
1872
IEICE TRANS. ELECTRON., VOL.E95–C, NO.12 DECEMBER 2012

PAPER

Acceleration of Block Matching on a Low-Power Heterogeneous
Multi-Core Processor Based on DTU Data-Transfer with Data
Re-Allocation

Yoshitaka HIRAMATSU†a), Hasitha Muthumala WAIDYASOORIYA††, Masanori HARIYAMA††,
Toru NOJIRI†, Members, Kunio UCHIYAMA†, and Michitaka KAMEYAMA††, Fellows

SUMMARY The large data-transfer time among different cores is a
big problem in heterogeneous multi-core processors. This paper presents
a method to accelerate the data transfers exploiting data-transfer-units to-
gether with complex memory allocation. We used block matching, which
is very common in image processing, to evaluate our technique. The pro-
posed method reduces the data-transfer time by more than 42% compared
to the earlier works that use CPU-based data transfers. Moreover, the total
processing time is only 15 ms for a VGA image with 16 × 16 pixel blocks.
key words: block matching, heterogeneous multi-core, dynamically recon-
figurable processor, data transfer, accelerator

1. Introduction

Today’s digital appliances such as mobile phones, TVs, and
digital cameras require real-time image processing at low-
power. However, the power consumption of conventional
CPU-based image processing systems is very high. There-
fore, an effective way to implement image processing is
to use low-power heterogeneous multi-core processors that
contain different cores such as CPUs and accelerators. Ex-
amples of heterogeneous multi-core processors are [1] and
[2]. In heterogeneous multi-core processors, different tasks
of an application are assigned to the most suitable proces-
sor core. Then several cores work collectively to improve
the overall performance. Moreover, heterogeneous multi-
core processors are programmable by software, so that the
design cost and time are significantly low.

In this paper, we target the heterogeneous multi-core
processor called RP-X, we previously proposed for digital
appliances [3]. It has SH-4A CPU cores and FE-GA (flex-
ible engine/generic ALU array) accelerator cores. To re-
duce the power consumption and to increase the processing
speed, the accelerators in this processor contain a hierar-
chical memory structure, a small number of processing ele-
ments (PEs) and address generation units (AGUs) as shown
in Fig. 1. The hierarchical memory structure contains a large
memory module (global memory) placed outside the accel-
erator and several small memories (local memories) placed

Manuscript received February 23, 2012.
Manuscript revised July 5, 2012.
†The authors are with Central Research Laboratory, Hitachi,

Ltd., Kokubunji-shi, 185-8601 Japan.
††The authors are with the Graduate School of Information Sci-

ences, Tohoku University, Sendai-shi, 980-8579 Japan.
a) E-mail: yoshitaka.hiramatsu.xw@hitachi.com

DOI: 10.1587/transele.E95.C.1872

Fig. 1 RP-X heterogeneous multi-core processor architecture.

inside the accelerator. Local memories provide high-speed
and parallel data access at low power. However, their mem-
ory capacity is very small. Therefore, we have a large global
memory outside the accelerator. RP-1 [1] is another hetero-
geneous multi-core processor that has this memory struc-
ture. Data transfer units (DTUs) are included to acceler-
ate the linear and stride data-transfers between the global
and local memories. The accelerator cores employ AGUs
for fast address generation. To decrease the area of the ac-
celerator, the AGUs contain simple hardware units such as
adders and counters. Therefore the AGUs implement only
the addressing functions of the simple memory access pat-
terns [4] such as linear and stride accesses. Due to this ad-
dressing function constraint, the same data have to be copied
many times and it is called the “data duplication problem”.
Figure 2 shows this problem. Figures 2(a) and 2(b) show
the coordinates of the pixels of an image and the control
steps where a set of pixels are accessed respectively. To
access these pixels, we use a simple addressing function.
Figure 2(c) shows one possible memory allocation. In this
example, the pixel [0,1] is copied to two memory locations:
0x01 and 0x05. Similarly, the pixel [1,2] is copied to 0x04
and 0x08. Even though we need to access only 8 pixels,
we have to transfer 10 pixels to the local memory modules
where two of them are duplicated.

To solve the data duplication problem, the memory al-

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

HIRAMATSU et al.: ACCELERATION OF BLOCK MATCHING ON A LOW-POWER HETEROGENEOUS MULTI-CORE PROCESSOR
1873

Fig. 2 Data-duplication due to the addressing function constraint.

location method based on data sharing is proposed in [5].
In this method, the data are allocated to the local memo-
ries in such a way that they can be accessed using simple
addressing functions. However, complex data-transfers are
required to implement this memory allocation. Such com-
plex data-transfers cannot be accelerated using the DTU. As
a result, the data-transfer time is usually large and the pro-
cessing time is taken up by the data-transfers.

