
Design of an FPGA-Based FDTD Accelerator Using OpenCL

Yasuhiro Takei, Hasitha Muthumala Waidyasooriya, Masanori Hariyama and Michitaka Kameyama
Graduate School of Information Sciences, Tohoku University

Aoba 6-6-05, Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan
Email: {takei, hasitha, hariyama, kameyama}@ecei.tohoku.ac.jp

Abstract— High-performance computing systems with
dedicated hardware on FPGAs can achieve power
efficient computations compared with CPUs and GPUs.
However, the hardware design on FPGAs needs more
time than the software design on CPUs and GPUs.
We designed an FDTD hardware accelerator using the
OpenCL compiler for FPGAs in this paper. Since it
is possible to design a hardware automatically from
an OpenCL code, we can implement applications on
FPGAs in a short time compared with the design by
using a hardware description language. According to
the result of the implementation of the FDTD acceler-
ator on the FPGA, the processing speed is faster than
a CPU. Moreover, its power consumption is about one-
tenth of a GPU.

Keywords: OpenCL, FPGA, FDTD method, Hardware
accelerator

1. Introduction
In the field of the high performance computing such

as three-dimensional image processing, electromag-
netic simulation, fluid dynamics and DNA sequence,
a very large scale computing system is required. How-
ever, the power consumption of high performance com-
puter systems becomes a serious problem. The FPGA
is attracting attention as the accelerator for such high-
performance computing systems. A very large scale
architecture for high performance computings can be
implemented on a FPGA because of the advancement
of the process technology. The power consumption
of FPGAs is about one tenth as much as that of
GPUs. However, very long time is required for the
implementation of the FPGA-based accelerator. The
software-based design on CPUs and GPUs needs only
a software code by using C language or CUDA. On
the other hand, the hardware-based design on FPGAs
needs circuit modules for calculations, controls and

connecting to the host PC by using a hardware design
language(HDL).

To solve this problem, Altera Corporation released
Altera SDK for OpenCL [1] which is the OpenCL com-
piler for FPGAs. OpenCL is the programming language
for parallelized heterogeneous multicore architectures.
OpenCL is standardized by the Khronos group [2]. The
source code of the OpenCL is constituted by the host
code and kernels. The initialization, the data-transfer
from the host PC to the accelerator and running the
kernels are described in the host code. The parallelized
computation on the accelerator is described in the
kernel code. As a feature of the OpenCL, the common
source code can be run on the different architectures
by using compilers corresponding to architectures such
as multi-core CPUs, GPUs, the CELL processors and
so on. In order to implement the OpenCL code on
the FPGA board, Altera SDK for OpenCL can be
used. This compiler does not require the HDL design
for the calculation and connecting to the host PC
by PCI express as shown in Fig.1, and the design
time can be reduced. In the recent studies of the
FPGA-based accelerator by using OpenCL, fractal
image processing [6] and AES encryption encoding
[7] have been reported. These studies achieve a low
power and high performance computing compared with
GPUs. In this article, we implement the FDTD (Finite-
Difference Time-Domain) method accelerator by using
the OpenCL compiler for FPGAs. We compare the
performance of the FPGA-based accelerator with a
CPU and a GPU in order to research the utility of
the OpenCL compiler.

2. Implementation of an FPGA-Based
FDTD accelerator by using OpenCL

The FDTD method[3] has been widely used in an
electromagnetic simulation. Since the FDTD method

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 | 371

������ ��	
���
��������������������������������������	
�����

������
����	
��

���������
����	
��

�����	���������	
�

��� �	���

����

�	�����
Fig. 1: OpenCL implementation on the FPGA

has the high degree of parallelism, there are many
studies which use computer clusters, GPUs [4], [5]
and FPGAs [8]，[9] to accelerate the FDTD method.
Figure 2 shows the flowchart of the FDTD method. It
starts with transferring initial data of the electric and
magnetic fields. Then the initial data are processed to
obtain the electric field information for the first time
step. After that, the boundary conditions are applied.
Then the magnetic field information are obtained and
the boundary conditions for the magnetic field are
applied. These steps are repeated for a given number
of time steps. Equation (1) shows the electric field
computation. Equations (2) and (3) show the mag-
netic field computation. Electric and magnetic fields in
x, y, z directions are denoted byE andH respectively.
The time step is denoted byn and the coordinates
of the 2D fields are denoted byi and j. Note that
the boundaries of the electric and magnetic fields are
calculated differently. ParametersPx, Py, Qx, Qy are
determined by the permittivity, the permeability, the
size of grids and the length of the time step. A detailed
description of the FDTD is given in [3].

