycle.

Figure 5 shows the encoded data of the occurrence array
shown in Fig.2(b). The first two least significant bits rep-

128



Figure 5: Encoded occurrence array

resent the symbol “G” in the entry number 0. It is shown
by the code 10. the next two least significant bits (bit num-
ber 2 and 3) shows the symbol in the entry 1, which is also
“G”. Likewise, we store the first five BWT array symbols,
excluding “$”. The most significant 12 bits contain the en-
try number 6 which represents the number of “T,G,C,A”
symbols. For example, to find the entry number 3 of the
occurrence array, we add the number of symbols in entries
4 and 5, which are one each for symbols “A” and “T” and
subtract it from the entry number 6. In this way, we require
only 22 bits to store the data. Since human genome contain
over 3 billion symbols, minimum of 32 bits required to rep-
resent the maximum number of “A,C,G, T”s. Therefore, a
total of 48 GB of memory is required, where each entry in
the occurrence array contains 128 bits. We encode 64 entries
in the occurrence array to a one code of 256 bits. The first
128 bits gives 64 elements in BWT array. The next 128 bits
gives the 64th entry. Using this encoding scheme, we need
only 1.5 GB of memory to store the occurrence array data.

When an entry is required, its encoded data are read from
the memory. Then we decode it using a hardware decoder
in one clock cycle. Figure 6 shows the architecture of the
hardware decoder that decodes the occurrence array data of
symbol “T”. Decoder is a very simple hardware that consists
of adders and subtracters. Decoder gets larger when the
number of symbols encoded into a single entry increases.

3.3 Fast memory access using multiple address
streams

In the proposed architecture, multiple PEs access the same
DDR3 memory. The memory addresses accessed by PEs de-
pend on the input data. Therefore, we cannot predict the
memory access patterns efficiently and it is difficult to opti-
mize the memory access off-line. In such problems, arbiters
are used to select a single request in each clock cycle. The
designed data path for the memory access is shown in Fig.7.
Multiple PEs send address requests in parallel to the arbiter.
The arbiter allows one request to proceed in each clock cy-
cle so that FIFO is filled with multiple addresses. Those
addresses are sent one-by-one to access the memory.

This methods works well if both the accelerator and DDR3
controller clock frequencies are the same. However, the
DDR3 controller clock frequency is much larger (200MHz)
than that of the accelerator’s (80MHz). Therefore, the data
access rate always decided by the slower clock frequency, ir-
respective of how fast the DDR3 controller clock is. Note
that, the DDR3 has a 64-bit data path with a 800MHz clock.
In the DDR3 controller, the clock frequency is 200MHz and
the data-path width is 512 bits so that it matches the data
rate of the DDR3 memory. Since the accelerator clock is
slower, valid address requests arrive slower than they are
read by the faster DDR3 controller. Therefore, as shown in
Fig.8(a), a few valid addresses are present in the FIFO and
that reduces the access speed. To solve this problem, we

Figure 6: Hardware decoder for occurrence of “T”

Figure 7: DDR3 memory access

use two data streams in parallel as shown in Fig.8(b). Two
streams write two 32-bit addresses to the FIFO simultane-
ously in each accelerator clock cycle. Note that the FIFO is
designed to have 64-bit data-path for write operation while
32-bit data-path for the read operation. Since the DDR3
controller clock is faster than the accelerator clock, more
valid address requests are sent to the DDR3 controller. This
increases the memory access speed.

4. EVALUATION
For the evaluation, we used DE5 board [8] that contains

“Altera Stratix V 5SGXEA7N2F45C2 FPGA” and two 4GB
DDR3-SDRAMs. The system contains a core i7-3960x CPU
and a DE5 board connected through the PCI express port.
The operating frequency of the accelerator is 80MHz. Table
1 shows the resource usage. The FPGA accelerator uses
60% of the look-up-tables (LUTs) in the FPGA. The most
of the resources are used by the PE array while just 5% of
the LUTs are used to design the PCI express and DDR3
controllers. Therefore, we can increase the number of PEs
to reduce the processing time further.

Table 2 shows the memory bandwidth comparison of the
CPU-based and the FPGA-based systems. Although CPU
has a better theoretical bandwidth, it reduces drastically
for random data access. Since the memory access in short-
read mapping is random, small bandwidth is a big problem
in CPU-based accelerations. However, in FPGA, we design
custom data paths and address generation units for random
access. In random access, the memory access speed of FPGA
is 10 times larger compared to that of a CPU.