In this paper, we propose a DTU-based data-transfer
and data re-allocation method to obtain the same memory al-
location result in [5] much faster. Initially, the data transfer
to the local memories is accelerated using the DTU. Then,
the data are re-allocated in the local memories so as to obtain
the memory allocation result in [5]. The data re-allocation
overhead is very small since it is done in parallel using mul-
tiple AGUs. To verify the effectiveness of this method, we
use a block matching example. Block matching is widely
used in many image processing applications such as stereo
vision [6], optical-flow extraction [7], etc. According to the
results, the proposed method reduces the data-transfer time
by more than 42% compared to that in [5].

2. Previous Works

Much research have been done already on memory alloca-
tion in previous works such as [6], [8], [9]. A hierarchical
matching approach for stereo matching to reduce the com-
putation amount is proposed in [6]. The parallel access of
multiple memory modules is discussed in [8] and [9]. These
methods are proposed under the assumption that the random
memory access is possible and the allocated data are acces-
sible at any time from any memory address.

In this work, we focus on RP-X heterogeneous multi-
core processor [3] that we developed for digital appliances.
The types of cores in the RP-X processor are the same as
those in the RP-1 processor that we proposed in our previ-

Fig. 3 Memory allocation for horizontal-first schedule.

ous work [1]. The difference between these two processor
architectures is the number of cores. RP-1 has four SH-4A
CPU cores and two FE-GA accelerator cores while RP-X
has 8 SH-4A cores and four FE-GA cores. A detailed de-
scription of RP-1 and RP-X is given in [10] on chapters 4.2
and 4.4 respectively. To reduce the power consumption, the
accelerators in these processors have a small number of re-
configurable PEs. If we use these small number of PEs for
the address generation, we cannot use them for data pro-
cessing and this reduces the processing speed. Therefore, it
is not efficient to use PEs to generate the memory addresses
required for the random memory access. To solve the prob-
lem, the accelerator has special hardware units called AGUs
for the address generation. AGUs contain simple hardware
units such as adders and counters to reduce the accelera-
tor core area. AGUs generate addresses for the simple and
most common memory access patterns in media processing
such as linear and stride access. However, AGUs cannot
generates addresses for more complex and irregular mem-
ory access patterns such as random access. Therefore, the
traditional memory allocation techniques cannot be applied.

For such heterogeneous multi-core processors, addre-
ssing-function-constrained memory allocation is proposed
in [5]. Figure 3 shows an example of this memory alloca-
tion. Figure 3(a) shows the coordinates of the pixel data in
the scan area. The scan area width and the height are 10 and
10 respectively. A block of size 4 × 4 is used for the scan-
ning. Two memory modules are used to allocate pixel data.
Figure 3(b) shows the allocated data on memory modules.
The data duplication is reduced by sharing the data among
horizontal-blocks. As shown in Fig. 3(b), the data in mem-
ory module 1 are shared between the blocks 0 and 1. Sim-
ilarly, the data in module 0 are shared between the blocks
1 and 2 and so on. However, there is a small data duplica-
tion. For example, pixel (2, 1) is allocated to the memory

1874
IEICE TRANS. ELECTRON., VOL.E95–C, NO.12 DECEMBER 2012

addresses 03 and 22 of memory module 0.
To implement this memory allocation, we have to

transfer data from the global memory (source) to the local
memories (destination). Such data transfers take a large pro-
cessing time and need to be accelerated. DTU is very effi-
cient way of accelerating burst-mode data transfers where a
large segment of data are transferred from one memory loca-
tion to another. Usually, both the throughput and the latency
of the DTU-based data transfer is large compared to the
CPU-based data transfer. Therefore, larger data segments
give more efficient data transfers. However, the memory al-
location in [5] is very complicated and we cannot transfer
a one large segment of data from the source to the destina-
tion. If we use DTU to realize this memory allocation, the
data block size becomes very small. For such small block
sizes, the data transfer cannot be accelerated. Therefore,
CPU-based data-transfer is used in [5].

In this paper, we propose a DTU-based data transfer ac-
celeration method with data re-allocation to obtain the same
memory allocation result in [5]. Figure 4 shows the differ-
ence between the proposed method and the method in [5].
As shown in Fig. 4(a), the method in [5] transfers one data at
a time from the global memory to the local memories using
the CPU. In the proposed method shown in Fig. 4(b), we di-
vide the data transfer into two steps. In the first step, a large
segment of data in the global memory is transferred to the
local memory using the DTU. In the second step, the data
in the local memory are re-allocated to different addresses
in the same local memory to achieve the memory allocation
result in [5]. Since we transfer the same data twice, global to
local and local to local, it looks like we are wasting process-
ing time. However, as shown in Fig. 5, the data re-allocation
overhead is very small compared to the time reduction due
to DTU-based data-transfer. We achieved such a small data

Fig. 4 Conventional vs. proposed data-transfers.

Fig. 5 Data-transfer time and total processing time.

re-allocation time by employing parallel local-to-local data
transfers using multiple AGUs.

