
1632
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

PAPER Special Section on Reconfigurable Systems

Architecture of an Asynchronous FPGA for
Handshake-Component-Based Design

Yoshiya KOMATSU†a), Nonmember, Masanori HARIYAMA†, Member, and Michitaka KAMEYAMA†, Fellow

SUMMARY This paper presents a novel architecture of an asyn-
chronous FPGA for handshake-component-based design. The handshake-
component-based design is suitable for large-scale, complex asynchronous
circuit because of its understandability. This paper proposes an area-
efficient architecture of an FPGA that is suitable for handshake-component-
based asynchronous circuit. Moreover, the Four-Phase Dual-Rail encoding
is employed to construct circuits robust to delay variation because the data
paths are programmable in FPGA. The FPGA based on the proposed ar-
chitecture is implemented in a 65 nm process. Its evaluation results show
that the proposed FPGA can implement handshake components efficiently.
key words: FPGA, reconfigurable LSI, self-timed circuit, asynchronous
circuit

1. Introduction

Recent technology scaling enables designs with billions of
transistors. On the other hand, the increased complexity of
circuits leads to two problems. The first is the cost prob-
lem. The process development cost has increased the ex-
pense of the fabrication cost of chips. Also, design cost
and verification cost become serious problem. The sec-
ond is performance problem. Currently, most digital circuits
are synchronous circuits which operate based on clock sig-
nals. As the number of transistors integrated on a chip has
increased, clock distribution network has become complex
and its power consumption has become large. In addition,
it becomes severe challenge to increase clock frequency be-
cause clock signal should be distributed all over a chip.

To solve the first problem, Field-programmable gate ar-
rays (FPGAs) are widely used to implement special-purpose
processors. Since users can program logic functions and
interconnections of FPGAs directly, it is easy to develop
special-purpose processors. In addition, FPGAs are cost-
effective because they are produced in large quantities.

To solve the second problem, asynchronous circuit is
attracting attention. In asynchronous circuit, data transfer is
done by handshaking using a request signal and an acknowl-
edge signal. Since no clock signal is necessary, problems
caused by clock distribution network do not arise. However,
the problem is that it is difficult to design asynchronous cir-
cuits.

As the design methods for asynchronous circuits,
handshake-component-based design [1] was proposed. In

Manuscript received November 10, 2012.
Manuscript revised March 8, 2013.
†The authors are with the Graduate School of Information Sci-

ences, Tohoku University, Sendai-shi, 980–8579 Japan.
a) E-mail: ykomatsu@ecei.tohoku.ac.jp

DOI: 10.1587/transinf.E96.D.1632

handshake-component-based design, asynchronous circuits
are designed by connecting handshake components. Since
various handshake components such as for data processing
and data path control are defined, it is easy to design asyn-
chronous data path and its controller. Therefore, handshake-
component-based design is suitable for applications that
contain complex data processing. Besides, Balsa [2] is pro-
posed as a design methodology that uses handshake com-
ponents. Balsa is a hardware description language and it
allows circuit designers not to pay attention to low-level de-
tails such as control of handshake. Moreover, there are syn-
thesis tools that generate handshake circuits which consist
of handshake components and standard cell netlists from
Balsa descriptions. Using Balsa, circuit designer can eas-
ily implement complex large-scale circuits such as a DMA
controller [2] and a microprocessor [3]. Thus, handshake-
component-based design is suitable for complex large-scale
asynchronous circuits.

To solve the cost and performance problems, some
asynchronous FPGAs has been proposed [4]–[10]. Asyn-
chronous FPGAs developed by Cornell University [4], [5],
Achronix [6] and the University of Tokyo [7] employ fine-
grained pipelined architecture to achieve high throughput.
References [8]–[10] propose asynchronous FPGA architec-
ture focusing on low power consumption. The asynchronous
FPGA proposed in [8], [10] combine two handshake pro-
tocols to reduce energy consumption caused by data op-
erations and transmissions. Reference [9] proposes au-
tonomous power-gating scheme based on handshake proto-
col. However, conventional asynchronous FPGAs cannot
implement handshake components efficiently since their ar-
chitecture only support simple handshake sequence special-
ized for simple data processing and transferring. Therefore,
it is difficult to design control-intensive application on con-
ventional FPGAs.

