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Abstract— This paper proposes a Field Programmable Gate
Array (FPGA) implementation of the stereo correspondence
matching using Phase-Only Correlation (POC). The use
of high-accuracy stereo correspondence matching based on
POC makes it possible to measure accurate 3D shape of an
object using stereo vision. The drawback of the POC-based
approach is its high computational cost. To address this
problem, we propose an FPGA implementation of the POC-
based correspondence matching. To design the accelerator
efficiently, the OpenCL-based design tool is used which
allows us to reuse the existing code for Graphics Processing
Units (GPUs). Although reusing the OpenCL code for GPUs,
optimizing the code for FPGAs is a tough problem because
the architectures of GPUs and FPGAs are completely dif-
ferent. The major contribution of this paper is to address
the optimization technologies of an OpenCL-based FPGA
accelerator. The implementation results demonstrate that the
FPGA implementation has the almost same speed as well as
much higher energy efficiency.

Keywords: stereo vision, phase-only correlation, real-time 3D
measurement, OpenCL, FPGA.

1. Introduction
Image correspondence is an important fundamental task

in a variety of image processing [1] such applications as
stereo vision, motion analysis, biometrics, etc. Especially
for stereo-vision 3D measurement, high-accuracy and dense
image correspondence is essential. For the purpose of ac-
curate and dense 3D measurement, we have proposed a
stereo correspondence algorithm using Phase-Only Corre-
lation (POC) [2]. POC is an image matching technique
using the phase components in Discrete Fourier Transforms
(DFTs) of given images. We have also developed a pas-
sive 3D measurement system using stereo vision whose
accuracy is comparable with the active 3D measurement
system. However, the POC-based correspondence matching
is limited due to the high computational cost, since POC
is based on Fourier transform. Also, the computational cost
of the POC-based correspondence matching is significantly
increased when measuring the dense 3D shape of an ob-
ject. This results in the large computing time on CPU
implementation even though the multi-thread technique is

used. Another problem of the CPU implementation is its
large power consumption. To solve this problem, Graphics
Processing Unit (GPU) implementation of POC has been
proposed [3] where the OpenCL language is used for design.
The GPU implementation is up-to 5 times faster than a CPU
implementation. However, its large-power problem is still
remaining.

This paper presents a Field Programmable Gate Array
(FPGA) implementation of the POC-based correspondence
matching, which can achieve high-speed and low-power con-
sumption. To design the FPGA-based accelerator efficiently,
the OpenCL-based design tool is used which allows us to
reuse the existing code for GPUs. OpenCL is a framework
supporting parallel programming in heterogeneous computa-
tional environments such as multi-core CPUs and GPUs. It
provides efficient parallel computing using both task-based
and data-based parallelism [4]. Recently, Altera corp. starts
to provide the OpenCL design environment for FPGAs [5].
Although reusing the OpenCL code for GPUs, optimizing
the code for FPGAs are a tough problem because the
architectures of GPUs and FPGAs are completely different.
We describe some optimization techniques such as pipelining
and data reusing suitable for OpenCL-based design for FP-
GAs. The implementation result demonstrate that the FPGA
implementation has the almost same speed as well as much
higher energy efficiency. The use of FPGAs allows the image
processing with high computational cost to be embedded into
a small system due to its high energy efficiency.

2. Phase-Based Correspondence Match-
ing

We briefly introduce a Phase-Only Correlation (POC)
function (which is sometimes called the “phase-correlation
function”) [6], [7]. Let f(n) and g(n) be the 1D image
signals, where−M ≤ n ≤ M and the signal length is
N = 2M + 1. Then, the normalized cross-power spectrum
R(k) is defined as

R(k) =
F (k)G(k)

|F (k)G(k)|
= ej(θF (k)−θG(k)), (1)

whereF (k) andG(k) are the 1D DFTs off(n) andg(n),
G(k) denotesthe complex conjugate ofG(k), and−M ≤
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Fig. 1: Overview of the High-accuracy correspondence matching.

