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Abstract— The extraction of a liver from CT images is es-
sential for oncologic surgery planning. This article presents
an accurate and automatic approach to extract a liver from
CT images. Our algorithm exploits three types of liver
structure models: intensity model, shape model, and blood
vessel model. First, the region including the liver is roughly
extracted based on intensity histogram analysis. Second, the
extracted regions are segmented using a shape feature called
aAlJlocal thicknessdAl based on the observation that the
liver is thicker than other organs. Finally, the segmented
regions including blood vessels in the liver are merged into
a single liver region. Experimental results show that the
average error of the volume extraction is 61.25 cc, and this
result is much superior to the conventional one.
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1. Introduction

For liver cancer surgery, 3D simulation before surgery
operations, recently, is getting one of the crucial tasks
since a liver has complex structure. Liver segmentation is
considered as a challenging task since the variations of the
liver shape is large and since there exist some other organs
with the CT values similar to the liver around the liver.
There have been several researches on liver extraction[2]-[5].
The researches [2] and [3] use, respectively, statistical shape
models and probabistic atlases, and both methods suffers
from large variations of liver shapes. The active contour
approach [4] are dependent on image gradient, and leads
to over-extraction into organs with CT values similar to the
liver. Moreover, its quality strongly relies on the location and
shape of the initial contour. The intensity-based approach
[5] usually exploits a simple intensity model, and miss the
vessels and non-homogenous texture regions inside the liver.

This paper propose a new accurate intensity-based ap-
proach. In order to improve the quality, we use additional
models: a shape and vessel models as well as an intensity
one.

Fig. 1: CT image including the liver.

2. Liver structural model and extraction
algorithm

2.1 Extraction of liver candidate regions based
on an intensity model

Figure 1 shows a CT image of the liver. The liver is one
of the biggest organs and the intensities of the liver points
are evenly high. Figure 2 explains how the candidate regions
of the liver are extracted based on the intensity model. First,
the histogram of the intensity is computed as shown in the
upper part of Fig. 2. The histogram has usually two mounts;
the darker mount corresponds to the fat; the brighter one
corresponds to the liver, spleen, born, etc. The brighter part
is extracted automatically by using the Otsu’ thresholding
method[1]. Next, for the resulting 3D image, the thickness
feature is measured by computing “Local Thickness* [6],
where the local thickness of a point is defined as the diameter
of the largest sphere that fits inside the object and contains
the point, as shown in the lower part of Fig. 2. Since the
liver region is large and thick, the region with largest local-
thickness values is extracted as the core of the liver region.
For this core region, the intensity histogram is computed to
get accurate intensity thresholds for the liver region. Finally,
the liver candidate regions are extracted by thresholding
using the thresholds.
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Fig. 2: Flow of extracting the liver candidate regions based on the intensity model.

2.2 Segmentation based on a shape model

The most outstanding shape feature of the liver is that
the liver surface is smoothly rounded and the liver is thick.
In order to measure the roundness and thickness at the
same time, the local thickness is used. The 3D image(the
result of Section 2.1) is segmented as follows. The local
thickness values for all point in 3D image are computed
as shown the left part in 3. The local thickness image is
segmented using Watershed method[7], where the point with
the maximum value is used as the seeds, and the point with
minimum value is used as watershed points. the Watershed
algorithm separates the different organs well since the local
thickness tends to be minimum at the boundary points where
different organs touches. Figure 3 shows an example of
the watershed-based segmentation, where the local-thickness
image is segmented into three regions(two regions of the
liver and one region of the spleen). Although the Watershed
algorithm might segment the local-thickness image into a
lot of small regions, appropriate regions are picked up to be
merged into a liver region by the process described in the
next section.

2.3 Merging the segmented regions based on a
vessel model

In a liver, there are three types of vessels: hepatic vein,
portal vein, and hepatic artery as shown in Fig. 4. Based
on this observation, the segmented regions in the previous
process are merged into a single liver region by using
the vessel information. If a segmented region touches the
vessels, it is picked up for a liver region. The vessel data is
obtained by using a vessel extraction program developed by

Fig. 4: Vascular system of the liver.

Hariyama et al.; it extracts the vessels based on line filter[8]
and refines the extraction result based on structural analysis.
Figure 5 shows an example of this merging process.
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Fig. 5: Merging the segmented regions using a vessel model.

3. Evaluation
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B Conventional . .
® Proposed Let us compare the proposed method with a conventional

one where the liver region is automatically extracted and
not modified manually. As a conventional software, Synapse

VINCENT (Fujifilm Medical, Tokyo, Japan)[9] (ver. 2) is
used which is one of the widely-used programs for 3D
o g B sssnnn ~==100 simulation.
‘ ' The comparisons is done for 10 samples with grand truth
o - ‘ . [ | which is made manually in terms of the volume of the region
1 2 3 4 5 6 7 8 9 10

extracted incorrectly(called V REI in the following), which
Sample ID is the sum of the volumes of over-extracted and under-
extracted volumes. Figure 6 summarizes the comparison
results. The average VREISs of the proposed and conventional
methods are 61 [cc] and 111 [cc], respectively. The standard
deviations of the proposed and conventional methods are 20
and 89, respectively. The proposed method is more robust
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Fig. 6: Comparisons with the conventional method for 10
samples.

than the conventional one for change of samples. From
some surgeons’ experiences, the VREI less than 100 [cc]
is desirable for preoperative planning. ;the proposed method
Etraciod can satisfy this requirements. Figures 7 and 8 compares the
incorrectly e overextract extracted liver regions for sample 4 and sample 10. In the
conventional method, the spleen is extracted incorrectly as
(a) Conventional (b) Proposed the liver since the spleen has a intensity feature similar to
Fig. 7: Improvement in sample 4. the liver. On the other hand, in the proposed method, the
spleen is almost removed by exploiting the shape and vessel

models.

4. Conclusion

Exacted g The proposed method can improve the extraction accuracy

incorrectly e overextract by combining different types of features. The comparison

results demonstrates that the proposed method is more robust

(a) Conventional (b) Proposed for dlf.fe?rences of patients. As future wqu, s1.multanec.)us
Fig. 8: Improvement in sample 10. recognition of other organs around the livers is on-going

to improve the accuracy.
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