
FPGA-Oriented Design of an FDTD Accelerator Based on
Overlapped Tiling

Yasuhiro Takei, Hasitha Muthumala Waidyasooriya, Masanori Hariyama and Michitaka Kameyama
Graduate School of Information Sciences, Tohoku University

Aoba 6-6-05, Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan
Email: {takei, hasitha, hariyama, kameyama}@ecei.tohoku.ac.jp

Abstract— In this paper, we introduce the overlapped
tiling to designing an FPGA-based FDTD accelerator
by using an OpenCL compiler. The OpenCL compiler
for FPGA enables us to reduce the design time of
the FPGA-based accelerators. However, the FPGA-
based accelerator generated from common OpenCL
codes cannot accelerate the processing efficiently in
some applications such as an FDTD computation.
To accelerate the FDTD computation, global memory
access can be reduced by storing the small partition of
the electronic and magnetic fields with enclosed areas
into the local memory. According to the result of the
implementation of the FDTD accelerator on the FPGA,
the processing speed with overlapped tiling is far
faster than that without overlapped tiling. Moreover,
the processing speed is faster than a GPU when the
number of grids is small.

Keywords: FPGA, OpenCL, FDTD method, Hardware
accelerator, Ovrerlapped tiling

1. Introduction
Recently, very large scale computing systems are

required for processing three-dimensional image pro-
cessing, electromagnetic simulation, fluid dynamics
and DNA sequence and so on. However, the power con-
sumption of high performance computer systems in-
creases year by year. Low power and high performance
systems for big data processing are strongly required.
FPGA-based accelerators are attracting attention for
such high-performance computing systems. The power
consumption of FPGAs is about one tenth of that of
GPUs. Moreover, very large scale architectures for
high performance computing can be implemented on a
FPGA because of the advancement of the process tech-
nology. One of the major problems of the FPGA-based

accelerator is a difficulty of designing the architecture.
The software-based design on CPUs and GPUs requires
only a software code by using C language or CUDA
[1]. On the other hand, the hardware-based design
on FPGAs requires the design of circuit modules for
calculations, controls and connecting to the host PC
by using a hardware design language(HDL). To get
the good performance on the FPGA-based accelerator,
the knowledge of the circuit design and a very long
time for designing the hardware are required.

To solve this problem, Altera Corporation released
Altera SDK for OpenCL [2] which is the OpenCL
compiler for FPGAs. OpenCL is the programming
language for multicore architectures, which is stan-
dardized by the Khronos group [3]. The source code
of the OpenCL is constituted by a host code and
kernels. The initialization, the data-transfer from the
host PC to the accelerator and running the kernels
are described in the host code. The parallelized com-
putation on the accelerator is described in the kernel
code. As a feature of the OpenCL, a common source
code can be run on different architectures, such as
multicore CPUs, GPUs, Intel Phi processors, CELL
processors and so on, by using suitable compilers for
each architecture. In order to implement an OpenCL
code on the FPGA board, Altera SDK for OpenCL
can be used as shown in Fig.1. This compiler generates
FPGA-based hardwares for calculation and connecting
to the host PC by PCI express automatically from the
OpenCL code. Hence, we can implement the FPGA-
based accelerators without the HDL design. Figure 2
shows the architecture model generated by Altera SDK
for OpenCL. This architecture has kernel pipelines, a
memory controller, a PCI express controller and inter-
connections. Compared with conventional accelerators
such as GPUs, this architecture has a high degree of

72 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

������ ��	
���
��������������������������������������	
�����

��������	 ���
�����
�������

������
�����������

��� �	���

����

�	�����
Fig. 1: OpenCL implementation on the FPGA

freedom for changing and optimizing the architecture
of the kernel pipelines and interconnections. Altera
SDK for OpenCL is used in recent studies such as
fractal image processing [4], AES encryption encoding
[5] and information filtering [6]. These studies achieved
low power and high performance computing compared
with CPUs and GPUs. In our previous work [7], we
implemented the FDTD method accelerator by using
Altera SDK for OpenCL. However the processing
speed of the FPGA-based accelerator was slower than
that of the GPU. In this paper, we improve the OpenCL
code for the FDTD method in order to achieve the
better performance on the FPGA. We introduce the
overlapped tiling in the electromagnetic field to reduce
the global memory access.