En+1
z (i, j) = En

z (i, j)

−Py(i, j)
{

H
n+ 1

2
x (i, j + 1/2)−H

n+ 1
2

x (i, j − 1/2)
}

+Px(i, j)
{

H
n+ 1

2
y (i + 1/2, j)−H

n+ 1
2

y (i− 1/2, j)
}

(1)

���������	���
�����������

�����
�������
�������
�����

���������

���������	���
�����������

�����
�������
�������
�����

��
���

����������

 �������
���������	��

���
!����"

Fig. 2: The flowchart of the FDTD method

H
n+ 1

2
x (i, j + 1/2) = H

n− 1
2

x (i, j + 1/2)

−Qy(i, j) {En
z (i, j + 1)− En

z (i, j)}
(2)

H
n+ 1

2
y (i + 1/2, j) = H

n− 1
2

y (i + 1/2, j)

−Qx(i, j) {En
z (i + 1, j)− En

z (i, j)}
(3)

Figure 3 shows the example of the OpenCL code
for computing the electric field by Eq.(1). Thanks to
the descriptions of global_id(0) and global_id(1) in
line 4 and 5 respectively, the electric and magnetic
fields in the coordinates of the two-dimensional fields
are accessed in parallel. In this implementation, we
make four kernel codes for updating electric fields,
updating magnetic fields, applying boundary conditions
and exciting electric fields. Counting time steps and
running kernels are controlled by the host code. Let
us explain about data-transfers between a host PC to
accelerators. At the first of the FDTD computation,
initial values of electric fields and magnetic fields, and
the values ofPx, Py, Qx,Qy are transferred from a
host PC to accelerators. The values of excited electric
fields are also transferred in every time step. When the
value of time steps reaches the given value, the results

372 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 |

����������	
�����
��� ����	������	������������	������	������������	������	�������
����	������	������������	������	��������

�

��
 �������	����
�������� !�"#�����$!��

�� %��������	����
�&������ !�"#�����$!��

�
'�&�((%'�&���
��)%�*+
,�����)%�*+
,-��)%�*+
,���)%�*+
,-��)%-&��*+
,�+��)%�*+
,���)%�*+
,-��)%�*+
-&�,��

.
.

&

&�

/
0

1
2
3
4

5

Fig. 3: An example of the OpenCL code

of the simulation are transferred from accelerators to a
host PC.

3. Evaluation
We implement the FDTD method by C language

on "Intel Core i7 920", and by OpenCL on "nVidia
Geforce GTX 580" and "Nallatech P385-A7 FPGA
board"[10]. This FPGA board has the Altera StratixV
GX A7，a DDR3-SDRAM(8GB) and a PCI-Express.
We use Visual Studio 2010(64bit) and nvidia GPU
computing SDK 4.2 for the compilation on the CPU
and the GPU. We use Altera SDK for OpenCL 13.0
for the compilation on the FPGA. Figure 4(a) shows
the simulation model. This model has N× N grids
(N=128,256,512). The electric field at (N/2,N/2) is
excited as shown in Fig.4(b). The boundary area is
a perfect conductor (Ez = 0). The single-precision
floating-point is used for the simulation.

Table 1 shows the resource usage on the FPGA.
The number of processing units and the degree of
the kernel vectorization can be changed [11]. When
the kernel vectorization is used, each scalar operation
in the kernel, such as addition or multiplication, is
translated to an SIMD operation by the compiler. The
processing units becomes smaller, and the throughput
becomes higher.

Figures 5(a),5(b) and 5(c) show the results of the
simulation of the electric field on the CPU, the GPU
and the FPGA, respectively. As shown in these figures,
the simulation results are almost consistent with each
other. However, there are very small errors since the
rounding of a floating point are different depending on
the platforms.

Table 2 shows the processing time of the FDTD

method. The processing time of the FPGA is about
half of that of the CPU. However, the processing time
of the FPGA is about 22 times longer than that of the
GPU. One of the main reasons is the bandwidth of the
global memory. The bandwidth on the FPGA board is
further narrower than that of the GPU board. In order
to increase the performance on the FPGA, the memory
access to the global memory should be reduced by
improving the OpenCL code. The power consumption
of the FPGA is 25W [6]. This power consumption is
about one tenth of that of GPU board. Based on these
results, the FPGA accelerator can achieve very low
power and high performance computing if the OpenCL
code is improved to reduce the memory access.

