
2658
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.12 DECEMBER 2015

PAPER

Data-Transfer-Aware Design of an FPGA-Based Heterogeneous
Multicore Platform with Custom Accelerators

Yasuhiro TAKEI†, Nonmember, Hasitha Muthumala WAIDYASOORIYA†a), Masanori HARIYAMA†, Members,
and Michitaka KAMEYAMA†, Fellow

SUMMARY For an FPGA-based heterogeneous multicore platform,
we present the design methodology to reduce the total processing time con-
sidering data-transfer. The reconfigurability of recent FPGAs with hard
CPU cores allows us to realize a single-chip heterogeneous processor op-
timized for a given application. The major problem in designing such het-
erogeneous processors is data-transfer between CPU cores and accelerator
cores. The total processing time with data-transfers is modeled considering
the overlap of computation time and data-transfer time, and optimal design
parameters are searched for.
key words: heterogeneous multicore, FPGA, custom accelerators, recon-
figurable architecture

1. Introduction

Applications used in low-power embedded processing to
high performance computing have different tasks such as
data-intensive tasks and control-intensive tasks. There-
fore, the optimal architecture is different from application
to application. Heterogeneous multicore architectures are
one promising way to execute such applications power-
efficiently. They use different processor cores such as CPU
cores and accelerator cores as shown in Fig. 1. Examples
of such processors are [1] and [2], which contain multiple
CPU cores and accelerator cores. The CPU cores are suit-
able for control-intensive and complex computations, while
the accelerator cores for data-intensive and regular computa-
tions. When tasks of an application are allocated to the most
appropriate processor cores, all the cores work together to
increase the overall performances power-efficiently.

Current heterogeneous processors have a fixed amount
of cores and each core has a fixed amount of processing
elements (PEs). Since there are many different applica-
tions, some applications may work well in a particular het-
erogeneous processor, while some applications may not.
Moreover, large data transfer time between multiple cores
is a serious problem. To solve these problems, we con-
sider an FPGA-based heterogeneous multicore architecture
model. Recently, speed and power consumption of FPGAs
are greatly improved, and it would be very practical to use
the FPGA-based platform for real applications. FPGAs also
contain hard CPU cores as seen in Xilinx Zynq-7000 [3]
and Altera Cyclone V SoC [4]. Therefore, CPU cores and

Manuscript received March 6, 2015.
Manuscript revised June 18, 2015.
†The authors are with Tohoku University, Sendai-shi, 980-

8579 Japan.
a) E-mail: hasitha@ecei.tohoku.ac.jp

DOI: 10.1587/transfun.E98.A.2658

Fig. 1 Architecture of a heterogeneous multicore processor.

accelerator cores can be efficiently implemented on a sin-
gle FPGA. Moreover, recent FPGAs are large enough to
hold hundreds of processor cores. Our earlier work in [5],
we have proposed an FPGA-based heterogeneous multicore
processor platform. However, the data transfer time between
the CPU core and accelerator cores is significantly high.

One popular method to reduce the data transfer time
is called double buffering, where two data buffers are used.
When one buffer is accessed for the computation, the data
are transferred to the other buffer. After the computation
is finished, the buffers are interchanged. However, this re-
quires a large memory and only 50% is used for the com-
putation. Since the internal (on-chip) memory is a scarce
resource in FPGA, it is desirable to use most of the memory
resources for the computation. Another method to reduce
the data transfer time is to hide the data transfer between
one core with the computations of the other cores. Since
the recent FPGA-based processors contain many accelerator
cores due to the large number of LUTs, we use this method
to reduce the data transfer time. Since FPGA is reconfig-
urable, we can design the optimal architecture for different
applications to reduce the processing time.

However, designing the optimal architecture that has
the smallest processing time for a given application is a dif-
ficult problem and it takes a large design time. To solve this
problem, we propose a very basic architecture model that
has hard CPU cores and FPGA-based accelerator cores. The
architecture model is based on our previous work [5]. Un-
like in [5], the proposed architecture model does not contain
a fixed number of accelerator cores, PEs or a fixed amount
of internal memory modules. Instead we defined some de-
sign parameters such as the number of cores, the degree of
parallelism, etc. We optimize our architecture model for a
given application by choosing the optimal design parame-

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

TAKEI et al.: DATA-TRANSFER-AWARE DESIGN OF AN FPGA-BASED HETEROGENEOUS MULTICORE PLATFORM WITH CUSTOM ACCELERATORS
2659

ters. The optimal number of accelerator cores are chosen to
hide the data transfer overhead.