3. Heterogeneous Multi-Core Processor Architecture

In this paper, we use the heterogeneous multi-core chip (RP-
X) [3] we previously developed for digital appliances. A
micrograph of this chip is shown in Fig. 6(a). A block dia-
gram of the chip is shown in Fig. 6(b). It has four types of
processors: eight SH-4A cores (two SH-4A clusters, each of
which is composed of four SH-4A cores), four FE-GAs [1],
two MX-2s [11], and one video-processing unit 5 (VPU5)
[12], [13]. In this research, we use four SH-4A cores in one
cluster and four FE-GAs cores. Each SH-4A core is a re-
duced instruction set computer (RISC) processor.

3.1 Data-Transfer Module

The heterogeneous multi-core processor [3] has data-
transfer modules called Data transfer units (DTUs). The
data-transfer latency and throughput of the SH-4A and DTU
are listed in Table 1. The values are based on the data
transfer between the SH-4A local memory and FE-GA local
memory. The latency of the SH-4A is referred to the number
of CPU-clock-cycles between the start-time of reading data
from the SH-4A local memory and the end-time of writing it
to the FE-GA local memory. The latency of the DTU for the
data transfer between SH-4A local memory and FE-GA lo-
cal memories is referred to the number of CPU-clock-cycles
required between the starting of the DTU and the end-time
of writing the first data to the FE-GA local memory. The
throughput of the SH-4A transfer is referred to the number
of byte per CPU-clock-cycle while the data are transferred
in 4 bytes from the SH-4A local memory to the FE-GA local
memory. The throughput of DTU is referred to the number
of byte per CPU-clock-cycle while the data are transferred in

Fig. 6 Heterogeneous multi-core chip proposed in [3].

Table 1 Data transfer latency and throughput.

Processor core
Latency Throughput

(CPU clock) (B/CPU clock)
SH-4A 38 0.50
DTU 50 0.67

(CPU frequency: 648 MHz; system bus frequency: 324 MHz)

HIRAMATSU et al.: ACCELERATION OF BLOCK MATCHING ON A LOW-POWER HETEROGENEOUS MULTI-CORE PROCESSOR
1875

Fig. 7 DTU commands.

Fig. 8 Data flow between DDR3 and FE-GA.

16 bytes from the SH-4A local memory to the FE-GA local
memory. According to the results in Table 1, data transfer
using DTUs is faster than the data transfer using CPU.

The DTU can be programmed by placing transfer com-
mands on the SH-4A local memory. Four types of com-
mands are used: continuous transfer, stride transfer, gather
transfer, and scatter transfer. Each command is shown
schematically in Fig. 7. The data flow between DDR3-
SDRAM and FE-GA using DTU is also shown in Fig. 8.
The DTU reads commands from the SH-4A local memory,
and it reads from the DDR3-SDRAM through a system bus
to the DTU local memory and writes to the FE-GA local
memory through the system bus. The commands can also
be placed as a linked list in the SH-4A local memory which
is called the URAM. Then the DTU reads commands from
the URAM and executes one-by-one as shown in Fig. 8.

3.2 Flexible Engine/Generic ALU Array

The FE-GA [1] is a non-uniformed processing element ar-
ray and a dynamically reconfigurable processor. A block
diagram of the FE-GA is shown in Fig. 9. It consists of
thirty-two 16-bit processing element cells, ten load store
cells (LSs), ten 4 KB local memory cells (CRAMs), a con-
figuration manager (CFGM), a sequence manager (SEQM),
and a crossbar network (XB), which contains two kinds of
PEs. One kind consists of an arithmetic logic unit (ALU),
a shifter, and registers. There are twenty-four of these el-

Fig. 9 Block diagram of FE-GA.

ements. The other kind consists of multiply accumulation
units (MLTs) and registers, and there are eight of these el-
ements. The PEs are arrayed two-dimensionally and con-
nected to neighboring cells. The CFGM is programmable
and can change the type and connection of PEs and the XB
connection during certain clock cycles. The FE-GA con-
tains 256 sequences which are dynamically reconfigurable.
Therefore, in each sequence, we can change the operations
in ALU, MLT, LS cells and their connections. We also can
change the connections in the crossbar network. The SEQM
performs autonomous sequence control, creating a highly
independent subsystem. The FE-GA is suitable for middle-
grained operations with middle parallelism. In particular, it
accelerates image processing including many multiple accu-
mulation operations such as finite impulse response (FIR).

3.3 Address Generation in FE-GA

The FE-GA has AGUs placed inside the LS (load/store)
cells as shown in Fig. 9 for address generation. The address
generation using AGUs is very useful since it significantly
decreases the address calculation time. It also allows ALU
and MLT cells to concentrate only on data processing. To
reduce the area of the accelerator core, AGUs contain only
simple hardware such as adders and counters. Therefore, the
number addressing patterns generated in AGUs are limited
to most common addressing patterns. The relationship be-
tween the time and the control step (clock cycle) is called an
“addressing function”. In FE-GA, the addressing functions
are limited to linear functions as shown in Eq. (1).

