
2576
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.12 DECEMBER 2013

PAPER Special Section on VLSI Design and CAD Algorithms

Evaluation of an FPGA-Based Heterogeneous Multicore Platform
with SIMD/MIMD Custom Accelerators

Yasuhiro TAKEI†a), Nonmember, Hasitha Muthumala WAIDYASOORIYA†, Masanori HARIYAMA†b), Members,
and Michitaka KAMEYAMA†, Fellow

SUMMARY Heterogeneous multi-core architectures with CPUs and
accelerators attract many attentions since they can achieve power-efficient
computing in various areas from low-power embedded processing to high-
performance computing. Since the optimal architecture is different from
application to application, finding the most suitable accelerator is very im-
portant. In this paper, we propose an FPGA-based heterogeneous multi-
core platform with custom accelerators for power-efficient computing. Us-
ing the proposed platform, we evaluate several applications and accelera-
tors to identify many key requirements of the applications and properties
of the accelerators. Such an evaluation is very important to select and op-
timize the most suitable accelerator according to the requirements of an
application to achieve the best performance.
key words: heterogeneous multicore processor, FPGA, Multimedia pro-
cessing, High-performance-computing

1. Introduction

Applications used in low-power embedded processing to
high performance computing have different tasks such as
data-intensive tasks and control-intensive tasks. Therefore,
optimal architecture is different from application to applica-
tion. Heterogeneous multicore processing is proposed to ex-
ecute applications power-efficiently. It uses different proces-
sor cores such as CPU cores and accelerator cores as shown
in Fig. 1. If the tasks of an application are correctly allocated
to the most suitable processor cores, all the cores work to-
gether to increase the overall performances.

Examples of low-power heterogeneous multi-core pro-
cessors are [1] and [2]. The former has multiple cores
of CPUs and ALU arrays. The latter has multiple cores
of CPUs, a micro-controller and SIMD (single-instruction
multiple-data) type processors. An example of a hetero-
geneous high-performance computing is “Tianhe-1A” [3]
which has Intel X5670 CPUs and NVDIA GPUs. Com-
mercially available heterogeneous multicore processors are
partially programmable so that a part of the data path and
computations of processing elements (PEs) can be changed
to some extent. However, due to the wide variety of tasks
and their different memory requirements, the programma-
bility in commercially available processors is not enough to
extract sufficient performance. Moreover, the programming
environments in various heterogeneous architectures such as

Manuscript received March 15, 2013.
Manuscript revised June 28, 2013.
†The authors are with the Graduate School of Information Sci-

ences, Tohoku University, Sendai-shi, 985-8579 Japan.
a) E-mail: takei@ecei.tohoku.ac.jp
b) E-mail: hariyama@ecei.tohoku.ac.jp

DOI: 10.1587/transfun.E96.A.2576

Fig. 1 Heterogeneous multi-core processor architecture.

embedded processors [2] and CPU/GPU high performance
computing [3] are different. Therefore, each time the archi-
tecture changes, large design time is required to re-map the
application into the new architecture.

To solve these problems, we propose an FPGA-based
platform for heterogeneous multicore processors to explore
accelerator architectures suitable for applications. Recently,
speed and power consumption of FPGAs are greatly im-
proved, and it would be very practical to use the FPGA-
based platform for real applications. The proposed platform
consists of CPU cores suitable for control-intensive tasks
and custom accelerator cores suitable for data-intensive
tasks. For custom accelerator architectures, we employ
some typical accelerator architectures used in the previ-
ous work [1]–[3] as architecture templates. We consider
two types of custom accelerators: SIMD one-dimensional
PE array (SIMD-1D) and MIMD two-dimensional PE array
(MIMD-2D). The SIMD-1D accelerator is suitable for ex-
ecuting simple operations at a high degree of parallelism.
The proposed SIMD-1D accelerator is designed similar to
the GPU data path to use the CUDA (compute unified de-
vise architecture) [4] programming language. The MIMD-
2D accelerator is suitable for executing complex operation
at a medium degree of parallelism. The proposed MIMD-
2D architecture is designed similar to the FE-GA (Flexible
Engine/Generic ALU Array) [1] to execute multimedia ap-
plications power-efficiently. To increase the memory access
speed, we introduce a custom hardware called address gen-
eration unit (AGU).