In this paper, we propose a heterogeneous multicore
processor design methodology to reduce the total process-
ing time under the resource constraint. We propose a pa-
rameterized architecture model and introduce an evaluation
methodology to find the optimal architecture for the de-
sign parameters. In the optimization problem, we focus
on window-based processing which has many applications
such as stereo matching [6], feature detection [7], scale-
invariant feature transformation (SIFT) [8], histogram of
oriented gradients (HOG) [9], matrix processing, filtering,
etc. The evaluation using filter computation as an example
demonstrates that the processing time estimated by the pro-
posed design methodology has sufficient accuracy compared
to the actual measurement of the FPGA architecture. More-
over, the optimal architecture changes for different applica-
tions, and it is possible to derive such architectures using the
proposed method.

2. Heterogeneous Multicore Architecture Model

The heterogeneous multicore architecture model is based on
the proposal in [5]. Figure 2 shows the overall architec-
ture. It consists of FPGA-based custom accelerator cores, a
hard CPU core and an on-chip memory. An external mem-
ory is connected to the CPU core through the FPGA board.
The accelerator architecture used in this paper is based on
the FE-GA (flexible engine/generic ALU array) accelerator
proposed in [1]. FE-GA is a 16-bit coarse grain MIMD ac-
celerator. It has a very simple architecture and simple inter-
connection network. Since the interconnection network is a
critical part in FPGA-based designs, FE-GA based MIMD
architecture is ideal for FPGAs. It is very easy to imple-
ment and easily scalable by changing the number of PEs
and memories. Moreover, it has been studied extensively for
memory allocation [10], data transfers [11], context parti-
tioning [12], etc and many efficient techniques are proposed.
It is already been used to implement various applications in
many prior works, such as audio encoding [1], feature ex-
traction [13], optical-flow extraction [14], etc. Therefore,
we choose FE-GA as a base for the MIMD accelerator used
in the proposed design.

Figure 3 shows the architecture of an MIMD acceler-
ator core. It consists of a 2-dimensional array of PEs, lo-
cal memory modules and address generation units (AGUs).
In order to simplify the interconnection network, only the
leftmost PEs can directly retrieve data from local memory
modules, and only the rightmost PEs can directly write data
to local memory modules. PEs, AGUs and interconnec-
tion network are dynamically reconfigurable. A PE consists
of a 16-bit fixed-point ALU and a multiplier as shown in
Fig. 4. It is capable of doing operations such as addition,
accumulation, subtraction, comparison, absolute difference
computation, multiplication, etc. Since the data path is fully
pipelined, it takes only one clock cycle to complete any op-
eration.

Fig. 2 Proposed heterogeneous multi-core architecture.

Fig. 3 MIMD accelerator architecture.

Fig. 4 Architecture of a PE.

The address calculation in the proposed architecture is
explained in Fig. 5. In CPUs and GPUs, the address cal-
culation and data processing are done on the same ALU as
shown in Fig. 5(a). To reduce the address processing time,
AGUs (address processing uints) are employed. The ad-
dress calculation is done on AGUs in parallel to the data
processing which is done on ALUs as shown in Fig. 5(b).
Several address patterns and AGU architectures for image
processing have been discussed in previous works [15], [16].
Since accelerator cores use multiple AGUs to access mul-
tiple memory modules, a relatively large area is required.
However, considering the benefits of power-efficiency and
high performance, it is worth spending resources on AGUs.
In this work, the address function proposed in previous
works [7], [10] is used. This address function is simple,
and the resource usage of AGUs is small.

To increase the performance of an FPGA-based hetero-

2660
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.12 DECEMBER 2015

Fig. 5 Timechart of the Address processing.

Fig. 6 Number of accelerator cores and timechart.

geneous multicore platform, it is important to consider not
only the architecture of accelerator core but also the number
of accelerator cores. As shown in Fig. 6(a), if the number of
accelerator cores is one, data-transfer and computation on
an accelerator core are done in serial. On the other hands, if
the number of accelerator cores is two as shown in Fig. 6(b),
data-transfer to core 1 and computation on core 2 are done in
parallel. Therefore, we can reduce the total processing time
by changing the numbers of cores and PEs per core while
keeping the total area of all cores is a constant. This tech-
niques is used in many multicore processors such as GPUs
[17], [18] and the Cell.B.E processor [19]. Since the num-
ber of cores and PEs per core are fixed in these processors,
the advantages of this technique are limited. On the other
hand, an FPGA-based architecture can reduce the total pro-
cessing time efficiently by choosing the optimal number of
cores and PEs to hide most of the data transfer time.