2. Implementation of the FDTD method
by using OpenCL

The FDTD method [8] has been widely used in elec-
tromagnetic simulation, analysis of sound wave and so
on. Since the computation of the FDTD method has a
high degree of parallelism, there are many works which
use computer clusters, GPUs [9], [10] and FPGAs
[11]，[12] to accelerate the FDTD method. Equation
(1) shows the electric field computation and Eqs.(2)
and (3) show the magnetic field computation. Electric
and magnetic fields inx, y, z directions are denoted by

�����������	
����	���������

���� ����	
����	����	������ �������
����	

��	���
��������

���

��	���
��������

��	���
��������

���

����

����������	
����	���������

���

Fig. 2: The architecture model generated by Altera
SDK for OpenCL

E andH respectively. The time step is denoted byn
and the coordinates of the 2D fields are denoted by
i and j. Note that the boundaries of the electric and
magnetic fields are calculated differently. Parameters
Px, Py,Qx, Qy are determined by the permittivity, the
permeability, the size of grids, and the length of the
time step. A detailed description of the FDTD method
is given in [8].

En+1
z (i, j) = En

z (i, j)

−Py(i, j)
{

H
n+ 1

2
x (i, j + 1/2)−H

n+ 1
2

x (i, j − 1/2)
}

+Px(i, j)
{

H
n+ 1

2
y (i + 1/2, j)−H

n+ 1
2

y (i− 1/2, j)
}

(1)

H
n+ 1

2
x (i, j + 1/2) = H

n− 1
2

x (i, j + 1/2)

−Qy(i, j) {En
z (i, j + 1)− En

z (i, j)}
(2)

H
n+ 1

2
y (i + 1/2, j) = H

n− 1
2

y (i + 1/2, j)

−Qx(i, j) {En
z (i + 1, j)− En

z (i, j)}
(3)

In our previous OpenCL code in [7], the electric and
magnetic field data in the global memory are accessed
in parallel. Hence the performance of the execution of
this kernel strongly depends on the bandwidth of the
global memory.

However, the bandwidth of the global memory on
the FPGA is narrower than that of the GPU as shown
in Table 1. Hence the FPGA accelerator cannot achieve
better performance than the GPU. To achieve high
performance computing on the FPGA board, it is
important to improve the OpenCL code by reducing
the global memory access.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 73

Table 1: Bandwidth of the global memory
FPGA (StratixV 5SGXA7) GPU(GeforceGTX 580)

25.6GB/s 192.4GB/s

To reduce the global memory access, we introduce
the overlapped tiling as described in section 3.

3. Overlapped tiling

Ovelapped tiling is one of the advanced techniques
of the loop tiling. Loop tiling divides a big loop
into smaller loops to optimize the cache hit rating
[13]. This technique is widely used in the stencil
computation includes the FDTD computation [14],[15].
In the stencil computation, the value of neighbor grids
are used for the computing the value at the next time
step as shown in Fig 3. In order to reduce the global
memory access by using the loop tilling, the grid data
in enclosed area of a tile must be also stored into the
local memory.

Hence the overlapped tiling is proposed in order
to reduce the communication overhead [16]. Figure 4
shows an example of the overlapped tiling model of
the FDTD computation. Letn×m be the area of the
tile and t be the iteration of time steps with the local
memory access,(n+2t)×(m+2t) grids in the electric
and magnetic fields are stored into the local memory.
This enclosed area of the tile is often called "ghost
zone" [17], and the ghost zone is overlapped neighbor
tiles. The area of a ghost zone expands as the iteration
of the time steps with the local memory access. The
FDTD computations in this area are done without the
global memory access. After the FDTD computations
finish, the values in the tile area is stored into the
global memory. The overlapped tiling is often used in
the stencil computation on GPUs since the overhead of
the synchronization between processing elements can
be reduced [17], [18].

Figure 5 shows the flowchart of the FDTD computa-
tion with overtapped tiling. The electric and magnetic
field data in the tile with the ghost zone is transferred
from the global memory to the local memory. Then the
FDTD computations in the tile are done prescribe time
steps. These FDTD computations are fully pipelined
with the pragma of loop unrolling [2], [19]. After the
FDTD computations finish, the electric and magnetic
field data in the tile are transferred from the local
memory to the global memory.

Fig. 3: Stencil computing with neighbor grids

���

���

�

����

����	
���

���

������	�
��
�����	� �	���

����	
���
Fig. 4: Overlapped tiling

4. Evaluation
We implement the FDTD accelerator by using

OpenCL on "Nallatech P395-D8 FPGA board" [20].
This FPGA board has the Altera StratixV GX C8，four
DDR3-SDRAMs(8GB×4) and a PCI-Express. We use
Altera SDK for OpenCL 13.1 for the compilation on
the FPGA.

