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Abstract— Succinct data structures are introduced to effi-
ciently solve a given problem while representing the data

using as little space as possible. The full potential of

the succinct data structures have not been utilized in the
software-based implementations. This paper discusses an

FPGA-based hardware architecture for text search that uses
succinct data structures. We proposes a hardware-oriented

data structure and its decoding method. The proposed ar-

chitecture can be used in text searches using up to 4.3GB
large text files.
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1. Introduction
Succinct data structures [1] are introduced to efficiently

solve a given problem while representing the data using as
little space as possible. Such data structures are used in many
fields such as bio-informatics, text processing, etc. To solve
the problem efficiently, the original data are usually pre-
processed. If the original data contain n bits, “a little space”
means that the storage space of the pre-processed data must
be in the order of n (O(n)). To efficiently solve the problem,
the processing time must be in the order of 1 (O(1)). That
is, the processing time does not depend on the input data
size.

Although the data storage size is in the order of n, the
actual storage size is k × n, where k usually takes a value
from tens to thousands. As a result, the storage size of
the succinct data structure is many times larger than the
original data size. However, recent computers have a very
large memory capacity and extremely large hard disk space.
Therefore, implementing such data structures is possible and
some of those implementations have given reasonably good
results. However, they have many limitations so that the
full potential of the succinct data structures have not been
utilized. The main problem is the memory access bottleneck.
Although the processing time is independent of the data size,
the memory access is unpredictable and requires many clock
cycles. Moreover, the data are usually in a compressed or
encoded state, so that a decompression or decoding overhead
is required. Therefore, it is often a serious challenge to
efficiently utilize the succinct data structures for massively
parallel implementations.

Designing a custom hardware is a good solution to such
problems. A custom hardware contains a large number of
compact processing elements (PE) that are specialized to
solve only the given problem. The data paths between the
PEs and the memory can be designed to efficiently use the
full memory bandwidth. The decompression/decoding can
be done in parallel in minimum number of clock cycles.
we consider an FPGA-based accelerator for text search
applications. An FPGA is a reconfigurable LSI that contains
millions of programmable logic gates. Recently, speed and
power consumption of the FPGAs are greatly improved, and
it would be very practical to use the FPGA-based platform
for real applications. However, the lack of huge DDR3
memories is a major problem in FPGA boards. Many high-
end FPGA boards contain just 4 GB of memory capacity.
Therefore, we have to compress the data as much as possible
while still allowing the efficient access to the data.

To implement succinct data structures on hardware, we
can not rely on the order of the computations. Even the order
is small, the processing time or the storage space could be so
large that the data structure may not be implemented on the
hardware. In this paper, we consider the factors such as the
memory bandwidth, word width of the memory, storage size
etc to find a hardware-compatible succinct data structure,
which could actually be implemented on the hardware. We
also consider hardware-oriented data compression method
to reduce the storage space further without increasing the
processing time.

2. Succinct-Data-Structure

2.1 Text search using rank

In this paper, we limit the given problem to the text search.
The operation rankq (T, x) returns the number of “element
q”s from a text T up to the position x. The element q could
be any symbol such as a number, a letter, a byte, etc, and T

is an array that contain many elements. The implementation
of the rank operation in a constant time is presented in [1],
[2]. Using the rank, a quarry can be searched in a text with
a processing time proportional to the size of the quarry and
not proportional to the size of the text. That is, the search
time does not increase with the size of the text.
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Search(Q, i, k, l)
begin

