
An SIMD Architecture for Shortest-Path Search and Its FPGA
Implementation

Yasuhiro Takei, Masanori Hariyama and Michitaka Kameyama
Graduate School of Information Sciences, Tohoku University

Aoba 6-6-05, Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan
Email: {takei, hariyama, kameyama}@ecei.tohoku.ac.jp

Abstract— Shortest-path search over graphs plays an
important role in various applications. However, short-
est path algorithms such as the Dijkstra’s algorithm
include complex processings. It is difficult for acceler-
ators with fixed-datapath such as GPUs to accelerate
these algorithms efficiently. This paper presents an
FPGA-based accelerator with a SIMD architecture for
the shortest-paths algorithm. In the proposed architec-
ture, operations in the Dijkstra’s algorithm are done
with a high degree of parallelism, and the memory
usage is reduced by using a memory management
scheme. According to the evaluation, the proposed
architecture is able to deal with graphs with more than
800,000 nodes on the Altera Stratix V.

Keywords: Dijkstra’s algorithm, Single Instruction Multi-
ple Data, FPGA

1. Introduction
Recently, there is a huge demand to find the shortest-

path for large scale graphs in many applications such
as traffic simulation, social networking services and
bioinformatics. The shortest-path problem is mainly
classified into two types: single-source shortest-path
problem (SSSP) and all pair shortest-path problem
(APSP). Dijkstra’s algorithm [1] and Bellman-Ford
algorithm [2] are used to solve the SSSP. Warshall-
Floyd Algorithm [3] is used to solve the APSP.

To accelerate the processing of large-scale graphs,
there have been many software-based studies in terms
of improving a data structure and reducing a com-
putational amount reduction. Moreover, GPU[4] and
FPGA[5] are used to accelerate the Warshall-Floyd
Algorithm. However, it is difficult to accelerate these
algorithms efficiently since most of the shortest-path
algorithms include serial and complex data-flows. In
order to process the shortest-path problem for large

scale graphs, PC clusters with many CPUs are often
used [6] because of their large memory capacity. How-
ever, these computing systems need very large space
and power consumption.

To solve this problem, some FPGA-based accel-
erators have been proposed. FPGAs can implement
application-specific data-paths by reconfiguration af-
ter fabrication. Moreover, the power consumptions of
FPGAs are less than one-tenth of those of CPUs and
GPUs. Tommiska[7], Fernandez[8], and Sridharan [9]
have designed the FPGA-based architecture for SSSP
with the Dijkstra’s algorithm. However, their work did
not consider processing large-scale graphs.

This paper presents an FPGA-based accelerator for
the Dijkstra’s algorithm. In order to accelerate process-
ing and memory access in the Dijkstra’s algorithm,
we design the SIMD (single instruction multiple data)
architecture. We consider how to search the shortest
path with a high degree of parallelism, and how to
reduce the memory usage on a limited memory space.
The proposed architecture is implemented on the FPGA
board for evaluating the resource usage.

2. Dijkstra’s algorithm and implementa-
tion of an FPGA

The Dijkstra’s algorithm is one of the most popular
algorithm to solve SSSP. Because it is easy to im-
plement, this algorithm is used in various applications
such as analysis of the internet, traffic simulation and
so on. Let the node where we are starting with be called
S. Let d(y) be the distance fromS to nodey. The
flow of the Dijkstra’s algorithm is represented by the
following steps.

Step1: Assign to every node a tentative distance: set it
to zero forS, and to infinity for all other nodes. Mark

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 | 53

all nodes"unvisited".

Step2: Select theunvisitednode which has the smallest
tentative distance and make it the"current node".

Step3: For thecurrent node, consider all ofunvisited
neighbor nodes and update their tentative distance.
If the current nodeis A , and one of theunvisited
neighbor node isB, set the tentative distance ofB
(td(B)) to min(td(B), d(A) + lAB) ,wherelAB is the
length of the edge betweenA andB. When considering
all of unvisitedneighbor nodes of thecurrent node,
mark thecurrent node "visited".

Step4: Until all nodes are markedvisited, go back to
Step2.

The processing time of the Dijkstra’s algorithm de-
pends on searching the minimum distance in Step2
and updating tentative distances in Step3. In these
processings, there are many comparison operations on
multiple node data. The SIMD architecture is suitable
for processing in parallel.