k ≤ M . The 1D POC functionr(n) betweenf(n) and
g(n) is given as the 1D Inverse DFT (1D IDFT) ofR(k).
When two images are similar, their POC function gives a
distinct sharp peak. When two images are not similar, the
peak drops significantly. The height of the peak gives a good
similarity measure for image matching, and the location
of the peak shows the translational displacement between
the images. We also employ the important techniques for
improving the accuracy of 1D image matching for sub-
pixel correspondence matching: (i) function fitting for high-
accuracy estimation of peak position, (ii) windowing to
reduce boundary effects, (iii) spectral weighting for reduc-
ing aliasing and noise effects and (iv) averaging 1D POC
functions to improve peak-to-noise ratio [2].

In the case of a rectified stereo image pair, the disparity
can be limited to horizontal direction [1]. The use of 1D
POC makes it possible to achieve high-accuracy correspon-
dence matching with low computational cost. In order to
find the accurate correspondence from a stereo image pair,
we employ the sub-pixel correspondence matching using
POC. Figure 1 shows an overview of the high-accuracy
correspondence matching which employs a coarse-to-fine
strategy using image pyramids for robust correspondence
search. Letp be a coordinate vector of a reference pixel
in the reference imageI(n1, n2). The problem of sub-pixel
correspondence search is to find a real-number coordinate
vector q in the input imageJ(n1, n2) that corresponds to
the reference pixelp in I(n1, n2). We briefly explain the
procedure as follows.
Step 1: For l = 1, 2, · · · , lmax − 1, create thel-th layer

imagesIl(n1, n2) and Jl(n1, n2), i.e., coarser versions of
I0(n1, n2) andJ0(n1, n2), recursively as follows:

Il(n1, n2) =
1

4

1∑
i1=0

1∑
i2=0

Il−1(2n1 + i1, 2n2 + i2),

Jl(n1, n2) =
1

4

1∑
i1=0

1∑
i2=0

Jl−1(2n1 + i1, 2n2 + i2).

Step 2: For every layerl = 1, 2, · · · , lmax, calculate the
coordinatepl = (pl1, pl2) corresponding to the original
reference pointp0 recursively as follows:

pl = ⌊ 1
2pl−1⌋ = (⌊ 1

2pl−1 1⌋, ⌊ 1
2pl−1 2⌋), (2)

where⌊z⌋ denotes the operation to round the element ofz
to the nearest integer towards minus infinity.

Step 3: We assume thatqlmax = plmax in the coarsest layer.
Let l = lmax − 1.

Step 4: From thel-th layer imagesIl(n1, n2) andJl(n1, n2),
extract two sub-images (or search windows)fl(n1, n2) and
gl(n1, n2) with their centers onpl and2ql+1, respectively.
The image blocks consist ofL lines ofN -point 1D signal.

Step 5: Estimate the displacement betweenfl(n1, n2) and
gl(n1, n2) with pixel accuracy using POC-based image
matching. Let the estimated displacement vector beδl. The
l-th layer correspondenceql is determined as follows:

ql = 2ql+1 + δl. (3)
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Step 6: Decrement the counter by 1 asl = l− 1 and repeat
from Step 4 to Step 6 whilel ≥ 0.

Step 7: From the original imagesI0(n1, n2) andJ0(n1, n2),
extract two image blocks with their centers onp0 and q0,
respectively. Estimate the displacement between the two
search windows with sub-pixel accuracy using POC-based
image matching. Let the estimated displacement vector with
sub-pixel accuracy be denoted byδ = (δ1, δ2). Update the
corresponding point as follows:

q = q0 + δ. (4)

3. FPGA Implementation
3.1 FPGA Programming Model in OpenCL

Figure 2 shows the thread space in OpenCL that has
hierarchical structure where the overall computation consists
of workgroups. The each workgroup is a set of workitems; a
workitem is equivalent to a thread. When designing a kernel,
we implement processing for the workitem. Figure 3 shows
the memory model in OpenCL. The global and constant
memories can be accessed by any workitem; the difference
between global and constant memories is that the global
memory is a read/write memory while the constant memory
is a read-only memory. The local memory belongs to the
workgroup, and the private memory to the workitem.