I = φ

k = 0
l = |X|

for i = |Q| − 1 to i = −1 do
if i == −1 then

return [k, l]
end

k = C (Q[i]) + rankQ[i] (B, k − 1)
l = C (Q[i]) + rankQ[i] (B, l) − 1

//B is the BWT string of X
if k ≤ l then

i = i − 1
else

return φ //return empty
end

end
end

Algorithm 1: Text search algorithm

The text search method is shown in algorithm 1. In this
algorithm, the search quarry Q is searched in the text X.
The number of elements in X and Q are given by |X| and
|Q| respectively. The text X is pre-processed to construct the
rank table and the array C(.). We explain the pre-processing
using an example in Fig.1. The text X is shown in Fig.1(a)
where the end of the text is identified by “$”. As shown in
Fig.1(b), the text is shifted to the left until all the symbols are
moved. The shifted (rotated) text is sorted in lexicographical
order as shown in Fig.1(c). The suffix array (SA) in Fig.1(c)
shows the sorted array of all the suffixes. This rotation and
sorting is also called the Burrows-Wheeler transform (or BW
transform) [3] and the string in the last column of Fig.1(c) is
called the “BWT string” and denoted by B. Then we count
the number symbols from the beginning to each index and
put those values on a table. This “rank” table is shown in
Fig.1(d). For example, rankE(B, 3) = 1, since there are only
one “E” appears from the index 0 to 3 in the rank table. The
number of symbols that are lexicographically smaller than a

is given by C(a) where a ∈ B .
Fig.2 shows the searching of the quarry (Q) in text (X).

The quarry Q and C(.) array are shown in Figs.2(a) and 2(b)
respectively. According to [4], if a quarry q is a substring
of the text X and k(aq) ≤ l(aq), the quarry aq is also a
substring of X where aq equals the quarry {a, q}. The terms
k and l, given by Eqs.(1) and (2) respectively, are the lower
and upper bounds of the suffix array interval of X.

k(aq) = C(a) + ranka (B, k(q) − 1) (1)

l(aq) = C(a) + ranka (B, l(q))− 1 (2)

We can find the position of Q in X by repeatedly applying
Eqs.(1) and (2) to every symbol in Q as shown in Fig.2(c).

(a) Text data (X) (b) Moving (rotation) of the text

(c) Sorting of text data (d) C(.) and rank data

Fig. 1: Pre-processing the text

The suffix array interval (SA) is [6,6] so that we can find the
actual position using the suffix array in Fig.1(c). In this case,
S A[6, 6] = 2. The search is done in 3 steps proportional to
the number of symbols in the quarry Q.

2.2 Data storage and processing time

In the initial work of succinct data structures [1], a method
to store the rank data and compute the rank in a constant
time is proposed. Given a binary sequence B[0, n − 1] of
size n, a two-level directory structure is built. The first level
contains large blocks of size log2n × log2n. For each large
block, the rank of the first entry is stored in a separate array.
This requires n/log2n storage. Each large block is divided
in to small blocks of size log2n/2. Therefore, each large
block contains 2log2n number of small blocks. Within a large
block, another array is used to store the rank of the first
entry of all small blocks. For all large blocks, this array
requires 4nlog2(log2n)/log2n bits. A look-up table is used
to store the answer to every possible rank on a bit string of
size log2n/2. It requires 2log2n/2× log2/2× log2(log2n/2) bits.
All arrays and tables can be implemented using O(n) bits,
and it supports rank queries in a constant time. Please refer
[1] for more details. Since we use many arrays and tables,
this method needs multiple (although a constant number of)
memory reads to compute the rank. Moreover, this method
is proposed for bit vectors. It is not efficient to use this
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(a) Search quarry (Q) (b) C array

(c) Searching of the quarry (Q) in text (X)

Fig. 2: Searching the quarry Q in text X

Fig. 3: rank data encoding of a human genome

method when the input is not a bit vector but contain multiple
characters, such as general text.

A different data structure for the multi-character text
search is proposed in bio-informatics applications such as
short-read alignment [5]. In short-read alignment, a short
DNA fragment is searched in a large genome, which is
basically a text search. Genome data contains 4 symbols,
“A,C,G,T” that are represented by 2 bits. Fig.3 shows a
rank table of 16 entries. We divide the rank data table into
two blocks where each block contains 8 entries. Then the
first entry is chosen as the header. The rest of the entries
are replaced by the BWT symbols. Since one BWT symbol
has significantly smaller size compared to a rank entry, this
method reduces the storage size. However, in the decoding,
we have to count the number of symbols of each character in
the body. To do this in constant time, we need a population
count (popcount) hardware.