Figure 6(a) shows the simulation model. This model
has N× N grids (N=128,256,512). The area of tiles
as shown in Fig. 4 is 32× 8 grids. The electric
field at (N/2,N/2) is excited as shown in Fig.6(b). The
boundary area is considered as the perfect conductor
(Ez = 0). The single-precision floating-point is used
for the calculation.

To optimize the architecture of the FDTD accel-
erator, it is important to consider with the tradeoff
between the amount of the computation and the times
of the global memory access. This tradeoff depends
on the iterations of time steps with local memory
access. Hence we evaluate a relationship between the
performance on the FPGA and the iterations of time
steps with local memory access.

Table 2 shows the resource usage of the FDTD
accelerators with one karnel pipeline as shown in Fig.

74 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

����������	
��

�������
�����

����������	
��

���	����
�����

Start: n=0

Initial data transfer

����
���	����
���� ����

T>Max
No

Yes
Finish

loop>TSTEP

����
���	����
���� ����

YesNo

Fig. 5: The flowchart of the FDTD method with
overlapped tiling

2. As the time step iterations with local memory access
increase, the resource usage becomes larger since the
number of the pipeline stages on the kernel pipeline
increases by using the loop unrolling.

Figures 7(a) and 7(b) show the relationship of the
processing time and iterations of the time steps with
local memory access (TSTEP_LOOP) on the FPGA
and the GPU (nvidia Geforce GTX 580). As shown in
these figures, the processing time on the FPGA is the
smallest when TSTEP_LOOP is five. Moreover, most
of the processing time of the GPU is larger than that
of the FPGA. One of the reasons is that the tile size
is not suitable for the warp size on the GPU. These
results show that the OpenCL code which is suitable
for FPGAs is not always suitable for GPUs.

Table3 shows the comparison of the processing time
on the FPGA. The processing speed of the FPGA with
overlapped tiling is about 5-20 times as fast as that
of the FPGA without overlapped tiling. This result
shows that it is effective for accelerate of the FDTD
computation to reduce the global memory access by

Table 3: Processing time of the FPGA with overlapped
tiling(s) (Time steps=1000)

Grids FPGA without tiling FPGA with tiling
128×128 2.030 0.070
256×256 2.780 0.250
512×512 5.400 1.050

Table 4: Processing time of the CPU, the GPU and the
FPGA(s) (Time steps=1000)

CPU GPU FPGA
Grids (Corei7920) (GTX 580) (P395-D8)

128×128 0.249 0.156 0.070
256×256 1.294 0.203 0.250
512×512 11.232 0.249 1.050

using the overlapped tiling.
To compare the processing speed of the FPGA-

based accelerator with that of CPUs and GPUs, we
implement the FDTD method by C language on "Intel
Corei7 920", and by OpenCL without tiling on "nvidia
Geforce GTX 580". Table 4 shows the comparison
of the processing time on the FPGA and the CPU
and GPU. When the number of grids is small, the
processing speed of the FPGA is the fastest in all
devices. On the other hand, the processing speed of the
FPGA is slower than that of the GPU when the number
of grids is large. In order to get better performance
on the FPGA, the degree of parallelism should be
increased by implementing more kernel pipelines.

5. Conclusion

In this article, we implement the FDTD computing
with overlapped tiling on the FPGA board by using the
OpenCL compiler. The processing speed of the FPGA
with overlapped tiling is about 5-20 times as fast as
that of the FPGA without overlapped tiling. Moreover,
the processing speed of the FPGA is faster than that of
GPU when the number of grids is small. To optimize
the performance on the FPGA-based architecture, it is
important to estimate the performance from the design
parameters such as the iterations of time steps with
local memory access and the area of the tiles. In future
works, we formulate the estimation of the processing
time from input design parameters and the optimal
design parameters are chosen for implementing the best
architecture on the FPGA.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 75

Table 2: Resource usage
Time steps LEs FFs DSPs RAMs

3 105906(20%) 156517(15%) 12(1%) 1225(48%)
5 144072(26%) 187679(18%) 20(1%) 1403(55%)
6 148848(28%) 201450(19%) 24(1%) 1563(61%)

����������	
�����������

��� ���
�

���������

����������	
�����������
(a) Simulation model

�

��

��

����

(b) Excitation of the electric field

Fig. 6: Set up of the simulation

Acknowledgment

This sutdy is supportted by MEXT KAKENHI grant
number 24300013 and Grant-in-Aid for JSPS Fellows
grant number 15J04973. Also, this study is supported
by OTB Transnational Inc.

References

[1] NVIDIA Corporation, “NVIDIA CUDA Programming
Guide” Ver2.2.1, 2009.