4. Conclusion

In this article, we implement the FPGA-based ac-
celerator for the electromagnetic simulation by using
the OpenCL compiler. The processing time of FPGA
is about half of that of CPU. However, the processing
time is longer than that of GPU. The power consump-
tion of the FPGA is about one tenth of that of GPU. For
the future work, we improve the specialized OpenCL
code for the FPGA. For example, the resource usage
of processing units becomes small if the fixed-point
calculation is used. Moreover, we are now designing
the FPGA-based accelerator for the electromagnetic
simulation on antennas and optical devices.

Acknowledgement

This work is supported by JSPS KAKENHI grant
number 24300013.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 | 373

Table 1: Resource usage
PEs LEs FFs DSPs RAMs
1 76965(16%) 127326(14%) 4(2%) 650(25%)
4 144072(31%) 302233(32%) 16(6%) 1411(55%)

16(Vectorization) 204092(44%) 435734(46%) 64(25%) 2042(80%)

Table 2: Processing time (s) (Time steps=1000)
CPU(Corei7920) CPU(Corei7920) CPU(XeonE5 2069)

Grids +GPU(GTX 580) +FPGA(NallatechP385-A7)
128×128 0.249 0.156 2.030
256×256 1.294 0.203 2.780
512×512 11.232 0.249 5.400

����������	
�����������

��� ���
�

���������

����������	
�����������
(a) Simulation model

�

��

��

����

(b) Excitation of the electric field

Fig. 4: Set up of the simulation

References

[1] Altera corpolation, “Altera SDK for OpenCL Programming
Guide”, http://www.altera.co.jp/literature/hb/opencl-
sdk/aocl_programming_guide.pdf

[2] Khronos group, http://www.khronos.org/opencl/
[3] H. S. Yee, “Numerical Solution of Initial Boundary Value

Problems Involving Maxwell’s Equations in Isotropic Media”,

IEEE Transactions on Antennas and Propagation, Vol.14,
No.3, pp.302-307, 1966.

[4] Z. Bo, X. Zheng-hui, R. Wu, L. Wei-ming, S. Xin-qing,
“Accelerating FDTD algorithm using GPU computing”, In-
ternational Conference on Microwave Technology & Compu-
tational Electromagnetics (ICMTCE), pp.410-413, 2011.

[5] T. Nagaoka and S. Watanabe, “A GPU-based calculation us-
ing the three-dimensional FDTD method for electromagnetic
field analysis”, International Conference on Engineering in
Medicine and Biology Society (EMBC), pp.327-330, 2010.

[6] D. Chen and D. Singh, “Fractal Video Compression in
OpenCL:An Evaluation of CPUs, GPUs, and FPGAs as Ac-
celeration Platforms”, Design Automation Conference (ASP-
DAC) 18th Asia and South Pacific, pp.297-304, 2013.

[7] Nallatec, “40Gbit AES Encryption Using OpenCL and FP-
GAs”, http://www.nallatech.com/images/stories/technical
_library/white-papers/40_gbit_aes_encryption_using_opencl
_and_fpgas_final.pdf

[8] W. Chen, P. Kosmas, M. Lesser and C. Rappaport, “An
FPGA Implementation of the Two Dimensional Finite Dif-
ference Time Domain (FDTD) Algorithm”, ACM/SIGDA
International Symposium on Field-Programmable Gate Ar-
rays(FPGA), pp.213-222, 2004.

[9] K. Sano, Y. Hatsuda, W. Luzhou and S. Yamamoto, “Perfor-
mance Evaluation of Finite-Difference Time-Domain (FDTD)
Computation Accelerated by FPGA-based Custom Comput-
ing Machine”, Interdisciplinary Information Sciences, Vol.15,
No.1, pp.67-78, 2009.

[10] Nallatec, “OpenCL FPGA Accelerator Cards”,
http://www.nallatech.com/opencl-fpga-accelerator-cards.html

[11] Altera corpolation, “Altera SDK for OpenCL Opti-
mization Guide”, http://www.altera.co.jp/literature/hb/opencl-
sdk/aocl_optimization_guide.pdf

374 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 |

(a) Result on CPU

(b) Result on GPU

(c) Result on FPGA

Fig. 5: Results of the simulation (N=256, Time
steps=250)

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 | 375