A human genome contains approximately 3 billion sym-
bols. Therefore the rank table contain 3 billion entries where
each entry has log2(3 billion) × 4 bits. That is 128 bits.
Therefore, the storage space for the rank table requires

128×3 billion bits which is approximately 48GB. The above
encoding method is used in [6] to successfully implement
the short-read alignment using just 1.5 GB of data. In [6],
the rank table is divided in to blocks where each block
contain 64 entries. The first entry of each block is used for
the header, which requires 128 bits. The rest of the entries in
each block are replaced by the BWT symbols. Since 2 bits
are required to represent the “A,C,G,T” symbols, the body
contains only 128 bits (2×64). Therefore, one code word is
256 bits and we need 3 billion/64 of such code words. That
is 1.5 GB. Moreover, 256 bits can be read in one memory
read in FPGA. Note that, one memory read provides the
access to a block of consecutive data. The popcount of 64
symbols can be done in a few steps in hardware and many
such popcount architectures are already proposed [7].

To use this method in text search, let us consider a general
case that has n symbols in the BWT string. We consider m
different symbols in the alphabet. Therefore, one rank data
entry requires m × log2n bits. Since there are n entries we
need a total of n × m × log2n bits. We divide the rank data
into multiple blocks where each block contain p entries. In
each block we store the first entry as the header. The rest
of the entries in a block is replaced by the symbols in the
BWT string. Therefore, the required total bits (Tbit) is given
by Eq.3.

Tbit = (m × log2n) ×
n

p
+ n × log2m (3)

If this data structure is to be succinct, Tbit must be in the
order of O(n). To satisfy this condition, the block size p must
be greater than or equals to log2n. Moreover, the symbol
count of a block must be done in a constant time irrespective
of the size of n. That is, popcount(p) must be done in
a constant time. Since there are popcount hardware that
have constant computation time, constant processing time
is achieved.

Since we use FPGA, we consider a memory size of 4GB.
This condition is reasonable since many FPGA boards with
high-end FPGAs contain this much of memory. Now let
us calculate how much memory is required and how large
is a block when we consider a 1GB input text file. We
also consider each letter in the input file contain 8 bits (1
Byte) and there are 128 meaningful letters in the alphabet.
Therefore, n = 1GB/1B and m = 128. From Eq.3, when the
total bits Tbit equals to 4GB, the block size p = 1229. As
a result, one code word contains a header of 128 × 30 bits
and a body of 1229 × 7 bits. That is 12443 bits. Therefore,
if the word width of the memory is 512 bits (512 bits are
accessed in one read), 25 memory reads are required to get
one rank data value. After that, we have to perform the
popcount function for 1229 symbols. As wee can see here,
although we can store the data, accessing it and decoding
it is very costly in terms of both time and area. Even a
single memory access may take several cycles to complete,
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25 memory reads per a rank data is not practical. Therefore,
we need a better data structure.

2.3 Wavelet tree based data structure

As we saw above, the strategies relating to the binary
sequences or small number of symbols cannot be applied
directly to the data structures with many symbols. The
wavelet tree proposed in [8] permits a way to compute
the rank of an arbitrary alphabet of size m efficiently. Let
us explain the construction of the wavelet tree using the
example in Fig.4. For a given text B shown in Fig.4(a),
a code is assigned to every symbol as shown in Fig.4(b).
The construction of the wavelet tree start from the most
significant bit (MSB) of the code. A bit vector b is created
by using the MSB of each symbol in the text B as shown
in Fig.4(c). That is, “0” is assigned to the symbols “$, A,
E” and “1” is assigned to the symbols “G, H”. Then we
divide the bit vector in to two groups. One group contains the
symbols that their corresponding bits in b are 0. The other
group contains the symbols that their corresponding bits in
b are 1. Then we assign bit vectors b0 and b1 for each group
using the second most significant bit. This process continues
until a unique bit (0 or 1) is assigned for every symbol in a
group. After the construction of the wavelet tree, we create
rank tables for each bit vectors.