In this paper, we propose an FPGA architecture that
is suitable for handshake-component-based asynchronous
circuit. The proposed architecture implements handshake
components that are defined in Balsa efficiently. Therefore,
the proposed FPGA is suitable for implementing complex
applications. Small frequently-used handshake components
are implemented on a Logic Block (LB), and other hand-
shake components are implemented using more than one
LB. As handshake components can be mapped directly on
the proposed architecture, circuit designers can utilize exist-
ing CAD tools that generate a netlist of handshake compo-
nents. Therefore, a design method for the proposed FPGA

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers



KOMATSU et al.: ARCHITECTURE OF AN ASYNCHRONOUS FPGA FOR HANDSHAKE-COMPONENT-BASED DESIGN
1633

is established.

2. Handshake-Component-Based Asynchronous Cir-
cuit Design

2.1 Handshake Component

In asynchronous circuit, synchronization between circuits
is done by handshaking with a request signal and an ac-
knowledge signal. Figure 1 shows a four-phase handshake
sequence. First, active port sets the request wire to “1”
as shown in Fig. 1 (a). Second, passive port sets the ac-
knowledge wire to “1” as shown in Fig. 1 (b). Third, active
port sets the request wire to “0” as shown in Fig. 1 (c). Fi-
nally, passive sets the acknowledge wire to “0” as shown in
Fig. 1 (d) and wire values return to initial state. Data signals
are sent along with request signals or acknowledge signals.

To design asynchronous circuits, various design
methodologies has been proposed. Petrify [11] is an asyn-
chronous circuit synthesis tool that uses a Signal Transition
Graph (STG) [12]. STG describes transition sequences of
wires. Therefore, STG is suitable to describe control cir-
cuits. However, it is difficult to design circuits which con-
tain many wires. Another design methodology uses asyn-
chronous circuit elements called handshake components.
Asynchronous circuits are constructed by connecting hand-
shake components. Handshake components were created for

Fig. 1 A four-phase handshake sequence.

Fig. 2 Handshake components and channels.

use in the synthesis of the language Tangram [1] created by
Philips Research. Figure 2 shows handshake components.
Handshake components constitute a handshake circuit. Each
handshake component has ports and is connected to another
handshake component through a channel. Communication
between handshake components is done by sending request
signal from the “active” port and acknowledge signal from
the “passive” port. Depending on the kind of handshake
components, data signals are sent along with request sig-
nals or acknowledge signals. The number of ports of a
handshake component and the width of data signal can be
varied. There are 46 handshake components [13] and each
handshake component is used for data processing or data
path control. Figure 3 shows a Sequence component. Se-
quence component has an activate port and N activateOut
ports. Sequence component starts handshaking sequentially
from activateOut0 to activateOutN − 1. Then, handshake
component connected to each activateOut port is activated.
In this manner, Sequence component controls process se-
quence. Figure 4 shows signal transitions of a Sequence
component. Arrows denote dependencies between signal
transitions. The behavior of a Sequence component which
has two activateOut ports is described as follows:

1. activate.req is set to “1”
2. activateOut0.req is set to “1”
3. activateOut0.ack is set to “1”
4. activateOut0.req is set to “0”
5. activateOut0.ack is set to “0”

Fig. 3 Sequence component.

Fig. 4 Behavior of a Sequence component.



1634
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

Fig. 5 Handshake components for a data path controller.

Fig. 6 A simple handshake circuit (4 bit counter).

6. activateOut1.req is set to “1”
7. activateOut1.ack is set to “1”
8. activate.ack is set to “1”
9. activate.req is set to “0”

10. activateOut1.req is set to “0”
11. activateOut1.ack is set to “0”
12. activate.ack is set to “0”

As seen above, handshake components execute complex
handshake sequences. However, handshake circuits are eas-
ily understandable and manageable because a function of
each handshake component is clear and each handshake is
symbolized by a channel and ports. Asynchronous circuits
with complex process control are designed using handshake
components shown in Fig. 5. Figure 6 shows an example of
a handshake circuit.

Also, there are tools that translate high-level circuit de-
scription into handshake circuit to synthesize asynchronous
circuit. Thus, handshake-component-based design is suit-
able for complex and large-scale asynchronous circuits.