3. Total Processing Time Minimization

3.1 Window-Based Processing Model

We use window-based processing as an example to mini-
mize the total processing time of an FPGA-based multicore
platform. Window-based processing contains repeated ac-
cess to the same data that belong to multiple overlapping
windows. Therefore, it is important to maximize the data
sharing, while allowing parallel processing. Such a data
sharing and scheduling scheme is proposed in [10], and we
use it on the proposed architecture. The work in [10] pro-
poses an off-line scheduling scheme where a part of the data
are transferred to the accelerator core, and the computa-
tion is performed. During the computation, the data are not
transferred to the accelerator core. Similarly, during a data
transfer, the accelerator core pauses its computations. The
transferred data are stored in multiple local memory mod-

Fig. 7 Image partition.

Fig. 8 Window access in a partial image.

ules in the accelerator core in such a way that the data are
accessed in parallel. Therefore, no data collision occurs in-
side an accelerator core. Please refer [10] for detailed dis-
cussions on how the data access is done inside an accelera-
tor core. In this paper, we generalize this off-line scheduling
scheme for multiple accelerator cores. The data transfer to
one accelerator core starts only after the data transfers to
all the other cores are finished. Therefore, no data collision
occurs between the data transfer from the CPU core to the
accelerator cores. Similar to [10], no data collision occurs
inside an accelerator core as well.

Figure 7 shows the window-based processing model
proposed in [10]. As shown in Fig. 7(a), an image is di-
vided in to Npartial partial images. The width and the height
of the partial image is given by PW and PH respectively.
The data between different partial images are not shared. A
batch of WP partial images are processed in parallel. The
term WP is called the degree of window parallelism and
Npartial ≥ WP. The pixels in a window are accessed in pixel-
parallel column-serial manner as shown in Fig. 7(b). The
data in a column are accessed in parallel. This parallelism is
called the pixel-parallelism and denoted by PP.

As shown in Fig. 8 a partial image contains multiple
scan areas. After the first scan area is accessed the next scan
area, which is one pixel bellow, is accessed. The data in scan
areas are accessed by sliding a window from left-to-right.

The different scan areas of a partial image are pro-
cessed sequentially in the accelerator cores as shown in
Fig. 9. The processing of a scan area is assigned to a se-
quence. In the first sequence, all the pixel data belong to
the scan area one are transferred. In the second sequence,
only the difference of the first and second scan areas is trans-

TAKEI et al.: DATA-TRANSFER-AWARE DESIGN OF AN FPGA-BASED HETEROGENEOUS MULTICORE PLATFORM WITH CUSTOM ACCELERATORS
2661

Fig. 9 Sequential processing of the scan areas.

ferred. The rest of the data are shared. Moreover, the new
data are overwritten to the memory addresses with obsolete
data which are not required for further processing. This
method minimizes the data-transfer time since there is no
data-duplication, and also optimizes the memory capacity.
The width and the height of a scan area are equal to the
partial image width PW and the window height WH respec-
tively. Therefore, in one partial image, there are S (PH−WH+1)

scan areas.
In the above explained window-based processing

model, the following relationships exists. The degree of
pixel-parallelism (PP) must satisfy the relationship given by
Eq. (1), where, CM is a natural number and WH is the win-
dow height.

PP ×CM = WH (1)

The number of accelerator cores (NC) and the degree of
window-parallelism (WP) must satisfy the relationship given
by Eq. (2), where, NW is the number of windows processed
in parallel in one accelerator core.

WP = NC × NW (2)

The parallelism of operations are constrained by the
resources available in the FPGA. The MIMD architecture
model explained in Fig. 3 contains columns of PEs where
each column has n PEs. Only the first column is connected
to the memory while the rest of the columns use the com-
putation results of their previous columns. If we consider
direct mapping, DFGs of most window-based applications
have a tree-like structure. To implement this structure, we
need n× (log2n+ 1) number of PEs, where n and (log2n+ 1)
are correspond to the depth and height of the tree. There-
fore, we can have (log2n + 1) columns of PEs in the MIMD
architecture. This kind of architecture models proposed in
many works such as [1]. In window-based processing, the
pixel parallelism PP equals to the number of PEs in the first
column. Therefore, the number of PEs required to process at
the degree of pixel parallelism equals to PP× (log2(PP)+1).
Since WP partial images are processed in parallel, the re-
source constraint is given by Eq. (3), where maximum num-

Fig. 10 Data transfer between CPU cores and accelerator cores.

ber of PEs available is PEMAX .