To process the Dijkstra’s algorithm, a memory space
for tentative distances and paths is required. Since these
data are read and updated frequently, on-chip memory
on an FPGA is suitable. However, the capacity of the
on-chip memory is small. The memory management
is required for reducing the memory usage and the
processing time. It is unnecessary to store the distance
on the visited nodes and infinity. These unused data
should be replaced or avoid storing in the memory
module.

3. Architecture
Figure 1 shows the overall architecture of the pro-

posed FPGA-based accelerator. This architecture con-
sists of a SIMD module, a memory controller, a FIFO,
an adder and a current node register. The SIMD module
is used for searching the minimum distance and up-
dating tentative distances. The memory controller and
the FIFO are used for transferring the graph data from
an external memory to the SIMD module. The current
node register stores the current node number and the
distance from the start to the current node.

Figure 2 shows the architecture of the SIMD module.
This module consists of block RAMs, comparators, and
a counter-based address generation unit(AGU). The

block RAMs store the values of node number, the
tentative distance and the previous node. In the initial
state, the block RAMs are empty.

For updating the tentative distances, the neighbor
node number is searched in parallel as shown in Fig.3.
Then the tentative distance at the neighbor node is
compared with the sum of the distance at the current
node register and the length of the edge. The tentative
distance and the previous node are updated as shown in
Fig.4. If the neighbor node number is not in the block
RAMs, the data of the neighbor node number, the sum
of the distance and the length, and the current node
number are stored as new data.

For the searching of the minimum distance, com-
parators are connected as shown in Fig.5. When the
minimum value searching is completed, the value of
the minimum distance and the node number are stored
in the current node register. The memory space for
the current node can be overwritten as shown in Fig.6.
Hence, the memory usage for the tentative distance can
be reduced.

Let us consider implementing the graph data on the
FPGA. In related works of the FPGA implementation
of the Dijkstra’s algorithm [7],[8],[9], the adjacency
matrix is used because the overhead of the memory
access is small. However, very large memory space
is required for unnecessary data that indicates uncon-
nected edges if the graph is sparse. In this work,
adjacency list is used for using a limited memory
space in FPGA efficiency. The lengths of edges and
the neighbor node number are stored in the external
memory since the amount of these data is large. By
using a index pointer in the memory controller, the
length of the edge and the neighbor node number are
transferred from the external memory to the FPGA.

4. Evaluation of the proposed architec-
ture

We use the Terasic DE5-NET FPGA board [10]. This
board includes an Altera StratixV 5SGXEA7N2F45C2,
and a DDR3 SDRAM (4GB). Altera Quartus 13.1 is
used for design. For a proto-type design, we imple-
ment the SIMD module for shortest-path search in 32
nodes. Table 1 shows the resource usage. The resource
usage changes by the numbers of block memories and
comparators. The degree of parallelism can increase
if many block memories and comparators are imple-
mented. However, the logic utilization becomes large.

54 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 |

��������	

���

��������	
	�����
����	������

������
����������
�����
����
����
����

�

�
�������

�����	

�����
�����	

�����

�����	

��
��
���

��
��
���

�

�
��

�
��

��
�

���

��
��	��	��	����

������� �����
� ��
� ��
 ��
� �

����������

!������	����	
"�������

����

����

����
�� �	
�����
	
���	

Fig. 1: Overall architecture

�������

��
�

����������	
����

���
�����

�����	

�����
�����	

��
��
��
��

��
��
��
�

��
�

�����

�����	 ��

��
��
��

��
��
��
�

��
�

���� ���	
���
� �� �
� �� �
� ��

� � �

Fig. 2: SIMD module

Note that the number of block memory module on the
FPGA is 5120.

Let us consider the memory usage for storing the
tentative distances and node numbers. The FPGA has
about 50M bits of on-chip memory. Let the number of
bits in every node be 64, about 800,000 nodes can be
stored in the FPGA. According to Section 3, the data
of the visited nodes can be replaced by the data of the
unvisited nodes, and a memory space is not required if
the tentative distance is infinity. Hence, the proposed

��
�

����

�����
	�	�
�

�����
	�	�
� ��

�

�����

�����

������
	�	�
�

��
� �����

Fig. 3: Searching a node number in the SIMD module

��
�

��������	
	�����

�����
������

�����
������ ��

�

���������	��
��

�����	
������ ��

�

���������	��
��

Fig. 4: Updating data in the SIMD module

architecture can process the shortest path search on
very large scale graphs with more than 800,000 nodes.