2.2 Implementation of Handshake Components

Circuit synthesis is done by replacing each handshake com-
ponent with corresponding asynchronous circuit. Therefore,
implementations in different technologies are obtained by
providing circuit libraries. In asynchronous circuit, a hazard
is serious problem [14]. A hazard is a unwanted glitch on a
signal and it causes a malfunction. To guarantee correct op-
eration of implemented application, asynchronous circuits
that corresponds to handshake components should be haz-

Fig. 7 A bundled-data channel.

Fig. 8 A four-phase dual-rail channel.

ard free.
In handshake-component-based design, implementa-

tions in different asynchronous data encodings are obtained
by changing circuit libraries. Asynchronous data encoding
schemes are mainly classified into

• Single-rail encoding (ex. bundled-data encoding)
• Dual-rail encoding (ex. four-phase dual-rail encoding)

Bundled-data encoding is the most common method in the
single-rail encoding. Figure 7 shows a bundled-data chan-
nel. The value is encoded as in a synchronous circuit us-
ing N wires to denote an N-bit number, and control sig-
nals are encoded using dedicated wires denoted by REQ and
ACK. Therefore, a channel which contains N-bit data con-
sists of N + 2 wires. Bundled-data encoding requires the
explicit insertion of matching delays in a control signal ori-
ented in the same direction as data signal. This is because
the control signal is never received before the bundled value
is valid. For FPGAs, since the data path is programmable,
complex programmable delay elements are required. As a
result, bundled-data encoding is not suitable for FPGAs.

Four-phase dual-rail (FPDR) encoding is the most
common method in dual-rail encodings. Figure 8 shows a
FPDR channel. The FPDR encoding encodes a bit and a
control signal oriented in the same direction as data signal
onto two wires. Table 1 shows the code table of four-phase
dual-rail encoding. The data value “0” is encoded as (0, 1)
and “1” is encoded as (1, 0). Moreover, the spacer is en-
coded as (0, 0). Figure 9 shows the example where data val-



KOMATSU et al.: ARCHITECTURE OF AN ASYNCHRONOUS FPGA FOR HANDSHAKE-COMPONENT-BASED DESIGN
1635

Table 1 Code table of four-phase dual-rail encoding.

Fig. 9 Example of four-phase dual-rail encoding.

ues “0”, “0” and “1” are transferred. The main feature is
that the sender sends spacer after a data value. The receiver
knows the arrival of a data value by detecting the change
of either bit: “0” to “1”. In the FPDR encoding, the value
is made implicit in a control signal and no delay insertion
is therefore required [14]. Hence, the FPDR encoding is
robust to delay variations and the ideal one for FPGAs in
which the data path is programmable. In the dual-rail en-
coding, to transfer an N-bit value, 2N+1 wires are required.
Therefore, the FPDR encoding is employed in the proposed
architecture.

3. Architecture

3.1 Overall Architecture

Figure 10 shows the overall architecture of the proposed
FPGA and Fig. 11 shows the programmable interconnection
resources (Connection Blocks and Switch Blocks) around
an LB. The FPGA consists of mesh-connected cells like
conventional FPGAs. As shown in Fig. 10, each cell in-
cludes an LB, two Connection Blocks (CBs) and a Switch
Block (SB). The upper CB connects SBs to N1, N2 and S
terminals of two LBs, and the bottom CB connects SBs to
E1, E2 and W terminals. The proposed architecture can
implement 39 out of 46 handshake components defined in
Balsa manual [13]. Handshake components that have multi-
ple ports or wide data path can be implemented using sev-
eral LBs. As mentioned in Sect. 2.2, the FPDR encoding
is employed for asynchronous data encoding. Because the
FPDR encoding is employed, three wires are required for a
data bit. Two wires are used for a data encoded in FPDR
encoding, and one wire for a request signal and an acknowl-
edge signal. The proposed FPGA is based on Quasi-Delay-
Insensitive (QDI) model which assumes that gate delays and
wire delays are unknown, and signal transitions occur at the
same time at all end-points in wire forks [14], [15].

As shown in Fig. 11, an SB consists of diamond
switches and Req/Ack modules. Diamond switches allow
a data signal on a track to connect to other tracks. Figure 12
shows the structure of the Req/Ack module. The Req/Ack
module consists of switches, an OR gate and the Muller C-
element [14]. It allows a control signal on a track to con-

Fig. 10 Overall architecture.

Fig. 11 Programmable interconnection resources around an LB.

Fig. 12 Structure of an Req/Ack module.

nect to other tracks. In addition, two control signals can be
merged using a C-element or an OR gate. The LB accesses
nearby communication resources through CBs, which con-
nects input and output terminals of the LB to SBs through
programmable switches.