The high reconfigurability of FPGAs enables to adopt
the different types of accelerators for a single application
depending on the nature of tasks. The major disadvantage
of FPGA-based heterogeneous processors over the com-

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

TAKEI et al.: EVALUATION OF AN FPGA-BASED HETEROGENEOUS MULTICORE PLATFORM WITH SIMD/MIMD CUSTOM ACCELERATORS
2577

Fig. 2 Mapping of the CUDA code onto GPU and FPGA.

mercially available heterogeneous processors is the low-
performance of CPU cores since CPU cores are generated
using look-up tables. Such soft-core CPUs cause large com-
putation time and large data transfer time. However, recent
FPGAs such as Xilinx Zynq and Altera Cyclone V contain
hard-core CPUs operating at about 8 times faster than the
soft-core CPUs. This paper is an extension of the work done
in [5] which explains the basic idea of the heterogeneous
multicore platform. However, the soft-core CPU in [5] is
replaced by a low-power hard-core CPU (“Cortex-A9 dual
core ARM processor”) using Xilinx Zynq, and the times
for processing and data transfers are significantly improved
compared to the previous works.

The contributions of the proposed FPGA-based hetero-
geneous multicore platform are summarized as follows. The
use of the architecture templates increases productivity in
terms of both of hardware and software design. From the
point of hardware design, the use of the architecture tem-
plates reduces design effort to explore the good architec-
tures suitable for applications. For example, by using the
architecture templates, the total processing time can be eas-
ily modeled and the design parameters such as the number
of accelerator cores can be determined for the given design
constraints as described in Sect. 2. From the point of soft-
ware design, the use of architecture templates would also
make it easy to re-use the softwares which are originally
made for the accelerators with similar architecture to the
templates. For example, our GPU-like SIMD-1D templates
allows us to map the CUDA codes easily onto the FPGA-
based SIMD-1D accelerator cores [6] as shown in Fig. 2.
The resulting FPGA-based processor would be applied to
practical low-power embedded systems since the speed and
power of the FPGA-based heterogeneous processor is al-
most comparable to a custom heterogeneous processor [1]
from our experimental results.

2. Heterogeneous Multicore Platform

2.1 Overall Architecture

This section explains the architecture of the heterogeneous
multi-core platform. Figure 3 shows the overall architec-

Fig. 3 Proposed heterogeneous multi-core architecture.

ture of the proposed platform. An external memory such as
DDRII SDRAM is connected to the CPU core through the
FPGA board. The custom accelerators have different archi-
tectures such as SIMD-1D and MIMD-2D.

Let us consider the latency for memory access. There
are two types of memory access on the proposed heteroge-
neous platform. One is a memory access between PEs and
memory modules on the custom accelerators. The other is
a memory access between an external memory and mem-
ory modules on the custom accelerators. The latency of the
former type of memory access is small since both of PEs
and memory modules exist on the FPGA. The latency is one
cycle on the implemented architecture described in Sect. 4.
The latency of the latter type of memory access is large due
to the external memory access controlled by the CPU core.
The latency is more than ten cycles. It is important to re-
duce the data-transfer time between CPUs and accelerator
cores for a heterogeneous multicore. In previous work [7],
the window-based image processing time and a memory ca-
pacity are reduced with the optimal memory allocation and
the temporally data-transfer scheme.

For further reduction of the total processing time, the
data-transfer is overlapped with the computation when two
and more accelerators are used as shown in Fig. 4. In order
to hide as many data-transfers as possible, the number of
accelerator cores NC is determined by

NC =

⌊
tcomp

ttrans

⌋
+ 1 (1)

where ttrans is the data-transfer time and tcomp is the compu-
tation time of each accelerator core. Figure 5 shows an ex-
ample of the overlap between the computation on one core
and data-transfers of the other cores when tcomp = 3 × ttrans.
In this case, the number of accelerator cores becomes four
from Eq. (1).

2578
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.12 DECEMBER 2013

Fig. 4 The overlap of data-transfer and computation.

Fig. 5 The overlap between the computation on Accelerator 1 and data-
transfers of Accelerator 2, 3 and 4 when tcomp = 3 × ttrans.

Fig. 6 SIMD-1D architecture.

2.2 SIMD-1D Accelerator

The proposed SIMD-1D accelerator is designed similar to
the GPU accelerator so that we can use the same CUDA
code. The basic idea of the SIMD-1D accelerator is dis-
cussed in [6]. It has a 1-dimensional array of PEs connected
to the shared memory as shown in Fig. 6. AGUs are in-
cluded to increase the address generation speed. To execute
an application, we have to divide it into independent threads
where several of them can be executed in parallel. After
the execution is finished, new threads are fed. When all the
threads are executed, the resulting data are read by the CPU.