Address = m × t + c (1)

The parameters m, t and c are the address increment, the
control step and the base address respectively. There is an-
other parameter called number of iterations that determines
how many clock cycles this addressing function works. Af-
ter the addressing function works by the number of iter-
ations, address returns to the base address as shown in
Fig. 10. In each context of the FE-GA, we need to set these
3 parameters m, c and the number of iterations. Therefore,
it is possible to change those parameters dynamically to ac-

1876
IEICE TRANS. ELECTRON., VOL.E95–C, NO.12 DECEMBER 2012

Fig. 10 Addressing function.

cess different parts of the memory.

4. Block-Matching Computation on Heterogeneous
Multi-core Processor

4.1 Block Matching

In this paper, we consider the data transfer in the optical-
flow extraction application based on block matching. In the
block matching, corresponding pixels between two images
taken at time t and t + δt are searched. To find the corre-
sponding pixel, a reference block for a particular pixel in
the image at time t and a search area in the image at time
t + δt are considered as shown in Fig. 11. Different candi-
date blocks are selected from the search area and the SAD
(sum of absolute differences) value with the reference block
is calculated. The SAD is calculated using Eq. (2) where N,
M, f (x, y) and g(x, y) are the width of a block, the height
of a block, a pixel in the image at time t (reference image)
and a pixel in the image at time t + δt (candidate image)
respectively.

S sad =

N−1∑

x=0

M−1∑

y=0

| f (x, y) − g (x, y)| (2)

The similar the reference block to the candidate block is, the
smaller the SAD becomes. Therefore, the candidate block
with the minimum SAD value is selected as the correspond-
ing block to the reference block. The specifications of the
block matching are given in Table 2.

4.2 Implementation

The block matching algorithm used in [5] is implemented
in this paper using the proposed data transfer method. As
shown in Fig. 12(a), the candidate block is moved one pixel
from left-to-right and up-to-down in the search area. The
pixels inside a block are accessed in columns from left-to-
right as shown in Fig. 12(b). The pixels in a column are
stored in multiple memory modules and accessed in par-
allel. This scheduling is called block-serial-pixel-parallel
scheduling. This scheduling is suitable for the FE-GA since
the partial SAD calculation for the pixels in a column can be
easily mapped onto the mesh-connected cells as described in
Sect. 4.2.3. A detailed description on the access order of the
pixels is given in [5].

The block matching contains two major tasks; SAD

Fig. 11 Optical-flow extraction based on block matching.

Table 2 Specification of the block matching.

Image size 640 × 480
Search area size 24 × 24

Block size 16 × 16

Fig. 12 Access order of pixels.

Fig. 13 Flow-chart of block matching on a SH-4A/FE-GA pair.

calculation and searching for the minimum SAD. The SAD
calculation takes more than 99% of the total processing time
[5]. Therefore, we use the FE-GA for the SAD calculation.
The SH-4A is used for the minimum SAD search since it
contains a large amount of control processing. A pair com-
posed of an SH-4A and an FE-GA executes the SAD calcu-
lation and the search for minimum SAD respectively. Four

HIRAMATSU et al.: ACCELERATION OF BLOCK MATCHING ON A LOW-POWER HETEROGENEOUS MULTI-CORE PROCESSOR
1877

Fig. 14 Pixel data stored in the DDR3-SDRAM.

Fig. 15 Coordinates of the pixel data in the image.

Fig. 16 Data transferred to the CRAMs.

such pairs are used for the block matching where each pro-
cesses 25% of the blocks in the image. A flow chart of
the block matching by the SH-4A/FE-GA pair is shown in
Fig. 13. In sequence (a), the SH-4A continuously transfers
the candidate blocks and reference blocks to the FE-GA lo-
cal memory. In sequence (b), the FE-GA aligns the candi-
date block and the reference block in its own local mem-
ory. In sequence (c), the FE-GA calculates SAD 81 times
by picking different candidate blocks on the search area. In
sequence (d), the SH-4A reads these SADs from the FE-GA
local memory and searches for the minimum SAD. The fol-
lowing section describes the flow from sequences (a) to (d).

4.2.1 Data-Transfer to FE-GA

The data transfer from DDR3-SDRAM to the CRAMs in
FE-GA is done by the DTU to decrease the processing time.
Figure 14 shows the data stored in the DDR3-SDRAM. Note

that the data are represented by the coordinates of the pixels
as shown in Fig. 15. The data are stored in DDR3-SDRAM
from line-by-line as in the raster scan. The data of the
candidate image is stored from the addresses 0 to 307199.
Then the data of the reference image are stored in addresses
307200 to 614399.

Figure 16 shows the data transferred from the DDR3-
SDRAM to 8 CRAMs in the FE-GA for one search area
and one reference block. Since the CRAMs are too small
to hold all the data in two images, a reference block and
its corresponding search area are transferred one at a time.
After the SAD computation is finished, another reference
block and a search area are transferred. Since the search
area size is 24 × 24, the first search area contains the data
(0,0) ∼ (0,23), (1,0) ∼ (1,23), ... , (23,0) ∼ (23,23) as shown
in Fig. 15. The data: (0,0) ∼ (0,23), (1,0) ∼ (1,23), ... , (7,0)
∼ (7,23) are stored from CRAM 0 to CRAM 7 respectively.
Then the data: (8,0) ∼ (8,23), ... , (15,0) ∼ (15,23) are stored

1878
IEICE TRANS. ELECTRON., VOL.E95–C, NO.12 DECEMBER 2012

from CRAM0 to CRAM 7 respectively. Similarly the rest
of the data are stored as shown in Fig. 16. Since the word
length of the DDR3-SDRAM and the CRAMs are 8 bits and
16 bits respectively, two pixels are stored in each CRAM
address. The CRAM address from 0 to 35 contain the search
area data of the candidate image. The addresses from 36 to
51 contain the reference block data of the reference image.