1636
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

Fig. 13 Structure of an LB.

3.2 Logic Block Structure

3.2.1 Overall Structure of a Logic Block

Figure 13 shows an LB of the proposed architecture. The
proposed FPGA architecture can implement 39 handshake
components. The LB consists of a BinaryFunction module,
a Variable module, a Sequence module, a CallMUX module,
a Case module, and an Encode module. An Input switch
module and an Output switch module connect modules to
CBs. As mentioned in previous section, circuit synthesis is
done by replacing each handshake component with corre-
sponding asynchronous circuit. Thus, asynchronous circuits
can be implemented on a conventional FPGA by replacing
each handshake component with a combination of LUTs.
As mentioned in Sect. 2.2, asynchronous circuits that imple-
ment handshake components should be hazard free. How-
ever, it is difficult to implement hazard free asynchronous
circuits using LUTs because delay time of SBs and CBs af-
fects circuit operations. Therefore, in the proposed architec-
ture, each LB includes dedicated circuits for implementing
handshake components.

3.2.2 BinaryFunction Module Structure

In handshake-component-based design, logical operation
and arithmetic operation are denoted by BinaryFunction
components as shown in Fig. 14. As mentioned in Sect. 3.1,
the proposed architecture employs the FPDR encoding

Fig. 14 BinaryFunction component.

Fig. 15 Structure of a BinaryFunction module.

that encodes a bit and a control signal onto two wires.
Therefore, acknowledge signals of BinaryFunctionIn0,
BinaryFunctionIn1 and BinaryFunctionOut port are sent
along with data signals. In the proposed architecture, a Bi-
naryFunction module is used to implement a BinaryFunc-
tion component. Figure 15 shows a structure of a Binary-
Function module. the module consists of an FPDR 4-input
LUT and logic gates that detect arrival of valid data and
spacers. When valid signals arrive at the LUT In, Data valid
becomes “1” and the LUT starts to operate. The result of the
LUT is stored in the Variable module. Then, LUT ready is
set to “1” and the LUT stops its operation. Figure 16 shows
the structure of the LUT. For simplicity, instead of the 4-
input LUT which is used in the actual LB, a 2-input LUT
is shown. The LUT is implemented based on [4] and [14].
A BinaryFunction module can implement a BinaryFunction
component with two 2-bit inputs or a BinaryFunction com-
ponent with a 1-bit and a 3-bit input. A complex Binary-
Function component can be implemented by combining Bi-
naryFunction modules.

3.2.3 Variable Module Structure

Figure 17 shows a Variable component that stores data. In
the proposed architecture a Variable component is imple-



KOMATSU et al.: ARCHITECTURE OF AN ASYNCHRONOUS FPGA FOR HANDSHAKE-COMPONENT-BASED DESIGN
1637

(a) Out.T generating circuit.

(b) Out.F generating circuit.

Fig. 16 LUT structure.

Fig. 17 Variable component.

mented using a Variable module shown in Fig. 18. The Vari-
able module stores 2-bit data. The VarIn port is used to
store 2-bit data and VarOut0 and VarOut1 ports are used
to read 2-bit data. The Variable module mainly consists of
Variable elements that store data, AND gates that generate
output signals and C-elements. Figure 19 shows a structure
of a Variable element. As shown in Fig. 20, Writing data is
performed in the following sequence:

1. A valid data arrives at VarIn and the data is stored in
Variable elements

2. Var0 ready and Var1 ready become “1”
3. VarIn.ack becomes “1”
4. A spacer arrives at VarIn
5. Var0 ready and Var1 ready become “0”
6. VarIn.ack becomes “0”

Figure 21 shows signal transitions of a Variable module in
a read operation. Reading data from the VarOut0 port is
performed in the following sequence:

Fig. 18 Structure of a 2-bit Variable module.

Fig. 19 Structure of a Variable element.

Fig. 20 Behavior of a Variable module in a write operation.

Fig. 21 Behavior of a Variable module in a read operation.

1. VarOut0.req is set to “1”
2. AND gates connected to VarOut0 output the data

stored in Variable elements
3. VarOut0.req is set to “0”
4. AND gates output spacer

Reading data from the VarOut1 port is performed in a sim-
ilar manner. In addition, a Variable module and a Bina-
ryFunction module are used to implement BinaryFunction
component. Figure 22 shows signal transitions of a Binary-
Function module and a Variable module. The behavior as a



1638
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

Fig. 22 Behavior of a BinaryFunction module and a Variable module as
a BinaryFunction component.