WP × PP × (log2PP + 1) ≤ PEmax (3)

Moreover, to implement window parallelism, the scan areas
of WP partial images must be stored in the FPGA internal
memory. This constraint is given in Eq. (4)

WP × (WH × PW) ≤ IMmax (4)

where, IMmax is the maximum amount of internal memory
in the FPGA. Form Eqs. (3) and (4), we can see that the
degree of parallelism WP × PP is limited by the amount of
PEs and internal memory of the FPGA.

3.2 Processing Time Estimation

In this section, we explain the formulation of the process-
ing time minimization problem. The processing of each se-
quence (a scan area) in Fig. 9 is divided into the following
three phases.

Phase 1 Data-transfer from the CPU cores to the
accelerator cores

Phase 2 Computation on the accelerator cores
Phase 3 Data-transfer from the accelerator cores to the

CPU cores.

In this section, we discuss the processing time estimation of
each phase and the total processing time.

3.2.1 Data-Transfer Time from CPU Cores to Accelerator
Cores (Phase 1)

The data are transferred from the CPU core to the accel-
erator core through the AXI (Advanced eXtensible Inter-
face) bus connected to the ARM processor. The bus width
of the accelerator core’s input memory and the word width
of the input data are given by BB and BCA. If BB ≥ BCA,
we can transfer several data in parallel. On the other hand,
if BB < BCA, one word is divided in to several segments
and transfer each segment in a serial manner. Therefore, the
number of words transferred from CPU core to accelerator
core at a time (NCA) is given by Eq. (5).

NCA =

⎧⎪⎪⎨⎪⎪⎩
⌊

BB
BCA

⌋
when BB ≥ BCA

1/
⌈

BCA

BB

⌉
when BB < BCA

(5)

2662
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.12 DECEMBER 2015

The data transfer between CPU cores and accelerator
cores is shown in Fig. 10. The frequencies of the external
memory, CPU cores and accelerator cores may not be the
same. Even though frequencies does not match, CPU cores
and the data bus has necessary hardware such as memory
controllers, data buffers, etc for an efficient data transfer.
However, we cannot determine the transfer speed by using
the parameters such as bus width, frequencies, etc. There-
fore, we measure the data transfer time between CPU and
accelerator cores using sample data. The term α is the av-
erage time per word-transfer from CPU cores to accelerator
cores.

The amount of words transferred in sequence S 1 is dif-
ferent from those in the other sequences. In sequence S 1,
the amount of words transferred from a CPU core to an ac-
celerator core is PW ×WH as shown in Fig. 9. Data-transfer
time from a CPU core to an accelerator core in the sequence
S 1(tCA1) is given by

tCA1 = α ×
⌈

NW

NCA

⌉
× PW ×WH (6)

Note that NW is the number of windows processed in an ac-
celerator core as described in Eq. (2). In other sequence (S 2

to S (PH−WH+1)), the amount of words transferred from a CPU
core to an accelerator core is PW . Data-transfer time from a
CPU core to an accelerator core in each sequence (tCA2) is
given by

tCA2 = α ×
⌈

NW

NCA

⌉
× PW . (7)

3.2.2 Computation Time (Phase 2)

We estimate the computation time (tcomp) in each sequence
on the accelerator core. The architecture of the accelerator is
fully pipelined. After the pipeline is filled, the computation
is done in every clock cycles. As shown in Fig. 8, the size
of the window is WH ×WW . Each scan area includes (PW −
WW + 1) windows. When processing a window, PP pixels
are calculated in parallel as shown in Fig. 7(b). Therefore,
tcomp is given by

tcomp =
1
fA
× WH ×WW

PP
× (PW −WW + 1) + tpipe (8)

where fA is the clock frequency, and tpipe is the pipeline la-
tency of the accelerator core. Note that the address gener-
ation time does not appear in Eq. (8) since the address pro-
cessing time is completely overlapped with the data process-
ing time. This is because the address and data processing are
done in AGUs and PEs respectively in parallel.