The processing time depends on the amount of data
in the block memories. If the input graph is sparse,
the amount of data in the block memories is small,
and the processing time is small. Most of the large
scale graphs in the real world, such as road network,
traffic network, social network and so on, are sparse.
Hence, the proposed architecture may be suitable for
processing the large scale graphs in the real world. We
are now designing the overall architecture as shown in

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 | 55

��������
���	
���

��
�

��
�

��
�

��
�

�����
�����	
�����

�����	
�����

�����	
�����

�����	

�����

��
�

��
�

��
�

�����
�����	
�����

�����	
�����

�����	
�����

�����	

Fig. 5: Searching the minimum distance in the SIMD
module

���� ���� �	�

� � �
� �� �
� �� �

� � �

�������������
��		���������

���� ���� �	�

�� � �
� �� �
� �� �

� � �

Fig. 6: Overwriting unused data in the block memory

Fig.1, and measuring the total processing time of the
Dijkstra’s algorithm.

5. Conclusions

We have proposed an FPGA-based accelerator with
an SIMD module for a shortest-path search. We dis-
cussed about how to parallelize the Dijkstra’s algorithm
and how to use limited memory space on FPGA boards.
According to the evaluation, the proposed architec-
ture can accelerate shortest-path search on large scale
graphs with more than 800,000 nodes on the Altera
Stratix V.

In future works, we are going to implement large
scale architecture on the FPGA board in order to ac-
celerate applications with shortest-path problems such
as the traffic network analysis. Moreover, it is very
interesting to implement improved shortest-path algo-
rithms, such as the A* algorithm[11] and the high-way
dimension algorithm[12] on an FPGA.

Table 1: Resource usage
Block Comparator LUT Register Memory

memory bit
2 8 282 152 512
4 4 137 68 512
2 16 572 321 1024
4 8 282 382 1024

Acknowledgement
This work is supported by JSPS KAKENHI grant

number 24300013.

References
[1] E. W. Dijkstra, "A Note on Two Problems in Connexion with

Graphs", Numerische Mathematik, 1(1): pp.269–271, 1959.
[2] R. Bellman, "On a Routing Problem", Technical report, DTIC

Document, 1956.
[3] R. W. Floyd, "Algorithm 97: Shortest Path", Commun. ACM,

5(6) pp.345–346, June 1962.
[4] G. J. Katz and J. T. Kider Jr, "All-Pairs Shortest-Paths for

Large Graphs on the GPU", In Proceedings of the 23rd
ACM SIGGRAPH/EUROGRAPHICS symposium on Graph-
ics hardware, 2008.

[5] U. Bondhugula, A. Devulapalli, J. Fernando, P. Wyckoff,
and P. Sadayappan, "Parallel FPGA-Based All-Pairs Shortest-
Paths in a Directed Graph", In Proceedings of Parallel and
Distributed Processing Symposium, 2006.

[6] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. "Pregel: a System for Large-
Scale Graph Processing", In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data,
pp. 135–146, 2010.

[7] M. Tommiska and J.Skytta. "Dijkstra’s Shortest Paths Al-
gorithm in Reconfigurable Hardware", In Proc. Field Pro-
grammable Logic and Applications, pp. 653–657, 2001.

[8] I. Fernandez, J. Castillo, C. Pedraza, C. Sanchez, and J. I.
Martinez, "Parallel Implementation of the Shortest Path Al-
gorithm on FPGA" In Proc. 4th Southern Conf. on Pro-
grammable Logic., pp. 245–248, 2008.

[9] K. S. T.K.Priya and P. Kumar, "Hardware Architecture for
Finding Shortest Paths", In Proc. IEEE Region 10 Conf., pp.
1–5, 2009.

[10] Terasic, "DE5-NET FPGA Development
Kit", http://www.terasic.com.tw/cgi-bin/page/
archive.pl?Language=EnglishCategoryNo=158No=526.

[11] P. E. Hart, N. J. Nilsson, and B. Raphael, "A Formal Basis
for the Heuristic Determination of Minimum Cost Paths",
Systems Science and Cybernetics, IEEE Transactions on,
4(2):pp.100–107, 1968.

[12] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck, "
Highway Dimension, Shortest Paths, and Provably Efficient
Algorithms", Proceedings of the Twenty-first Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 782–793,
2010.

56 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 |