BinaryFunction component is described as follows:

1. A valid data arrives at an LUT In of a BinaryFunction
module

2. Data spacer and Data valid become “1”
3. LUT starts operation following the rise of Data valid
4. The Variable element connected to the LUT stores the

data and then LUT ready is set to “1”
5. VarOut0[0] outputs valid data, and LUTout outputs a

spacer
6. A spacer arrives at the LUTin
7. Data spacer and Data valid become “0”
8. LUT ready becomes “0”
9. VarOut0 0 outputs a spacer

3.2.4 Sequence Module Structure

Figure 23 shows a structure of a Sequence module. The Se-
quence module mainly consists of a T-element and an S/T-
element. Figures 24 and 25 show detailed structure of a T-
element and an S/T-element. A Sequence module can im-
plement a Sequence component and a Concur component as
shown in Figs. 26 and 27. Sequence component and Con-
cur component are used to control a process sequence of a
circuit. A Sequence module can implement two activateOut
ports. Usually, a Sequence component is implemented by a
S-element and a Concur component is implemented by two
T-element and a C-element as shown in Fig. 28. In the pro-
posed architecture, a Sequence component is implemented
by S/T-element and a Concur component is implemented by
T-element, S/T-element and C-element. When a Sequence
component is implemented, activate.req, activateOut0.req,
activateOut0.ack and activateOut1.req in Fig. 26 corre-
spond to S equenceActivate.req, S equence0.req,
sequence0.ack and S equence1.req in Fig. 23. Since
activate.ack and activateOut1.ack are connected as shown
in Fig. 28 (a), there is no dedicated wires in a Sequence mod-
ule. Figure 29 shows signal transitions of a Sequence mod-
ule as a Sequence component. The behavior as a Sequence
component is described as follows:

1. S equenceActivate.req is set to “1”

Fig. 23 Structure of a Sequence module.

Fig. 24 Structure of a T-element.

Fig. 25 Structure of a S/T-element.

Fig. 26 Sequence component.

Fig. 27 Concur component.



KOMATSU et al.: ARCHITECTURE OF AN ASYNCHRONOUS FPGA FOR HANDSHAKE-COMPONENT-BASED DESIGN
1639

(a) Sequence component.

(b) Concur component.

Fig. 28 Structure of Sequence component and Concur component.

Fig. 29 Behavior of a Sequence module as a Sequence component.

2. S equence0.req is set to “1”
3. S equence0.ack is set to “1”
4. S equence0.req is set to “0”
5. S equence0.ack is set to “0”
6. S equence1.req is set to “1”
7. S equenceActivate.req is set to “0”
8. S equence1.req is set to “0”

When a Concur component is implemented, activate.req,
activate.ack, activateOut0.req, activateOut0.ack,
activateOut1.req and activateOut1.ack in Fig. 27 corre-
spond to S equenceActivate.req, FalseVariable.ack,
S equence0.req, sequence0.ack, Concur1.req and
Concur1.ack in Fig. 23. Figure 30 shows signal transitions
of a Sequence module as a Concur component. The behav-
ior as a Concur component is described as follows:

1. S equenceActivate.req is set to “1”
2. S equence0.req and Concur1.req are set to “1”
3. • S equence0.ack is set to “1” following the rise of

S equence0.req
• Concur1.ack is set to “1” following the rise of

Concur1.req

Fig. 30 Behavior of a Sequence module as a Concur component.

Fig. 31 CallMUX component.

4. • FalseVariable.ack is set to “1” following the rise
of S equence0.ack and Concur1.ack
• S equence0.req is set to “0” following the rise of

S equence0.ack
• Concur1.req is set to “0” following the rise of

Concur1.ack
5. • S equenceActivate.req is set to “0” following the

rise of FalseVariable.ack
• S equence0.ack is set to “0” following the fall of

S equence0.req
• Concur1.ack is set to “0” following the fall of

Concur1.req
6. FalseVariable.ack is set to “0”

A Sequence module is also used to implement Loop compo-
nent and While component.