3.2.3 Data-Transfer Time from Accelerator Cores to CPU
Cores (Phase 3)

We estimate the data-transfer time (tAC) from accelerator
cores to CPU cores in each sequence by the same method

described in Sect. 3.2.1. The number of words transferred
from accelerator cores to CPU cores at a time (NAC) is given
by Eq. (9) where, BAC is the word width of the output data
of the accelerator cores.

NAC =

⎧⎪⎪⎨⎪⎪⎩
⌊

BB
BAC

⌋
when BB ≥ BAC

1/
⌈

BAC

BB

⌉
when BB < BAC

(9)

The amount of words transferred from an accelerator core
to a CPU core is (PW − WW + 1) in each sequence. Data-
transfer time from an accelerator core to a CPU core in each
sequence (tAC) is given by

tAC = β ×
⌈

NW

NAC

⌉
× (PW −WW + 1) (10)

where β is the average time per word-transfer from acceler-
ator core to CPU cores.

3.2.4 Estimation of the Total Processing Time

We process WP partial images in parallel, and the processing
time required for this is given by tpartial. Figure 11 shows
the time chart of the processing in an accelerator core. The
time tinit consists of the initial data-transfer time from the
CPU cores to the accelerator cores and the computation time
in the sequence S 1. These initial data-transfers to different
cores cannot be done in parallel since there is only one bus
that has a limited bandwidth. Therefore, tinit is given by

tinit = tCA1 × NC + tcomp (11)

During tmid, ttrans and tcomp are repeated as shown in
Fig. 11. The time ttrans shown in Fig. 11 is defined by
Eq. (12)

ttrans = tAC + tCA2 + tctrl (12)

where, tAC is the data-transfer time from accelerator cores
to CPU core, tCA2 is the data-transfer time from CPU cores
to accelerator cores and tctrl is the control overhead due to
starting and stopping the accelerator cores. To estimate tmid,
we have to consider the overlap between the data-transfers
and the computations. This overlap can be classified into
following two cases.

Case A1: The computation time of one core partially hides
the data-transfers of the other cores as shown in
Fig. 12(a). This is represented by tcomp < (NC − 1) ×
ttrans. During tmid, the time period (NC × ttrans) is re-
peated (PH − WH) times since there are PH − WH + 1
sequences as explained in Sect. 3.1 and (PH − WH) of
those sequences belong to tmid.

Case A2: The computation time completely hides the data-
transfer time of the other cores as shown in Fig. 12(b).
This is represented by tcomp ≥ (NC − 1)× ttrans. Similar
to the case A1, the time period (tcomp+ttrans) is repeated
(PH − WH) times during tmid. According to these two
types, tmid is given by Eq. (13).

TAKEI et al.: DATA-TRANSFER-AWARE DESIGN OF AN FPGA-BASED HETEROGENEOUS MULTICORE PLATFORM WITH CUSTOM ACCELERATORS
2663

Fig. 11 Timechart of the processing in the accelerator cores.

Fig. 12 The data-transfers and the computations during tmid

tmid =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NC × ttrans × (PH −WH)
when tcomp < (NC − 1) × ttrans

(Case1 A1)

(ttrans + tcomp) × (PH −WH)
when tcomp ≥ (NC − 1) × ttrans

(Case A2)

(13)

The time t f inal is the data-transfer time from the accel-
erator cores to the CPU cores in the sequence S (PH−WH+1).
During t f inal, the data-transfers form the accelerator cores to
the CPU cores (tAC) overlap with the computations as shown
in Fig. 13. This can be classified into three cases.

Case B1 tcomp ≥ (NC − 1) × ttrans

Case B2 (NC − 1) × tAC ≤ tcomp < (NC − 1) × ttrans

Case B3 tcomp < (NC − 1) × tAC

In case B1, tAC is smaller than ttrans, so that tcomp of one core
hides tAC of all the other cores as shown in Fig. 13(a). When
tcomp < (NC − 1) × ttrans, tcomp can be either “greater than or
equals to (NC − 1) × tAC” or “smaller than (NC − 1) × tAC”.
In case 2, tcomp of one core completely hides the tAC of the

Fig. 13 Overlap with data-transfer and computation in t f inal.