In OpenCL for FPGAs, we can change the size of local
and private memories flexibly unlike OpenCL for GPUs.
Moreover, a recent high-end FPGA like Stratix V has a large
local memory of 50M bits. This good nature of OpenCL
for FPGAs can allow us to fully reuse data that are once
retrieved from the global and constant memories. As a result,
we can exploit the memory bandwidth efficiently. To fully
reuse data based on this flexibility of memory structure, we
use the following techniques:

• store all coefficients for filters and FFT in the constant
memory.

• store the pre-calculated results for resource-consuming
calculations such as division and square root.

• cache-oriented design. In OpenCL for FPGAs, a private
cache is created for each read-only data array in the
global memory.

Another big difference between OpenCL designs for FP-
GAs and GPUs is that pipelining can be efficiently exploited
in FPGAs. Figure 4 shows the relation between a kernel and
pipelining. Each instruction in a kernel is implemented as
a pipeline stage in a pipeline as shown in Fig. 4 (a). The
threads are fed into the kernel pipeline sequentially. This pro-
gramming style is also effective to save memory bandwidth
while keeping the performance (throughput). On the other
hand, in OpenCL GPUs, the threads are processed in a data
parallel manner which requires a large memory bandwidth.
In order to fully exploit the advantages of pipeline design,

OpenCL for FPGAs supports “Channel” which can connect
the different kernels using FIFO buffers. Figure 5 shows the
overall structure of the POC-based correspondence matching
using channels. The functions of the kernels are as follows:

make high layer: generating the coarse images
clip image: clipping the search windows from images
fft1d: Fourier transformation for 1-D data
eval cps:computing cross-power spectrum
reorder: reorder data for the following ifft1d
ifft1d: inverse Fourier transformation for 1-D data
find peak: find correspondence by searching a peak

Channels can be used for passing data to kernels and
synchronizing kernels. The intermediate data are stored and
fed to the next kernel through channels without the global
memory. Therefore, the efficient data reuse can be achieved
easily. In fact, 10 000 correspondence results are generated
in the find peak kernel, and they are fed to the clip image
kernel through the channel without other memories in the
POC matching shown in Fig. 5 (b).

3.2 Evaluation
For evaluation, we implement the POC-based stereo cor-

respondence matching on a CPU, GPUs, and an FPGA as
shown in Table 1. The parameters for the POC-based stereo
matching are as follows: The size of the search window
is 32 pixels× 15 lines, the number of layers is 4 and the
number of reference points is 10 000. As a CPU, we use Core
i7-3960X that has 6 cores (12 threads) running at a clock
frequency of 3.3GHz−3.9GHz. As GPUs, we use Geforce
GTX 580 and Geforce GTX 680 from NVIDIA corp. As
an FPGA board, we use PCIe-395 D8 from Nallatech corp.
that has a Stratix V FPGA from Altera corp. and 4 DDR3
memories. The maximum frequency of the FPGA design
is 167MHz. Table 2 summarizes the resource utilization of
the FPGA design, where the upper and lower rows are the
specifications of the FPGA (Stratix V D8) and the used
resources, respectively.

For evaluation metrics, we use the processing time, power
consumption, and power-delay product of each implementa-
tion. We measure the power consumption of a whole com-
puter during execution with a power meter (HIOKI AC/DC
POWER HiTESTER 3334). Note that, in Table 1, the power
consumption is the difference between those of idle and
operation state. A power-delay product is defined as the
product of the processing time and the power consumption
and represents the energy for computation, that is, efficiency.
The GPU implementations are 25-27 times faster than the
CPU implementation with a single thread and also 4.0-4.3
times faster than the CPU implementation with 12 threads (6
cores). The FPGA implementation is 17 times faster than the
single-thread CPU implementation, and 2.7 times faster than
the 12-thread CPU implementation. In terms of the process-
ing time, the FPGA implementation has almost same per-
formance as the GPU implementations although the FPGA’s
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Fig. 2: Thread space in OpenCL.