Fig.5 shows how to compute rank using wavelet tree. In
this example, rankE(B, 4) is considered. Note that, B is the
text shown in Fig.4(a). The computation of rank is done from
the top to the bottom of the wavelet tree. Since the MSB of
the symbol “E” is zero, we compute rank0(b, 4). Then we
come down to the second level of the wavelet tree and use
the input vector b0, since “E” is included in the group that
the MSB of “E” is zero. Then rank1(b0, 2) is calculated.
Similarly, the calculation is done for all the levels in the
wavelet tree as shown in Fig.5.

Although Fig.4(c) shows the rank table for the symbols
“0” and “1”, we just have to store the rank of only one
symbol. The rank of the other symbol is derived by sub-
tracting the rank of the known symbol from the index. For
example, rank0(b, x) = x − rank1(b, x) where b is the bit
vector and x is the index. There are many rank tables in
log2m levels. However, in each level, the sum of all entries
in all tables equals to the number of symbols in the reference
text. Therefore, the total number of bits required (Twavelet) is
given by Eq.(4).

Twavelet =

{

log2n ×
n

p
+ n

}

× log2m (4)

Using Eq.(4), we can obtain the block size for the example
of 1GB input data. In this case, p = 68. Therefore, in one
block we have a 30 bits large header and 68 bits large body.
Therefore, a code word contains a total of 98 bits. This much
of data can be accessed in one memory read. Note that, the
wavelet tree has log2m levels of bit vectors and we have to

(a) Text (B) (b) Code

(c) wavelet tree representation of text B

Fig. 4: Construction of a wavelet tree

Fig. 5: Computation of rankE(B, 4) using wavelet tree

access a bit vector in each level. Therefore, in this example,
a total of 7 memory reads are required to obtain one rank.
This is a substantial reduction of the memory reads.

2.4 Proposed data structure for FPGAs

In this paper, we discuss a data structure that considers
the hardware specification. We consider a memory model
where each read access W bits from the memory. As shown
in Fig.6, a code word consists of a header and a body. The
size of the header is decided by the number of symbols n in
the text. The size of the body is decided by the number of
entries in a block of the rank table. Since the header requires
log2n bits, the body contains maximum of W − log2n bits
which should be equal to the number of entries in a block.
Therefore, the block size p = W − log2n. The body size
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Fig. 6: A cord word of W bits long

could be further reduced by using byte-pair encoding (BPE).
BPE [9] is a simple data compression method that the most
common pair of consecutive bytes of data is replaced with a
byte that is not been used already in the compressed data file.
The same method could be applied for the bit array too and
it is already used in text processing in [10]. In this case, we
apply BPE for each cord word separately by using a common
dictionary data. According to the experimental results using
various text files. we found that 80% compression ratio could
be achieved. The compression ratio is decided by the worst
case. The required memory size Tprop is given by Eq.(5).

Tprop =

{

log2n ×
0.8n

W − log2n
+ n

}

× log2m (5)

In practical cases, W − log2n is much larger than log2n.
Therefore, the storage is in the order of O(n). The memory
access is in the order of O(log2m) which is independent of
n. Therefore, we can say that this data structure is succinct.

3. FPGA architecture and evaluation
Fig.7 shows the overall architecture. It consists of a PE

array and two DDR3 memories. The rank data of the text
are stored in the DDR3 memory. Then the search queries
are transfered to the DDR3. PEs process the search queries
and find the search positions. Those data are written to a
shared memory and later read by the host computer. The
search queries can be sent in batches. After one batch is
finished, another batch is transfered to the DDR3 memory.
Therefore, we can process any number of search quarries
while the quaries in a batch are processed in parallel by
multiple PEs.