Figure 7 shows the architecture of a PE. It consists of a
16-bit fixed-point ALU and a multiplier. Table 1 shows the
operations of a PE. Operations such as addition, accumula-
tion subtraction, comparison and absolute difference com-
putation are done in the ALU, and multiplication is done in
the multiplier. Multiply-accumulation is done by a pipelin-
ing the multiplier and the adder.

In CPUs, the address calculation and data processing
are done in the same ALU as shown in Fig. 8(a). There-
fore, when the addresses are calculated, we cannot do data
processing. In the proposed architecture, the address calcu-
lation is done in the AGU shown in Fig. 8(b). The address
calculation and data processing are done in parallel so that

Fig. 7 Architecture of the PE.

Table 1 Operations of a PE.

Operation Latency (clock cycles)
Addition 1
Subtract 1
Multiplication 1
Accumulation 2
Multiply-accumulation 2
Comparisons 1
Absolute difference 1

Fig. 8 Address processing.

we can reduce the total processing time. A detailed descrip-
tion about AGUs is given in [7]. As shown in Fig. 3, ac-
celerators in the proposed heterogeneous platform contain
AGUs.

2.3 MIMD-2D Accelerator

The proposed MIMD-2D accelerator is designed based on
the FE-GA accelerator [1] that has a dynamically reconfig-
urable PE array. Figure 9 shows the proposed MIMD-2D
accelerator. It consists of a 2-dimensional array of PEs, lo-
cal memory modules and AGUs. In order to simplify the
interconnection network while still meeting the streaming
applications, we limit the interconnection network; only the
leftmost PEs can directly retrieve data from local memory
modules, and only the rightmost PEs can directly write data
to local memory modules. PEs, AGUs and interconnection
network are dynamically reconfigurable. To implement ap-
plications, we have to divide it into multiple contexts that
execute sequentially. Within a context, we can perform par-
allel computations. The computation starts after the config-
uration data of multiple contexts are written to the configu-
ration memory of the accelerator. When the computation is

TAKEI et al.: EVALUATION OF AN FPGA-BASED HETEROGENEOUS MULTICORE PLATFORM WITH SIMD/MIMD CUSTOM ACCELERATORS
2579

Fig. 9 MIMD-2D architecture model.

finished, the resulting data are read by the CPU.

3. Mapping Examples

In this section, we discuss the requirements of the appli-
cations and their scheduling and mapping methods for dif-
ferent accelerators. We use two mapping examples; SAD-
based template matching [8] and filter computation to evalu-
ate the proposed heterogeneous multicore platform. In tem-
plate matching, a candidate image is scanned to find a seg-
ment which is similar to the template. The scanning of the
image is done by left to right in scan areas as shown in
Fig. 10. The segment of an image is called a “window”. To
find the most similar window, “sum of absolute difference
(SAD)” between the template pixels and the candidate win-
dow pixels is calculated as shown in Fig. 11. If a candidate
window is similar to the template, the SAD value becomes
small. Therefore, we chose the candidate window that gives
the smallest SAD as the matching window to the template.
The “data flow graph (DFG)” of the template matching is
shown in Fig. 12. As shown in Fig. 12, template matching
requires two instructions; “absolute difference (AD)” and
“addition or accumulation”.

In the filter computation, a filter is applied to all can-
didate windows in an image to produce a new image. The
scanning of the image is similar to the scanning in the tem-
plate matching example shown in Fig. 10. The filter compu-
tation is shown in Fig. 13. The DFG of the template match-
ing is shown in Fig. 14. As shown in Fig. 14, filter com-
putation requires a single “multiply-accumulation (MAC)”
instruction.

Figures 12 and 14 also show that pixel-level and
window-level parallelisms exist for both applications.
Moreover, the computations among different windows are
independent of each other. Even though two windows are
overlapped each other, there are no common results between
computations for two windows. Namely, the computations
for these windows are completely different from each other.
Figure 15 shows an example of two overlapped candidate
windows in template matching. The SAD computations of
window Cw1 and window Cw2 are given in Eqs. (2) and
(3) respectively. In these two SAD computations, there is

Fig. 10 Template matching.

Fig. 11 SAD computation.

Fig. 12 DFG of the template matching.

Fig. 13 Filter computation.

2580
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.12 DECEMBER 2013

Fig. 14 DFG of the filter computation.

Fig. 15 SAD computation of overlapped windows.

no common absolute difference with the same combination
of the reference window data and the candidate window
data. Therefore, the computation amount does not increase
by computing different windows independently. Similarly,
there are no redundant computations in the filter computa-
tion.