[2] Altera corpolation, “Altera SDK for OpenCL Programming
Guide”, http://www.altera.co.jp/literature/hb/opencl-
sdk/aocl_programming_guide.pdf

[3] Khronos group, http://www.khronos.org/opencl/

[4] D. Chen and D. Singh, “Fractal Video Compression in
OpenCL:An Evaluation of CPUs, GPUs, and FPGAs as Ac-
celeration Platforms”, Design Automation Conference (ASP-
DAC) 18th Asia and South Pacific, pp.297-304, 2013.

[5] Nallatec, “40Gbit AES Encryption Using OpenCL and FP-
GAs”, http://www.nallatech.com/images/stories/technical
_library/white-papers/40_gbit_aes_encryption_using_opencl
_and_fpgas_final.pdf

[6] D. Chen and D. Singh, “Using OpenCL to Evaluate the Effi-
ciency of CPUs, GPUs, and FPGAs for Information Filtering
”, Field Programmable Logic and Applications (FPL), 2012
22nd International Conference on. IEEE, pp.5-12, 2012.

[7] Yasuhiro Takei, Hasitha Muthumala Waidyasooriya, Masanori
Hariyama and Michitaka Kameyama, “Design of an FPGA-
Based FDTD Accelerator Using OpenCL ", International
Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA), pp.371-375, 2014

[8] H. S. Yee, “Numerical Solution of Initial Boundary Value
Problems Involving Maxwell’s Equations in Isotropic Media”,
IEEE Transactions on Antennas and Propagation, Vol.14,
No.3, pp.302-307, 1966.

[9] Z. Bo, X. Zheng-hui, R. Wu, L. Wei-ming and S. Xin-
qing, “Accelerating FDTD algorithm using GPU computing”,
International Conference on Microwave Technology & Com-
putational Electromagnetics (ICMTCE), pp.410-413, 2011.

[10] T. Nagaoka and S. Watanabe, “A GPU-based calculation us-
ing the three-dimensional FDTD method for electromagnetic
field analysis”, International Conference on Engineering in
Medicine and Biology Society (EMBC), pp.327-330, 2010.

[11] W. Chen, P. Kosmas, M. Lesser and C. Rappaport, “An
FPGA Implementation of the Two Dimensional Finite Dif-
ference Time Domain (FDTD) Algorithm”, ACM/SIGDA
International Symposium on Field-Programmable Gate Ar-
rays(FPGA), pp.213-222, 2004.

[12] K. Sano, Y. Hatsuda, W. Luzhou and S. Yamamoto, “Perfor-
mance Evaluation of Finite-Difference Time-Domain (FDTD)
Computation Accelerated by FPGA-based Custom Comput-
ing Machine”, Interdisciplinary Information Sciences, Vol.15,
No.1, pp.67-78, 2009.

[13] M.E. Wolf and M.S. Lam, 1991 “A Data Locality Optimizing
Algorithm", ACM Sigplan Notices, pp.30-44, 1991.

[14] G. Rivera and C. Tseng “Tiling Optimizations for 3D Scien-
tific Computations", ACM/IEEE SC2000 Conference, 2000.

[15] Z. Li , Y. Song, “Automatic Tiling of Iterative Stencil Loops",
ACM Transactions on Programming Languages and Systems
, pp.975-1028, 2004.

[16] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ra-
manujam, A. Rountev, P. Sadayappan, “Effective automatic
Parallelization of Stencil Computations", ACM SIGPLAN
conference on Programming language design and implemen-
tation, pp.235-244, 2007.

[17] J.Meng, and K. Skadron, “A Performance Study for Iterative

76 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

����

����

����

����

����
���������	
����
���

��	

�

���

���

���

���

�
 � � �
����������

��	
���

(a) (N=256)

����

����

����

����
���������	
����
���

���

�

	���

���

����

 � � � �
����������

���
���

(b) (N=512)

Fig. 7: Processing time vs time step iterations on local
memory

Stencil Loops on GPUs with Ghost Zone Optimizations",
International Journal of Parallel Programming 39.1,pp115-
142,2011.

[18] J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “High-
Performance Code Generation for Stencil Computations on
GPU Architectures", In Proceedings of the 26th ACM interna-
tional conference on Supercomputing (ICS ’12), pp.311-320,
2012

[19] Altera corpolation, “Altera SDK for OpenCL Opti-
mization Guide”, http://www.altera.co.jp/literature/hb/opencl-
sdk/aocl_optimization_guide.pdf

[20] Nallatec, “OpenCL FPGA Accelerator Cards”,
http://www.nallatech.com/opencl-fpga-accelerator-cards.html

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 77