We mapped 200,000 short reads of a human genome us-
ing the FPGA accelerator. Each short-read is 90 symbols

129



(a) Memory access with one address stream

(b) Memory access with two parallel address streams

Figure 8: Memory access

long. Table 3 shows the measured processing time. For the
comparison, we used a software-based system that contain
an Intel Xeon E5-2643 3.3GHz processor and CentOS 6.3
operating system. The software is written in C language
and compiled using gcc compiler. According to the results,
the speed-up 1s 15 ∼ 30 times. The processing time in-
creases exponentially when the number of misses (SNP and
indels) is over three. When the number of misses are small,
the software-based processing contains a relatively large por-
tion of hard disk access time. However, when the number
of misses is greater than three, the mapping time is so large
that the time required to access the hard disk is insignifi-
cant. Therefore, the speed-up drops to 15 times. In real
world problems of genome mapping, the maximum number
of misses allowed is three to four. Therefore, we can say that
the proposed accelerator has a 15 times speed-up compared
to software. As a result, a whole genome can be mapped
withing few hours. This measured speed-up of 15 times us-
ing real genome data is larger than the estimated speed-up
of 10 times in our previous work [6].

5. CONCLUSION
We have proposed a hardware accelerator architecture for

DNA sequence mapping. We successfully implemented the
proposed architecture on an FPGA and mapped 200,000
short-reads. The measured speed-up is 15 to 30 times com-
pared to the equivalent software application. It is possible
to increase the processing power by choosing latest FPGAs

Table 1: FPGA resource utilization

Module
LUT Registers Memory
(%) (%) Mbits (%)

PE array 128,081 (55) 60,219 (25.6) 21.2 (42.4)
DDR3 11,384 (4.8) 15,463(6.8) 0.3 (0.6)
PCIe 2,713 (1.1) 4,029 (1.7) 1.1 (2.2)
Other 666 (0.3) 494 (0.2) 0.5 (1.0)

Total 142,844 (60.1) 80,205 (34.1) 23.1 (46.2)

Table 2: Memory access speed

Bandwidth (GB/s)
Theoretical Random access

CPU 51.2 1.06
FPGA 6.4 × 2 5.15× 2

Table 3: Processing speed

Misses
Processing time (s)

Speed-up
Software-based Proposed

0 48.52 1.54 31 times
1 58.79 1.97 29 times
2 81.23 2.93 27 times
3 615.56 40.30 15 times
4 12605.96 828.34 15 times

such as Altera Stratix V with more LUTs and memory.
Moreover, we can use multiple FPGAs connected by fiber
optics to increase the processing speed massively. There-
fore, the proposed FPGA accelerator has a great potential
to dramatically increase the processing speed.

Acknowledgment

This work is supported by MEXT KAKENHI Grant Num-
ber 24300013.

6. REFERENCES
[1] H. Li, “Maq: Mapping and assembly with qualities”,

http://maq.sourceforge.net/, 2008.
[2] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg,

“Ultrafast and memory-efficient alignment of short dna
sequences to the human genome”, Genome Biology,
Vol.10, No.3, p.R25, 2009.

[3] Heng Li and Richard Durbin, “Fast and accurate short
read alignment with Burrows-Wheeler transform”,
Bioinfomatics, Vol.25, No.14, pp.1754-1760, 2009.

[4] N. Homer, B. Merriman and S. F. Nelson, “BFAST: An
Alignment Tool for Large Scale Genome
Resequencing”, PLoS ONE, vol.4, No.11, p.e7767, 2009.

[5] M. Burrows and D. J. Wheeler, “A block-sorting
lossless data compression algorithm”, Digital
Equipment Corporation, Palo Alto, CA, Technical
report 124, 1994.

[6] H. M. Waidyasooriya, M. Hariyama, M. Kameyama,
“Implementation of a custom hardware-accelerator for
short-read mapping using Burrows-Wheeler alignment”,
Conf Proc IEEE Eng Med Biol Soc., pp.651-654, 2013.

[7] P. Ferragina and G. Manzini, “Opportunistic data
structures with applications”, Proc. of 41st Symp. on
Foundations of Computer Science, pp.390-398, 2009.

[8] http://www.altera.com/education/univ/materials/
boards/de5/unv-de5-board.html

130