To transfer data from the DDR3-SDRAM to CRAMs,
we use the stride transfer mode of the DTU explained in
Fig. 7(b) where the source is the DDR3-SDRAM and the
destinations are the CRAMs. Although there are several
CRAMs, their addresses are mapped to a global address
space so that we can see them as a single memory. The
data are transferred by using a command-list of five stride
transfer commands shown in Fig. 17 where each of which
has different source and destination addresses. For example,
the data transfer using command 1 is shown in Fig. 18. In
this command, the source address is 0 since the pixel coor-
dinate (0,0) is stored in address 0 of DDR3-SDRAM. The
destination address is 0 since the pixel (0,0) is stored in the
first address of CRAM 0. The stride width is 24. The gap
between two strides is 616 and 2036 for source and destina-
tion respectively.

4.2.2 Re-Allocation of Data Using FE-GA

In the proposed method, we re-align the data in the CRAMs
to obtain the memory allocation result in [5]. As explained
in Sec.4.2.1, two 8 bit pixels are stored in one CRAM ad-
dress. First, we separate the pixels and then transfer those to
different CRAM addresses. This process is called the “data
re-allocation”. The data re-allocation is divided into 3 sim-
ple phases and each phase is done in 2 sequences.

In this paragraph, we explain how the data re-allocation
is done using FE-GA. Figure 19 shows the PE array of the
FE-GA that do the re-allocation. In the first sequence, the

Fig. 17 DTU command lists for data transfer in sequence (a).

Fig. 18 Stride data transfer of DTU command 1 in Fig. 17.

upper 8 bit of data in CRAM addresses (the first pixel) are
extracted and converted to a 16 bit data by adding zeros as
shown in Fig. 19(a). After the bit conversion, the data are
transferred to another address in the same CRAM. Similarly,
the lower 8 bit of data (the second pixel) are extracted and
transferred in the second sequence as shown in Fig. 19(b).
Eight such data transfers are done in parallel and their ad-
dresses are generated in AGUs.

This paragraph explains the different data transfer in
phases 1 to 3. Figure 20 shows the data transfer of the phase
1. The addresses 0 to 51 are the source addresses (same as
Fig. 16) and the addresses from α to α + 111 are the des-
tination addresses. (Note that the data shown in gray back-
ground are the reference block data). The value α is an offset
that separates the read and write address spaces. In the first
sequence, the data in source addresses: 0 to 23 are read.

Fig. 19 Data re-allocation in CRAM using FE-GA.

HIRAMATSU et al.: ACCELERATION OF BLOCK MATCHING ON A LOW-POWER HETEROGENEOUS MULTI-CORE PROCESSOR
1879

Fig. 20 Data re-allocation in phase 1.

Fig. 21 Data re-allocation in phase 2.

Fig. 22 Data re-allocation in phase 3.

Then the upper 8 bits of each data are written to the destina-
tion addresses: α + 0 to α+ 92 as shown in Fig. 20(a). In this
re-allocation, the data are read from the CRAMs and written
to the CRAMs using the simple addressing functions given
by Eqs. (3) and (4) respectively. These addressing functions
are implemented in AGUs.

Read addressphase1 sequence1 = t (3)

Write addressphase1 sequence1 = 4t + α (4)

In the second sequence, the source addresses: 0 to 23 are
read again and the lower 8 bits of the data are written to the
destination addresses: α+2 to α+94 as shown in Fig. 20(b).
The data are read from and written to the CRAMs using the
addressing functions given by Eqs. (5) and (6) respectively.
These addressing functions are implemented in AGUs.

Read addressphase1 sequence2 = t (5)

Write addressphase1 sequence2 = 4t + (α + 2) (6)

Similarly, in the phase 2, the data in addresses: 12 to 43
(same as Fig. 16) are written to the addresses: α+1 to α+111
as shown in Fig. 21. For simplicity, the source addresses are
not shown in Fig. 21. The data shown in bold-italic are the
data that were copied during the phase 2. In the phase 3,
the data in addresses: 44 to 51 (same as Fig. 16) are written
to the addresses: α + 96 to α + 110 as shown in Fig. 22.
The data shown in bold-italic are the data that were copied
during phase 3.