S ADCw1 = |R1 − C1| + |R2 − C2| + |R3 − C3|
+ |R4 −C4| + |R5 −C5| + |R6 −C6|
+ |R7 −C7| + |R8 −C8| + |R9 −C9| (2)

S ADCw2 = |R1 − C2| + |R2 − C3| + |R3 − C4|
+ |R4 −C6| + |R5 −C7| + |R6 −C8|
+ |R7 −C10| + |R8 −C11| + |R9 −C12| (3)

The computations within a window, there is a data de-
pendency. The type of instructions, the degree of parallelism
and the data dependency are some of the requirements of the
applications. To archive optimal performance, the properties
of the accelerators should be optimized for the requirements
of the applications under the given design constraints.

3.1 Mapping for SIMD-1D Architecture

To map an application, we have to consider what kind of
parallelism we use. As shown in Figs. 12 and 14, there
are two kinds of parallelisms; window-level parallelism and
pixel-level parallelism. Figure 16 shows the scheduling of
the filter computation for the SIMD-1D architecture when

Fig. 16 Scheduling of the filter computation for SIMD-1D architecture
(The degree of parallelism=4, The number of windows=N).

the number of windows is N. Figure 16(a) shows the pixel-
parallel scheduling when the degree of parallelism is four.
In this scheduling, two instructions; multiplication and ad-
dition are used. Figure 16(b) shows the window-parallel
scheduling when the degree of parallelism is four. In this
scheduling, single MAC instruction is used. Although MAC
instruction takes two clock cycles as shown in Table 1,
the multiplication and accumulation of different data are
pipelined. Multiplication and accumulation instructions are
done in parallel as shown in Fig. 16(a). Therefore, window-
parallel scheduling is faster than the pixel-parallel schedul-
ing for the filter application. To implement the filter compu-
tation in the SIMD-1D architecture, we use window-parallel
scheduling.

Figure 17 shows the mapping of the filter computation
to the SIMD-1D architecture. The computations among dif-
ferent windows are independent from each other as shown
in Fig. 16(b). Computation of one window is performed
on each PE. This computation requires the image data and
the coefficient data simultaneously as shown in Fig. 16(b).
Therefore, we use two memory modules as shown in Fig. 19.
One memory module is used to store the coefficient data,

TAKEI et al.: EVALUATION OF AN FPGA-BASED HETEROGENEOUS MULTICORE PLATFORM WITH SIMD/MIMD CUSTOM ACCELERATORS
2581

Fig. 17 Mapping of the filter computation on SIMD-1D.

Fig. 18 Scheduling of the SAD computation for SIMD-1D architecture
(The degree of parallelism=4, The number of windows=N).

while other memory module is used to store the image data.
The resulting data is written to the unused space of the mem-
ory module for the coefficient data. This gives a simple in-
terconnection network between the memory and the PE ar-
ray.

Figure 18 shows the scheduling of the SAD computa-
tion for the SIMD-1D architecture when the number of win-
dows is N. Figure 18(a) shows the pixel-parallel scheduling
when the degree of parallelism is four. In this scheduling,
two instructions, AD and addition, are used. Figure 18(b)
shows the window-parallel scheduling when the degree of
parallelism is four. In this scheduling, two instructions, AD
and addition, are also used. Both scheduling schemes re-

Fig. 19 Mapping of the SAD computation on SIMD-1D.

Fig. 20 Dynamic reconfiguration of the PE.

quire similar number of control steps. In the pixel-parallel
scheduling, we have to distribute the AD computation re-
sults among different PEs. Therefore, each PE accesses mul-
tiple memory modules to retrieve AD computation results.
This gives a complex interconnection network between the
memory and the PE array. In the window-parallel schedul-
ing, the computations among different windows are inde-
pendent of each other and each PE accesses only two mem-
ory modules. This gives a simple interconnection network
between the memory and the PEs array. Therefore, we use
window-parallel scheduling for the implementation of the
SAD computation in SIMD-1D architecture,

Figure 19 shows the mapping of the filter computation
to the SIMD-1D architecture. Since we use two instructions,
SIMD-1D architecture executes the AD instruction first and
the resulting data are written to the memory. Then, it exe-
cutes the accumulation instruction for the AD computation
results. Since the computations among different windows
are independent from each other as shown in Fig. 18(b), each
PE reads and writes to the same memory modules.

To implement the processing on the SIMD-1D archi-
tecture, the dynamic reconfiguration is used in PEs and
AGUs. In PEs, the operation of the ALU and the data path
are changed as shown in Fig. 20 when the SAD computa-
tion is performed. The used data path and the unused data
path are denoted black and gray, respectively. In AGUs, the
base address is changed in order to access the data in dif-
ferent windows. The dynamic reconfiguration of AGUs is

2582
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.12 DECEMBER 2013

Fig. 21 Pixel-parallel scheduling of the filter computation for MIMD-2D
architecture (The degree of parallelism=4, The number of windows=N).