3.2.5 CallMUX Module Structure

A CallMUX module implements a CallMUX component
shown in Fig. 31. The CallMUX component is used to inte-
grate input channels into a output channel. Figure 32 shows
a structure of a CallMUX module. CallMUX module im-
plements four input ports. Every input and output ports can
transfer 1-bit data. Figure 33 shows signal transitions of a
CallMUX module as a CallMUX component. The behavior
when a data arrives at the CallMUXIn0 port is described as
follows:

1. A valid data arrives at CallMUXIn0 port
2. CallMUXOut outputs the value that CallMUXIn0 re-



1640
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

Fig. 32 Structure of a CallMUX module.

Fig. 33 Behavior of a CalMUX module as a CallMUX component.

ceived
3. CallMUXOut.ack is set to “1”
4. CallMUXIn0.ack is set to “1”
5. A spacer arrives at CallMUXIn0 port
6. CallMUXOut outputs a spacer
7. CallMUXOut.ack is set to “0”
8. CallMUXIn0.ack is set to “0”

CallMUX module can also implement Call component,
Continue component and ContinuePush component.

3.2.6 Case Module Structure

A Case module implements a Case component shown in
Fig. 34. Case component selects one of the CaseOut ports
according to a value that CaseIn port received, and starts
handshaking. Figure 35 shows a structure of a Case module.
A Case module implements four CaseOut ports. Figure 36
shows signal transitions of a Case module as a Case compo-
nent. The behavior when data “0” arrives at the CaseIn port
is described as follows:

1. Data “0” arrives at CaseIn port
2. CaseOut0.req is set to “1”
3. CaseOut.ack is set to “1”
4. CaseIn.ack is set to “1”
5. A spacer arrives at CaseIn port
6. CaseOut0.req is set to “0”
7. CaseOut.ack is set to “0”
8. CaseIn.ack is set to “0”

Case module can also implement CaseDEMUX component,

Fig. 34 Case component.

Fig. 35 Structure of a Case module.

Fig. 36 Behavior of a Case module as a Case component.

CaseFetch component, DecisionWait component, Passiva-
torPush component and SynchPush component.

3.2.7 Encode Module Structure

An Encode module implements an Encode component
shown in Fig. 37. When handshake through EncodeInk port
starts, EncodeOut outputs a data “k”. Figure 38 shows a
structure of an Encode module. An Encode module imple-
ments four EncodeIn ports. Figure 39 shows signal transi-
tions of an Encode module. The behavior when handshake
through EncodeIn0 ports starts is described as follows:

1. EncodeIn0.req is set to “1”
2. EncodeOut outputs the data “0”



KOMATSU et al.: ARCHITECTURE OF AN ASYNCHRONOUS FPGA FOR HANDSHAKE-COMPONENT-BASED DESIGN
1641

Fig. 37 Encode component.

Fig. 38 Structure of an Encode module.

Fig. 39 Behavior of an Encode module.

Table 2 Handshake components and its corresponding resources.

3. EncodeOut.ack is set to “1”
4. EncodeIn0.ack is set to “1”
5. EncodeIn0.req is set to “0”
6. EncodeOut outputs spacers
7. EncodeOut.ack is set to “0”
8. EncodeIn0.ack is set to “0”

As shown in Table 2, each module implements several

Fig. 40 An implementation of a complex Variable component.

handshake components. Therefore, the number of the tran-
sistors of the proposed FPGA is small because of resource
sharing.

3.3 Implementation of Complex Handshake Components

In the proposed architecture, each LB contains modules
to implement handshake components. However, to keep
a structure of LB simple, handshake components that can
be implemented using an LB is limited. Therefore, in the
proposed architecture, frequently-used simple handshake
components are implemented using an LB, and rarely-used
large-scale handshake components are implemented using
multiple LBs and programmable interconnections. As a ex-
ample of complex handshake components, an implemen-
tation of Variable component that stores Width-bit data is
shown below. In general, Variable component has a passive
port that receives a Width-bit data and N passive ports to
output Width-bit data as shown in Fig. 17. In the proposed
architecture, an LB contains a Variable module that stores
2-bit data. Also, a Variable module has a 2-bit input port
and two 2-bit output ports. Therefore,⌈

Width
2

⌉
×
⌈N

2

⌉
(1)

LBs are required to implement a Variable component with
N Width-bit output ports as shown in Fig. 40.



1642
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

Fig. 41 LB of a conventional architecture.

Table 3 Transistor count of a cell and its breakdown.