4.2.3 SAD Calculation Using FE-GA

The FE-GA calculates the SADs between a reference block

1880
IEICE TRANS. ELECTRON., VOL.E95–C, NO.12 DECEMBER 2012

Fig. 23 SAD calculation using FE-GA.

and a candidate block. Figure 23 shows the mapping of SAD
calculation to the FE-GA. Each CRAM contains the data
of a reference and a candidate blocks. The absolute differ-
ences between pixels in the reference and candidate blocks
are calculated using 8 pairs of ALUs. Absolute differences
are added together using 7 adders. This value is accumu-
lated for all the pixels in a candidate and a reference blocks.
Then the SAD value is written to the CRAM 8. According
to the specifications in Table 2, each reference blocks has 81
candidate blocks in the search area. Therefore, we calculate
81 SAD values per a reference block.

4.2.4 Search for Minimum SAD

The 81 SAD values are transferred to the local memory of
the SH-4A using the DTU. The searching for the minimum
SAD contain many control processing operations and it is
not easy to implement it in the FE-GA. Therefore, we use
the SH-4A for the minimum SAD search.

5. Evaluation

We evaluated the proposed method for block matching us-
ing the heterogeneous multi-core processor proposed in [3].
Figure 24 shows the processing time comparison between
the proposed method and the method in [5] for one SH-4A
and one FE-GA implementation. Note that, Fig. 24 shows
the processing time of one corresponding pixel search. The
data-transfer time is the time required to transfer the data
from the DDR3-SDRAM to the CRAMs. The data-align
time is the time required to re-align the data in the CRAMs.
Note that the data-align time is necessary for the proposed
method. The total clock cycles required for the block match-
ing is only 31205 while 43958 are required in [5]. There-
fore, the total processing time is reduced by 29%. The data-
transfer time in method [5] is 29726 clock cycles. The sum
of the data-transfer time and data-align time in the proposed
method is only 16973 cycles. Therefore, the data-transfer
time is reduced by more than 42% compared to that of [5].
The main reason for this is the acceleration of the data trans-
fer using the DTU. The data-align overhead is very small

Fig. 24 Performance of the block-matching process.

Fig. 25 Performance of heterogeneous vs. homogeneous processing.

compared to the data-transfer time due to the following rea-
sons. The first is the fast address generation using the AGUs.
The second is parallel access to 8 CRAMs.

1 SH-4A : a single SH-4A core performs SAD
calculation and minimum SAD search.

8 SH-4A : 8 SH-4A cores perform SAD calculation
and minimum SAD search in parallel

1 SH-4A : one SH-4A core and one FE-GA core are
+ 1 FE-GA used for minimum SAD search and SAD

calculation respectively.
4 SH-4A : four pairs of a SH-4A core and an
+ 4 FE-GA FE-GA core are used for parallel

processing as explained in Sect. 4.2.

Figure 25 shows the processing time comparison of block
matching for a VGA image using heterogeneous and homo-
geneous processing with and without the proposed method.
As shown in Fig. 25, single SH-4A core implementation has
the largest processing time. The processing time is reduced
by 7.3 times using homogeneous multi-core processing with
“8 SH-4A” cores. Performance similar to “8 SH-4A” imple-
mentation has been achieved in [5] using only two cores, one
SH-4A and one FE-GA. Using the proposed method and us-
ing the same number of cores (one SH-4A and one FE-GA),
we further reduced the processing time by 29%. In fig.25,
we also compare 8 core homogeneous multi-core implemen-

HIRAMATSU et al.: ACCELERATION OF BLOCK MATCHING ON A LOW-POWER HETEROGENEOUS MULTI-CORE PROCESSOR
1881

tation with 8 core heterogeneous multi-core implementation
(4 SF-4A and 4 FE-GA) using the proposed method. The
processing time is reduced by 5.9 times in heterogeneous
processing with the proposed method compared to homoge-
neous processing. This shows that, the heterogeneous pro-
cessing with the proposed method gives significantly better
performance compared to homogeneous processing.

Moreover, the processing time of “4 SH-4A+4 FE-GA”
is one fourth of that of “1 SH-4A + 1 FE-GA”. In other
words, the processing time decreases linearly with the num-
ber of cores. When we use all 4 FE-GA accelerators in par-
allel in “4 SH-4A+4 FE-GA” implementation, we can pro-
cess a VGA image at 15 ms. Such results shows that the het-
erogeneous processing with proposed method can be used in
real-time image processing under the video frame-rate.

One reason for the processing time reduction in hetero-
geneous processing compared to homogeneous processing
is the parallel processing in FE-GA. As shown in Fig. 23,
eight absolute different calculations and 8 additions are done
in parallel. Another reason is the AGU-based address gen-
eration in FE-GA. In FE-GA implementation, the address
generation is done in parallel to the data processing in the
ALU and MLT cells. However, in SH-4A implementation,
addresses generation and data processing are done in serial
using the same hardware. Due to these reasons the SAD cal-
culation time that took 99% of the total processing time in
[5] is reduced to 33% using the proposed method. The rea-
son for the processing time reduction of 29% in the proposed
method compared to the method in [5] is the proposed DTU-
based data-transfer. Since the data-transfers among multiple
cores is a major problem in heterogeneous processing, such
a processing time reduction is a big achievement.