Fig. 22 Mapping of the filter computation on MIMD-2D.

explained in detail in [7].

3.2 Mapping for MIMD-2D Architecture

Figure 21 shows the pixel-parallel scheduling of the fil-
ter computation for MIMD-2D architecture, when the de-
gree of parallelism is four and the number of windows is
N. In this scheduling, multiple instructions, multiplications
and additions, are used in different PEs at the same time.
The window-parallel scheduling for MIMD-2D architecture
is the same as that for the SIMD-1D architecture shown
in Fig. 16(b). Both of these scheduling schemes take al-
most the same number of control steps (or clock cycles)
to execute. Therefore, we can use either of the scheduling
schemes.

For the simplicity, we explain the mapping using the
pixel-parallel scheduling. Figure 22 shows the mapping re-
sult on the MIMD-2D accelerator. Multiplication, addition
and accumulation instructions are assigned to 8 PEs. The
rest of the PEs is unused. Since the parallelism is limited by
the number of memory modules, we cannot use those PEs
to increase the processing speed.

Fig. 23 Scheduling of the SAD computation for MIMD-2D architecture
(The degree of parallelism=4, The number of windows=N).

Figure 23 shows the scheduling of the SAD compu-
tation for the MIMD-2D architecture when the number of
windows is N. Figures 23(a) and 23(b) show the window-
parallel and pixel-parallel scheduling schemes of the SAD
computation for MIMD-2D architecture, when the degree
of parallelism is four, both of these scheduling schemes take
almost the same number of control steps to execute. There-
fore, we can use either of the scheduling schemes.

For the simplicity, we explain the mapping using the
pixel-parallel scheduling. As shown in Fig. 24, 50% of the
PEs are used for AD computation, addition and accumula-
tion instructions. The rest of the PEs are unused. Since the
parallelism is limited by the number of memory modules,
we cannot use those PEs to increase the processing speed.

To implement the processing on the MIMD-2D archi-
tecture, the dynamic reconfiguration is used in AGUs and
the interconnection network between PEs and memory mod-
ules. In AGUs, the base address is changed in order to ac-
cess the data in different windows. The interconnections
between PEs and memory modules are changed as shown in
Fig. 25 when the scan area shown in Fig. 10 changes. The
dynamic reconfiguration of the interconnection is explained
in detail in [7].

In these mapping examples, we can say that the num-

TAKEI et al.: EVALUATION OF AN FPGA-BASED HETEROGENEOUS MULTICORE PLATFORM WITH SIMD/MIMD CUSTOM ACCELERATORS
2583

Fig. 24 Mapping of the SAD computation on MIMD-2D.

Fig. 25 Changing the interconnection of MIMD-2D.

ber of parallel data accesses, number of PEs, the PE array
structure and the functions of the PEs are some of the main
properties of the accelerators. In the next section, we evalu-
ate the performance of the two accelerators to identify some
relationship with the application requirements.

4. Evaluation

We implement the proposed heterogeneous multicore plat-
form on Xilinx Zynq-7000 EPP ZC702 evaluation kit [9].
The SIMD-1D and MIMD-2D architectures have different
topologies and different number of PEs. Therefore, we do
two comparisons to evaluate the architectures. In the first
comparison, the number of look-up-tables (LUTs) in both
accelerators is a constant. We do not use any DSP units in
this evaluation to compare the accurate LUT usage. In the
second comparison, the degree of parallelism of the memory
access is a constant. In parallel processing, both the num-
ber of PEs and the degree of parallelism with the memory
are equally important. We implement three types accelera-
tor cores shown in Table 2 on the FPGA. As shown in Ta-
ble 2, SIMD9 and MIMD12 accelerators have almost the
same number of LUTs. SIMD4 and MIMD12 accelerators
have the same number of memory modules. Therefore, the
degree of parallelism of the memory access is the same.

We compare the processing time of filter computation
and SAD computation on accelerator cores. For test, the
image size is 256 × 16. The window size is 16 × 16. The
frequency is 100 MHz. Block memories on the FPGA are
used for local memory modules of the accelerator cores. The
latency of memory access is one cycle.

Table 3 shows the comparison of SIMD-1D (SIMD9)

Table 2 Specification of accelerator cores.