4. Evaluation

The proposed FPGA is implemented in e-Shuttle 65 nm
CMOS process with 1.2 V supply. The circuits are eval-
uated by pre-layout simulation with HSPICE. Therefore,
parasitic capacitance and resistance of programmable in-
terconnection resources are not considered in evaluation
results. For comparison, The conventional asynchronous
FPGA architecture is implemented. Figure 41 shows the
LB structure of the conventional FPDR FPGA architecture.
The LB of the conventional FPGA mainly consists of an
LUT, an asynchronous register, an FPDR multiplexer and an
FPDR demultiplexer [14]. In the conventional asynchronous
FPGA, applications are designed combining seven building
blocks [5].

Table 3 shows the comparison result of the cells of
the proposed architecture and the conventional architecture.
Since the proposed architecture contains modules for hand-
shake components, the transistor count of a cell is increased
by 62%.

The next evaluation shows the implementation results
of a 4-bit counter and a 4-bit counter with conditional
branch. Figure 42 shows equivalent synchronous circuits of
the test applications. Table 4 shows the comparison of cell
counts and transistor counts. The benchmark circuits consist
of cells and each cell includes an LB, an SB and two CBs
as shown in Fig. 10. In the case of 4-bit counter, the number
of cells is reduced by 21%. However, the transistor count
is increased by 27% compared to the conventional architec-
ture as shown in Table 4 (a). On the other hand, as shown in
Fig. 4 (b) the numbers of cells and transistors are reduced by

(a) Synchronous 4-bit counter.

(b) Synchronous 4-bit counter with conditional branch.

Fig. 42 Synchronous circuits equivalent to asynchronous evaluation cir-
cuits.

Table 4 Evaluation results of transistor counts.
(a) Results of 4-bit counter.

(b) Results of 4-bit counter with conditional branch.

45% and 11% in the case of 4-bit counter with conditional
branch. This is because handshake-component-based design
can efficiently implement applications that include data path
control such as conditional branch.

Table 5 shows the comparison of energy consumptions
per operation to count up. Compared to the conventional ar-
chitecture, the energy consumptions is reduced by 9% and
27% respectively. The results show that the proposed archi-
tecture is suitable for applications with complex sequence
control.

Table 6 shows the comparison of throughputs. The
throughput is defined by the number of operations per sec-
ond. Compared to the conventional architecture, through-
puts are decreased by 51% and 41% respectively. This is
because handshake components execute complex handshake
sequence.



KOMATSU et al.: ARCHITECTURE OF AN ASYNCHRONOUS FPGA FOR HANDSHAKE-COMPONENT-BASED DESIGN
1643

Table 5 Evaluation results of energy consumptions per operation to
count up.

Table 6 Evaluation results of throughputs.

5. Conclusions

This paper presented an architecture of an asynchronous
FPGA for handshake-component-based design. The pro-
posed FPGA architecture implements handshake compo-
nents efficiently. Thus, the proposed architecture is suit-
able for the synthesis tools that generate netlists consist
of handshake components, such as Balsa. In addition, the
handshake-component-based design is suitable for appli-
cations that have complex data path controls. Therefore,
the proposed architecture is suitable to implement complex
large-scale asynchronous circuits.

As a future work, hybrid architecture of the conven-
tional asynchronous FPGA and the proposed asynchronous
FPGA can be considered. The conventional asynchronous
architecture is simple and it can achieve high through-
put. On the other hand, the proposed architecture is suit-
able for applications that have complex data path controls.
Therefore, employing the conventional architecture in data
path and the proposed architecture in sequence controller,
low power, small area and high throughput implementation
would be achieved.

Acknowledgment

This work is supported by VLSI Design and Education Cen-
ter (VDEC), the University of Tokyo in collaboration with
STARC, e-Shuttle, Inc., Fujitsu Ltd., Cadence Design Sys-
tems Inc. and Synopsys Inc. This work is supported by JSPS
KAKENHI Grant Number 25·5513.

References

[1] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij,
“The VLSI-programming language Tangram and its translation into
handshake circuits,” Proc. EDAC, pp.384–389, 1991.

[2] A. Bardsley, “Implementing Balsa Handshake Circuits,” 2000.

[3] Q. Zhang and G. Theodoropoulos, “Modelling SAMIPS: A synthe-
sisable asynchronous MIPS processor,” Proc. 37th Annual Simula-
tion Symposium, pp.205–212, 2004.