6. Conclusion

This paper presents a method to accelerate the data transfers
exploiting data-transfer-units together with complex mem-
ory allocation. A flow of the method is that the data are
initially transferred to the local memories using the data-
transfer-module. Then, the data are aligned to the local
memories so as to obtain the complex memory allocation
reducing the data duplication. To verify the effectiveness
of this method, we used block matching which is widely
used in many image processing applications. It involves
with a large amount of data and also requires complex mem-
ory access patterns. According to the results, the proposed
method reduces the data-transfer time by more than 42%
compared to that in conventional method. The main rea-
son for this is the acceleration of the data transfer using
the data-transfer-units. The another reason is that the data
re-allocation overhead is very small since the address gen-
eration is done in AGUs and the data are aligned in paral-
lel using multiple AGUs. Moreover, the processing time of
the proposed method decreases linearly with the number of
cores.

Acknowledgment

This work was supported by the New Energy and Indus-
trial Technology Development Organization P05020, a joint
project between Hitachi, Ltd., Renesas Electronics Corp.,
Waseda University, and Tokyo Institute of Technology.
The design of this chip was supported by Yoichi Yuyama,
Yoshikazu Kiyoshige, Yusuke Nitta, Masayuki Ito, Osamu
Nishii, and Atsushi Hasegawa at Renesas Electronics Corp.
and Tetsuya Yamada, Makoto Ishikawa, Masashi Takada,
Takumi Nito, and Junichi Miyakoshi at Hitachi, Ltd. The
design of the system was supported by Koichi Terada and
Hiroyuki Mizuno at Hitachi, Ltd. The design of the paral-
lelizing compiler was supported by Makoto Satoh at Hitachi,
Ltd. and Yasutaka Wada, Akihiro Hayashi, Keiji Kimura,
and Hironori Kasahara at Waseda University. The design
of the software development envelopment was supported by
Hideo Maejima at Tokyo Institute of Technology.

References

[1] H. Shikano, M. Ito, M. Onouchi, T. Todaka, T. Tsunoda, T. Kodama,
K. Uchiyama, T. Odaka, T. Kamei, E. Nagahama, M. Kusaoke, Y.
Nitta, Y. Wada, K. Kimura, and H. Kasahara, “Heterogeneous multi-
core architecture that enables 54x AAC-LC stereo encoding,” IEEE
J. Solid-State Circuits, vol.43, no.4, pp.902–910, 2008.

[2] O. Takahashi, C. Adams, D. Ault, E. Behnen, O. Chiang, S.R.
Cottier, P. Coulman, J. Culp, G. Gervais, M.S. Gray, Y. Itaka, and
C.J. Johnson, “Migration of cell broadband engine from 65 nm SOI
to 45 nm SOI,” ISSCC Dig. Tech. Papers, pp.86–87, 2008.

[3] Y. Yuyama, M. Ito, Y. Kiyoshige, Y. Nitta, S. Matsui, O. Nishii,
A. Hasegawa, M. Ishikawa, T. Yamada, J. Miyakoshi, K. Terada,
T. Nojiri, M. Satoh, H. Mizuno, K. Uchiyama, Y. Wada, and K.
Kimura, “A 45 nm 37.3GOPS/W heterogeneous multi-core SoC,”
ISSCC Dig., pp.100–101, 2010.

[4] K. Hosogi, S. Higashijima, T. Tashiro, A. Kawaguchi, and N.
Nishioka, “A data transfer implementation on media processor
MAPCA,” IPSJ SIG Notes 2002, vol.9, pp.91–95, 2002. (in
Japanese)

[5] H.M. Waidyasooriya, M. Hariyama, and M. Kameyama, “Memory
allocation for window-based image processing on multiple memory
modules with simple addressing functions,” IEICE Trans. Funda-
mentals, vol.E94-A, no.1, pp.342–351, Jan. 2011.

[6] M. Hariyama, H. Sasaki, and M. Kameyama, “Architecture of
a stereo matching VLSI processor based on hierarchically paral-
lel memory access,” IEICE Trans. Inf. & Syst., vol.E88-D, no.7,
pp.1486–1491, July 2005.

[7] S. Lee, M. Hariyama, and M. Kameyama, “An FPGA-oriented mo-
tionstereo processor with a simple interconnection network for par-
allel memory access,” IEICE Trans. Inf. & Syst., vol.E83-D, no.12,
pp.2122–2130, Dec. 2000.

[8] Z. Liu and X. Li, “XOR storage schemes for frequently used data
patterns,” J. Parallel Distrib. Comput., vol.25, pp.162–173, 1995.

[9] Y. Kobayashi, M. Hariyama, and M. Kameyama, “Optimal periodic
memory allocation for image processing with multiple windows,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.17, no.3,
pp.403–416, 2009.

[10] K. Uchiyama, F. Arakawa, H. Kasahara, T. Nojiri, H. Noda, Y.
Tawara, A. Idehara, K. Iwata, and H. Shikano, “Heterogeneous Mul-
ticore Processor Technologies for Embedded Systems,” Springer
Science + Business Media, New York, 2012.