Accele- Number Number Number Degree
rator of of of of para-
core PEs LUTs memories llelism
SIMD4 4 × 1 3301 8 (16kB) 4
SIMD9 9 × 1 7354 18 (18kB) 9
MIMD12 4 × 3 7322 8 (16kB) 4

Table 3 Comparison 1 : The same number of LUTs.

Application
Accelerator Processing

core time (ms)

Filter
SIMD9 0.069

MIMD12 0.154

SAD
SIMD9 0.139

MIMD12 0.154

Table 4 Comparison 2 : The same number of memory modules.

Application
Accelerator Processing

core time (ms)

Filter
SIMD4 0.156

MIMD12 0.154

SAD
SIMD4 0.318

MIMD12 0.154

and MIMD-2D (MIMD12) accelerators when the number
of LUTs is a constant. For the filter computation, the pro-
cessing time of the SIMD-1D accelerator is less than half
of that of the MIMD-2D accelerator. The SIMD-1D ac-
celerator has a one-dimensional PE array, where all 9 PEs
are directly connected to the memory as shown in Fig. 9.
The MIMD-2D architecture has a two-dimensional PE array
with 4 × 3 where only leftmost 4 PEs can directly retrieve
from the local memory modules as described in Sect. 2.3.
Therefore, the SIMD-1D accelerator has the higher degree
of parallelism of memory access than the MIMD-2D accel-
erator. As a result, the SIMD-1D accelerator is more suit-
able for the filter computation than the MIMD-2D acceler-
ator. In the SAD computation, the SIMD-1D accelerator is
slightly faster than the MIMD-2D accelerator. As explained
in Sect. 3, SAD computation requires two types of opera-
tions: absolute difference and addition. The SIMD-1D ac-
celerator cannot perform these two types of operations at
a same time, while the MIMD-2D accelerator can perform
these operations at a same time by pipelining. Regardless
of pipelining in the MIMD-2D accelerator, the processing
time of the SIMD-1D accelerator is still smaller due to its
high degree of parallelism of memory access.

Table 4 shows the comparison of SIMD-1D (SIMD4)
and MIMD-2D (MIMD12) accelerators when the degree of
parallelism of the memory access is constant; the number
of memory modules is four. In the filter computation, the
processing times of the SIMD-1D and MIMD-2D accelera-
tors are the same. Multiplications and additions can be well
pipelined on both of SIMD-1D and MIMD-2D accelerators
as shown in Figs. 16 and 21. Hence, the processing time
entirely depends on the degree of parallelism of memory ac-
cess. Since both accelerators have the same degree of par-

2584
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.12 DECEMBER 2013

allelism of memory access, the processing time is the same.
In the SAD computation, the processing times of MIMD-
2D accelerator is about half of the SIMD-1D accelerator.
As described above, the MIMD-2D accelerator can pipeline
different type of operations (absolute difference and addi-
tion in SAD computation). Hence, MIMD-2D can obtain a
higher degree of parallelism of operations under the condi-
tion of the number of memory modules than the SIMD-1D
accelerator. If we have an application with more types of op-
erations, the MIMD-2D accelerator could give much better
results than the SIMD-1D accelerator.

As explained in Sect. 3, applications have various re-
quirements such as the data dependency, the degree of par-
allelism, different types of instructions etc. The filter com-
putation example has only one instruction and requires a lot
of parallel data access. In such cases, SIMD-1D architecture
is suitable, since it has a very small control overhead and all
PEs are connected to the memory for parallel data access.
The SAD computation example has two operations and also
require a lot of parallel data access. In this particular ex-
ample, when the degree of parallelism is large, SIMD-1D
gives the better results. When the degree of parallelism is
the same, MIMD-2D gives the better results. Therefore, if
the number of instructions in an application is large, MIMD-
2D architecture become more suitable.

To select the best accelerator for a given application,
we have to match the requirements of the application with
the properties of the accelerator under the design con-
straints. As explained in Sects. 3 and 4, most of the applica-
tion requirements and accelerator properties can be param-
eterized and represented mathematically. The design con-
straints are the operating frequency, amount of hardware re-
sources such as LUTs and memories, power consumption,
etc. Our next step would be to find a mathematical rela-
tionship between those application requirements and the ac-
celerator properties to satisfy the design constraints. Then
we can automatically optimize the proposed heterogeneous
platform for given applications.

Let us compare the FPGA-based platform with a con-
ventional custom heterogeneous multicore processor. We
implement the proposed architecture on Xilinx Zynq-7000
EPP ZC702 evaluation kit as explained above. Zynq inte-
grates a dual-core Cortex-A9 CPU and FPGA equivalent to
Atrix-7 on a single chip. In addition, the evaluation kit has
a DDR3 SDRAM for an external memory.