The structure of a PE is given in Fig.8. It consists of a
32-bit adder, a comparator and pipeline registers to perform
the calculations explained in algorithm 1. The “ADD/SUB”
unit in PE is used to calculate the suffix array interval given
by Eqs.(1) and (2). The comparator and the control path
do all the conditional branches in the “Search” procedure.
New search queries are fed to the PEs after the old ones are
searched. The output is read by the CPU. Unlike the CPU
that has a complex floating-point ALU and very complicated
control circuit, a PE is a very simple unit that specialized
only to search a query. It is designed using minimum
resources. Therefore, we can have a lot of PEs in the same
FPGA to provide performance comparable to a computer
cluster that has many CPUs.

The hardware module that decodes the rank data is shown
in Fig.9. We extract only the required bits from the body of

Fig. 7: Accelerator architecture

Fig. 8: Structure of a PE

a code word. For example, if we need only 16 bits starting
from the LSB (least significant bit), we do the “bitwise
AND” operation with a mask. In this case, the mask is
0xFFFF. Since the memory address corresponds to the rank

entry number, the mask is obtained by decoding the memory
address. After the required bits are determined, we count the
number of 1’s using a popcount module. Finally, the symbol
count is added to the header. The decoder is pipelined, and
an output is produced in every clock cycle after the pipeline
is fully filled.

This decoding method has an added advantage of reducing

Fig. 9: Hardware decoder
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Fig. 10: Sharing of the decoded data

Fig. 11: Evaluation environment

the memory access. For example, let us consider the text file
of 1GB large. The number of symbols in the file is given by
n and log2n = 30, so that the header is 30 bits. If the word
size of one memory read is 512 bits, the body contain 482
bits. Therefore, is it possible to obtain 482 rank data entries
by decoding one code word as shown in Fig.10. Since we do
parallel processing using multiple PEs, some of those rank

data could be used in more than one PE. In such cases, the
number of memory accesses are reduced.

For the evaluation, we used DE5 board [11] that contains
“Altera 5SGXEA7N2F45C2 FPGA” and two 2GB DDR3-
SDRAMs. The system shown in Fig.11 contains a core
i7-960 CPU and a DE5 board connected through the PCI
express port. The operating frequency of the accelerator is
estimated to be 100MHz. We estimated that around 128 PEs
can be implement on the FPGA.

Table 1 shows the size of the original text and encoded
text. Usually, text data are in bytes so that the original
text size is calculated by the actual file size. However, in
the evaluation, we consider an alphabet of 128 characters.
Therefore, one symbol requires only 7 bits. Compared to
that, the FPGA implementation require a similar amount of
bits with an increase of just 5.5%. In fact, the storage size
is smaller than the original text file size. The reason for the
small storage size is that we encode a large block of over 400
entries into a single code word. Therefore, the header size is
very small. Since we use the wavelet tree representation, the

Table 1: Required data size

Original data size of the text Required storage size
(8bits per a symbol) (7bits per a symbol) after encoding

1GB 0.88GB 0.92GB
2GB 1.75GB 1.84GB
4GB 3.50GB 3.69GB

4.3GB 3.76GB 3.97GB
5GB 4.38GB 4.61GB

header size is further reduced. However, using more bits in
the body require a larger popcount function. That increases
the hardware overhead. To reduce the hardware overhead,
we have to reduce the number of bits in the body.

4. Conclusion
This paper discusses an FPGA-based hardware architec-

ture for text search that uses succinct data structures. We
proposes a hardware-oriented data structure and its decoding
method. The proposed architecture can be used in text
searches up to 4.3GB large data. The storage space is just
5.5% larger than the original data size (7bits per symbol)
and smaller than the input file size (1 byte per symbol).
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