[4] J. Teifel and R. Manohar, “An asynchronous dataflow FPGA archi-
tecture,” IEEE Trans. Comput., vol.53, no.11, pp.1376–1392, 2004.

[5] R. Manohar, “Reconfigurable asynchronous logic,” Proc. IEEE Cus-
tom Integrated Circuits Conference, pp.13–20, Sept. 2006.

[6] Achronix Semiconductor Corporation, “Introduction to Achronix
FPGAs,” Aug. 2008.

[7] B. Devlin, M. Ikeda, and K. Asada, “A 65 nm gate-level pipelined
self-synchronous FPGA for high performance and variation robust
operation,” IEEE J. Solid-State Circuits, vol.46, no.11, pp.2500–
2513, Nov. 2011.

[8] M. Hariyama, S. Ishihara, and M. Kameyama, “Evaluation of a field-
programmable VLSI based on an asynchronous bit- serial architec-
ture,” IEICE Trans. Electron, vol.E91-C, no.9, pp.1419–1426, Sept.
2008.

[9] M. Hariyama, S. Ishihara, and M. Kameyama, “A low-power field-
programmable VLSI based on a fine-grained power-gating scheme,”
Proc. IEEE International Midwest Symposium on Circuits and Sys-
tems (MWSCAS), Knoxville (USA), pp.430–433, Aug. 2008.

[10] S. Ishihara, Y. Komatsu, M. Hariyama, and M. Kameyama, “An
asynchronous field-programmable VLSI using LEDR/4-phase-dual-
rail protocol converters,” Proc. International Conference on Engi-
neering of Reconfigurable Systems and Algorithms (ERSA), Las
Vegas (USA), pp.145–150, July 2009.

[11] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.
Yakovlev, Logic Synthesis for Asynchronous Controllers and Inter-
faces, Springer-Verlag, 2002.

[12] T.A. CHU, Synthesis of self-timed vlsi circuits from graph-theoretic
specifications, PhD Thesis, MIT Laboratory for Computer Science,
1987.

[13] D. Edwards, A. Bardsley, L. Janin, L. Plana, and W. Toms, “Balsa:
A tutorial guide,” ftp://ftp.cs.man.ac.uk/pub/apt/balsa/3.5.1/, May
2006.

[14] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design:
A Systems Perspective, Kluwer Academic Publishers, 2001.

[15] S. Hauck, “Asynchronous design methodologies: An overview,”
Proc. IEEE, vol.83, no.1, pp.69–93, 1995.

Yoshiya Komatsu received the B.E. degree
in Information Engineering and M.S. degree in
Information Sciences from Tohoku University,
Sendai, Japan, in 2009 and 2011, respectively.
He is currently working toward the Ph.D. degree
in Graduate School of Information Sciences, To-
hoku University. His research interests include
reconfigurable computing and asynchronous ar-
chitecture.



1644
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

Masanori Hariyama received the B.E.
degree in electronic engineering, M.S. degree
in Information Sciences, and Ph.D. in Informa-
tion Sciences from Tohoku University, Sendai,
Japan, in 1992, 1994, and 1997, respectively.
He is currently an associate professor in Grad-
uate School of Information Sciences, Tohoku
University. His research interests include VLSI
computing for real-world application such as
robots, high-level design methodology for VL-
SIs and reconfigurable computing.

Michitaka Kameyama received the B.E.,
M.E. and D.E. degrees in Electronic Engineer-
ing from Tohoku University, Sendai, Japan, in
1973, 1975, and 1978, respectively. He is cur-
rently Dean and a Professor in the Graduate
School of Information Sciences, Tohoku Uni-
versity. His general research interests are intel-
ligent integrated systems for real-world appli-
cations and robotics, advanced VLSI architec-
ture, and new-concept VLSI including multiple-
valued VLSI computing. Dr.Kameyama re-

ceived the Outstanding Paper Awards at the 1984, 1985, 1987 and 1989
IEEE International Symposiums on Multiple-Valued Logic, the Technically
Excellent Award from the Society of Instrument and Control Engineers of
Japan in 1986, the Outstanding Transactions Paper Award from the IEICE
in 1989, the Technically Excellent Award from the Robotics Society of
Japan in 1990, and the Special Award at the 9th LSI Design of the Year in
2002. Dr. Kameyama is an IEEE Fellow.