Fig. 3: Memory Model in OpenCL.

Fig. 4: Pipelining in OpneCL for FPGAs.
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Fig. 5: Overall structure using channels.

Table 1: Performance and power comparisons among CPU-, GPU-, and FPGA-implementations.

*1 Power consumption is the difference between those of the idle time and operating state.
*2 Nallatech PCIe-395 D8 have a Stratix V FPGA (Altera Corp.).

Table 2: Resource utilization of the FPGA design.

memorybandwidth is much smaller than the GPU’s one. The
power-delay products of the GPU implementations are about
8.0-8.4% of the single-thread CPU implementation, and 19-
20% of the 12-thread CPU implementation. The power-delay
product of the FPGA implementation is 1.5% of the single-
thread CPU implementation, 3.7% of the 12-thread CPU
implementation, 20% of the GPU implementation (GTX
580), and 19% of the GPU implementation (GTX 680). The
above results demonstrate that the FPGA implementation
is much faster and much energy-efficient than the CPU
implementations, and that the FPGA implementation has the
almost same speed as the GPU implementations and is much
energy-efficient.

4. Application example: Real-time 3-D
measurement system

Figure 6 shows that we develop a real-time and accurate
3D measurement system using a moving consumer digital
camera. In this system, a set of images taken different view-
points are used for the 3D measurement system. One of the
well-known 3D measurement methods is Structure from Mo-
tion (SfM) using feature-based correspondence matching [1].
However, only a limited number of 3D points are measured
by this method and are not sufficient to measure the fine 3D
shape of the object. Addressing this problem, our system
employs the algorithm combining SfM using feature-based
matching to estimate camera parameters and the POC-based
correspondence matching to obtain dense correspondence.
As shown in Fig. 7, the procedure of the proposed system
consists of 3 steps: (i) correspondence matching based on
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Fig. 6: Experimental 3D measure-
ment system using consumer digital
camera.

Fig. 7: Processing flow of the proposed system: (a) input stereo image
pair, (b) result of SIFT-based correspondence matching, (c) rectified stereo
image pair, (d) result of POC-based correspondence matching and (e) 3D
measurement result.

Fig. 8: Results of 3D measurement: (a) input stereo image pair, (b) 3D points measured by SIFT-based SfM (2790 points)
and (c) 3D points measured by the proposed procedure (25 243 points).

Scale-Invariant Feature Transform (SIFT) [8], (ii) camera
parameter estimation [1] and (iii) 3D shape measurement [9].
In the step (iii), we employ the POC-based stereo correspon-
dence matching implemented on the FPGA board. Figures 8
(b) and (c) show 3D measurement result of the stereo image
pair using SIFT-based SfM and the proposed procedure,
respectively. The size of images is 1280×960 pixels. The
measurement result using the proposed procedure has 25 243
points from two snapshots, while the result using SIFT-based
SfM has only 2790 points.

The FPGA implementation of the POC-based stereo cor-
respondence matching makes it possible to obtain dense 3D
points of an object in a few seconds. Moreover, its high-
energy efficiency would allow the total computing system
to be embedded into the camera system.

5. Conclusion

This paper has proposed the FPGA implementation of the
POC-based stereo correspondence matching using OpenCL
for high-speed and low-power consumption. The key to
success is to exploit the pipelining and to fully reuse data
based on the flexibility of memory design. As future work,
we are planning to generalize the design methodology for
this dedicated processor aiming at automatic generation of
FPGA-oriented OpenCL codes from other codes such as
GPU-oriented OpenCL codes and C/C++ codes.
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