[11] H. Yamasaki, T. Kurafuji, M. Haraguchi, T. Nishijima, K. Murata, T.

1882
IEICE TRANS. ELECTRON., VOL.E95–C, NO.12 DECEMBER 2012

Tanizaki, H. Noda, Y. Okuno, and K. Arimoto, “An energy-efficient
massively parallel embedded processor core for real-time image pro-
cessing SoC,” Proc. COOLChips XIII, pp.395–410, 2010.

[12] K. Iwata, T. Irita, S. Mochizuki, H. Ueda, M. Ehama, M. Kimura,
J. Takemura, K. Matsumoto, E. Yamamoto, T. Teranuma, K.
Takakubo, and H. Watanabe, “A 342 mW mobile application pro-
cessor with full-HD multi-standard video codec,” ISSCC Dig. Tech.
Papers, pp.158–159, 2009.

[13] M. Kimura, K. Iwata, S. Mochizuki, H. Ueda, M. Ehama, and H.
Watanabe, “A full HD multi-standard video codec for mobile appli-
cations,” IEEE Micro, vol.29, no.6, pp.18–27, 2009.

Yoshitaka Hiramatsu received a B.S. de-
gree in information science and technology from
Aichi Prefectural University, Japan, in 2002 and
an M.E. degree in information engineering from
Nagoya University, Japan, in 2004. From 2004,
he has worked in the field of robot vision, image
processing, image recognition, and very large-
scale integration (VLSI) architecture design for
video processing unit at Central Research Labo-
ratory, Hitachi, Ltd., Tokyo, Japan (HCRL). He
is a member of IEEE Computer Society.

Hasitha Muthumala Waidyasooriya re-
ceived the B.E. degree in information engineer-
ing, and the M.S. and Ph.D. degrees in infor-
mation sciences from Tohoku University, Sen-
dai, Miyagi, Japan, in 2006, 2008, and 2010, re-
spectively. He is currently a Post-Doctoral Re-
searcher with the Graduate School of Informa-
tion Sciences, Tohoku University. His current
research interests include heterogeneous mul-
ticore processor architectures and high perfor-
mance computing.

Masanori Hariyama received the B.E.
degree in electronic engineering, and the M.S.
and Ph.D. degrees in information sciences from
Tohoku University, Sendai, Miyagi, Japan, in
1992, 1994, and 1997, respectively. He is cur-
rently an Associate Professor with the Graduate
School of Information Sciences, Tohoku Uni-
versity. His current research interests include
very large-scale integration (VLSI) computing
for real-world application, such as robots, high-
level design methodology for VLSIs, reconfig-

urable computing and high performance computing.

Tohru Nojiri received a B.E. degree in
mathematical engineering from the University
of Tokyo and a Ph.D. in information process-
ing from Tokyo Institute of Technology. He is
a senior researcher at Central Research Labora-
tory, Hitachi, Ltd. His research interests include
embedded-system platforms, operating systems,
and processor architectures. He is a member of
IEEE Computer Society, the ACM, and the In-
formation Processing Society of Japan.

Kunio Uchiyama received B.S. and M.S.
degrees in information science from Tokyo In-
stitute of Technology, Japan, in 1976 and 1978,
respectively and a Ph.D. degree in advanced ap-
plied electronics from Tokyo Institute of Tech-
nology in 2001. Since 1978 he has been working
for Central Research Laboratory, Hitachi, Ltd.,
Tokyo, Japan, on design automation, small-scale
mainframes, cache memory, and microproces-
sors. From 1985 to 1986 he was a visiting re-
searcher at the Department of Computer Sci-

ence, Carnegie-Mellon University, Pittsburgh, PA. He also serves as a visit-
ing professor at Waseda University. He got the Ichimura Aaward, R&D100,
the Chief Officer’s Award of the Japanese Science and Technology Agency,
and the National Medal of Honor with Purple Ribbon in 1998, 1999, 2000,
and 2004, respectively.

Michitaka Kameyama received the B.E.,
M.E. and D.E. degrees in Electronic Engineer-
ing from Tohoku University, Sendai, Japan, in
1973, 1975, and 1978, respectively. He is
currently Dean and Professor in the Graduate
School of Information Sciences, Tohoku Uni-
versity. His general research interests are intel-
ligent integrated systems for real-world appli-
cations and robotics, advanced VLSI architec-
ture, and new-concept VLSI including multiple-
valued VLSI computing. Dr. Kameyama re-

ceived the Outstanding Paper Awards at the 1984, 1985, 1987 and 1989
IEEE International Symposiums on Multiple-Valued Logic, the Technically
Excellent Award from the Society of Instrument and Control Engineers of
Japan in 1986, the Outstanding Transactions Paper Award from the IEICE
in 1989, the Technically Excellent Award from the Robotics Society of
Japan in 1990, and the Special Award at the 9th LSI Design of the Year in
2002. He is IEEE Fellow and IPSJ Fellow.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