Figure 26 shows the implemented architecture on the
evaluation kit. There are MIMD-2D accelerator cores which
process filter computation in parallel, and the control unit
which deal with start/stop signal. Table 5 shows the re-
source utilization on the FPGA with four MIMD16 cores.
DSP48 in Table 5 is a 48-bit DSP unit in a Xilinx FPGA. It
is used for a multiplier unit in the PE shown in Fig. 7. Since
the FPGA design tool removes unused units on the imple-
mented architecture automatically, the resource utilization
is smaller than expected. Note that the number of accelera-
tor cores and the number of PEs in one core can be selected
depending on applications. As shown in Fig. 27, the width

Fig. 26 Implemented architecture.

Table 5 Resource utilization with 4 MIMD16 cores.

Module LUT Register Block memory DSP48*
Accerelators 1044 1604 18 16
Controll unit 28 28 0 0

AXI timer 312 217 0 0
AXI Interconnect 397 182 0 0

Total 1781(3%) 2031(2%) 18(13%) 16(7%)
*DSP48 is a 48-bit DSP unit in a Xilinx FPGA.

Fig. 27 Parallel transfer on the AXI4 bus.

of AXI interconnection on Zynq is 32 bit. Therefore, we can
transfer four 8-bit pixels simultaneously and reduce the total
data-transfer time.

Table 6 shows the comparison of the filter computation
time of the proposed FPGA-based platform and RP1 [1].
The image size is 640 × 480. The window size is 12 × 12,
18 × 18 and 24 × 24. The number of PEs on the FPGA-
based platform is 64, and it is equal to that of two FE-GA
cores. We estimate the power consumption of the FPGA-
based platform by using Xilinx Power Estimator 14.3. Com-
paring the processing time, when the number of FE-GA
cores is one, the processing time of the proposed platform
is smaller than that of RP1 in any window size. Moreover,
when the window size is 18 × 18, the processing time of the
proposed platform is smaller than that of RP1 with two FE-
GA cores. The power consumption of the proposed platform
is smaller than that of RP1 as shown in Table 7. In conclu-
sion, the FPGA-based heterogeneous multicore architecture
is comparable to custom heterogeneous multicore proces-
sors. Moreover, we can reduce the processing time by using
more accelerator cores.

5. Conclusion

We have proposed an FPGA-based heterogeneous multicore

TAKEI et al.: EVALUATION OF AN FPGA-BASED HETEROGENEOUS MULTICORE PLATFORM WITH SIMD/MIMD CUSTOM ACCELERATORS
2585

Table 6 Comparison of speed with RP1.

Processing time on Zynq(ms) Processing time on RP1(ms) [7]
Window size 1xCortex-A9(666.667 MHz) 1xSH-4A(600 MHz) 1xSH-4A(600 MHz)

+FPGA(100 MHz) +1xFE-GA(300 MHz) +2xFE-GA(300 MHz)
12 × 12 46.51 47.72 36.24
18 × 18 70.50 102.67 72.94
24 × 24 115.89 137.07 96.55

Table 7 Comparison of power consumption with RP1.

Zynq RP1 [7]
1xCortex-A9(666.667 MHz) 1xSH-4A(600 MHz) 1xSH-4A(600 MHz)
+FPGA(100 MHz) +1xFE-GA(300 MHz) +2xFE-GA(300 MHz)

Power consumption 1.03 W 1.30 W 1.36 W
Process technology 28 nm [10] 90 nm [1]

platform with custom accelerators. The accelerator cores
are customizable for each application. Dedicated AGUs are
used to increase the processing speed and to reduce the area
and power. In this paper, we evaluate the proposed platform
using several examples. We discussed many key require-
ments of the applications and the properties of the acceler-
ators. We also discussed several scheduling schemes and
mapping methods and analyze their performance. Such an
evaluation is very important to find a relationship between
the requirements of the applications and properties of the ac-
celerators. Since the heterogeneous computing have a wide
variety of applications from low-power processing to high-
performance-computation, finding this relationship is very
essential to optimize their performance.

Acknowledgment

This work is supported by MEXT KAKENHI Grant Num-
ber 12020735.

References

[1] H. Shikano, M. Ito, M. Onouchi, T. Todaka, T. Tsunoda, T. Kodama,
K. Uchiyama, T. Odaka, T. Kamei, E. Nagahama, M. Kusaoke, Y.
Nitta, Y. Wada, K. Kimura, and H. Kasahara, “Heterogeneous multi-
core architecture that enables 54x AAC-LC stereo encoding,” IEEE
J. Solid-State Circuits, vol.43, no.4, pp.902–910, 2008.

[2] H. Kondo, M. Nakajima, N. Masui, S. Otani, N. Okumura, Y. Takata,
T. Nasu, H. Takata, T. Higuchi, M. Sakugawa, H. Fujiwara, K.
Ishida, K. Ishimi, S. Kaneko, T. Itoh, M. Sato, O. Yamamoto, and
K. Arimoto, “Design and implementation of a configurable hetero-
geneous multicore SoC with nine CPUs and two matrix processors,”
IEEE J. Solid-State Circuits, vol.43, no.4, pp.892–901, 2008.

[3] http://www.top500.org/system/10587
[4] NVIDIA Corporation, “NVIDIA CUDA programming guide,”

Ver2.2.1, 2009.
[5] H.M. Waidyasooriya, Y. Takei, M. Hariyama, and M. Kameyama,

“FPGA implementation of heterogeneous multicore platform with
SIMD/MIMD custom accelerators,” IEEE International Symposium
on Circuits and Systems (ISCAS), pp.1339–1342, 2012.

[6] H.M. Waidyasooriya, M. Hariyama, and M. Kameyama, “Architec-
ture of an FPGA-oriented heterogeneous multi-core processor with
SIMD-accelerator cores,” International Conference on Engineering
of Reconfigurable Systems and Algorithms (ERSA), pp.179–186,
2010.

[7] H.M. Waidyasooriya, Y. Ohbayashi, M. Hariyama, and M.

Kameyama, “Memory allocation exploiting temporal locality for
reducing data-transfer bottlenecks in heterogeneous multicore pro-
cessors,” IEEE Trans. Circuits Syst. Video Technol., vol.21, no.10,
pp.1453–1466, 2011.

[8] M. Hariyama, H. Sasaki, and M. Kameyama, “Architecture of
a stereo matching VLSI processor based on hierarchically paral-
lel memory access,” IEICE Trans. Inf. & Syst., vol.E88-D, no.7,
pp.1486–1491, July 2005.

[9] http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC702-G.
htm

[10] S. Dutta, V. Rajagopolan, B. Taylor, and R. Wittig, “Xilinx Zynq em-
bedded processing platform,” A Symposium on High Performance
Chips (HOT Chips 23), 2011.

Yasuhiro Takei received the B.E. degree
in electronic engineering, M.S degree in Infor-
mation Sciences from Tohoku University, Sen-
dai, Japan, in 2011 and 2013 respectively. He is
currently a Ph.D. student in Graduate School of
Information Sciences, Tohoku University. His
research interests include heterogeneous multi-
core processor architectures.

Hasitha Muthumala Waidyasooriya re-
ceived the B.E. degree in Information Engi-
neering, M.S. degree in Information Sciences
and Ph.D. in Information Sciences from Tohoku
University, Japan, in 2006, 2008 and 2010 re-
spectively. He is currently a postdoctoral re-
searcher in Graduate School of Information Sci-
ences, Tohoku University. His research interests
include heterogeneous multicore processor ar-
chitectures and high-level design methodology
for VLSIs.

2586
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.12 DECEMBER 2013

Masanori Hariyama received the B.E.
degree in electronic engineering, M.S. degree
in Information Sciences, and Ph.D. in Informa-
tion Sciences from Tohoku University, Sendai,
Japan, in 1992, 1994, and 1997, respectively.
He is currently an associate professor in Grad-
uate School of Information Sciences, Tohoku
University. His research interests include VLSI
computing for real-world application such as
robots, high-level design methodology for VL-
SIs and reconfigurable computing.

Michitaka Kameyama received the B.E.,
M.E. and D.E. degrees in Electronic Engineer-
ing from Tohoku University, Sendai, Japan, in
1973, 1975, and 1978, respectively. He is cur-
rently Dean and a Professor in the Graduate
School of Information Sciences, Tohoku Uni-
versity. His general research interests are intel-
ligent integrated systems for real-world appli-
cations and robotics, advanced VLSI architec-
ture, and new-concept VLSI including multiple-
valued VLSI computing. Dr. Kameyama re-

ceived the Outstanding Paper Awards at the 1984, 1985, 1987 and 1989
IEEE International Symposiums on Multiple-Valued Logic, the Technically
Excellent Award from the Society of Instrument and Control Engineers of
Japan in 1986, the Outstanding Transactions Paper Award from the IEICE
in 1989, the Technically Excellent Award from the Robotics Society of
Japan in 1990, and the Special Award at the 9th LSI Design of the Year in
2002. Dr. Kameyama is an IEEE Fellow.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