other cores as shown in Fig. 13(b). In case 3, tcomp of one
core partially hides the tAC of the other cores as shown in
Fig. 13(c). According to these three cases, t f inal is given by
Eq. (14).

t f inal =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(NC − 1) × ttrans + tAC

when tcomp ≥ (NC − 1) × ttrans

(Case B1)

tAC + tcomp

when (NC − 1) × tAC ≤ tcomp

< (NC − 1) × ttrans

(Case B2)

NC × tAC

when tcomp < (NC − 1) × tAC

(Case B3)

(14)

2664
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.12 DECEMBER 2015

The processing time required for WP partial images
(tpartial) is given by

tpartial = tinit + tmid + t f inal (15)

The total processing time denoted by Timage is the
time required to process a whole image. As explained in
Sect. 3.1, an image is divided into Npartial partial images, and
WP partial images are processed in parallel. Equation (15)
gives the processing time of WP partial images. After pro-
cessing WP partial images, another WP partial images are
processed. Therefore the total processing time required to
process a whole image is given by

Timage = tpartial ×
⌈

Npartial

WP

⌉
(16)

Note that, for smaller images where Npartial = WP, Timage

equals tpartial.
Using Eqs. (11), (13), (14) and (15), we can see that

the total processing time is derived from the combination of
the design parameters, WP, PP, NC , NW , PW and PH . These
parameters define the architecture of the FPGA-based het-
erogeneous multicore platform and its scheduling. There-
fore, it is very important to find the optimal combination of
design parameters that minimize the total processing time.
The design parameter optimization is discussed in Sect. 4.

4. Evaluation

We use Xilinx Zynq-7000 EPP ZC702 board [20] for the
evaluation. Zynq integrates a dual Cortex-A9 CPU cores
and FPGA equivalent to Atrix-7 on a single chip. In addi-
tion, the evaluation kit has a DDR3 SDRAM for an exter-
nal memory. The proposed heterogeneous platform is de-
signed using Xilinx PlanAhead 14.2. The CPU core is pro-
grammed using C language on Xilinx EDK 14.2. Figure 14
shows the implemented architecture. There are accelerator
cores, one Cortex-A9 hard CPU core, the AXI4 bus and a
DDR3 SDRAM for the external memory. The processing
time of the proposed heterogeneous platform is measured
by the AXI Timer IP. The clock frequency of the CPU core
is 667 MHz.

To estimate the data-transfer time of the proposed het-
erogeneous platform given by Eq. (15), we measured the
values α, β and tctrl in Eqs. (6), (10) and (12) respectively.
We measured data-transfer times between the external mem-
ory and memory modules of accelerator cores. From exper-
imental results, the values of α, β and tctrl are measured to
be 186.06 (ns), 213.02 (ns) and 430.00 (ns) respectively, the
maximum clock frequency of the accelerator cores is mea-
sured to be 100 MHz. Table 1 shows the difference between
the estimated processing time and the measured processing
time for different windows sizes. The estimated processing
time is calculated using Eq. (15) for a given set of design
parameters. We implement the architecture described by the
same set of parameters on FPGA and measure the process-
ing time. This is called the measured processing time. Ac-
cording to the results, the error rate calculated using Eq. (17)

Fig. 14 Implemented architecture.

Table 1 Estimated time vs. measured time.

Window Estimated Measured Error
size time(ms) time(ms) (%)

12 × 12 46.93 46.51 0.51
16 × 16 60.38 60.07 0.91
18 × 18 70.50 70.51 0.02
24 × 24 115.89 115.87 0.01

Fig. 15 Filter computation of a VGA image.

is less than 1%. This small error percentage shows that the
estimated processing time is sufficiently accurate to opti-
mize the processor architecture.

Error =
|Measured − Estimated|

Measured
× 100(%) (17)

4.1 Exploration of the Design Parameter Space to Find the
Minimum Total Processing Time

In this section, we show how the design parameter space is
explored to obtain the optimal ones that give the minimum
processing time for filter computation. The specifications of
the filter computation are given in Fig. 15. We assume that
the maximum degree of parallelism (WP × PP) is limited to
16 by the resource constraints in Eqs. (3) and (4). Based
on the specifications, the scope of the design parameters are
determined as shown in Fig. 15(b). We estimate the total
processing time for all the combinations of the design pa-
rameters in order to find the optimal parameters that gives
the minimum processing time.

Figure 16 shows an example of problem formulation
for a given set of design parameters. The design parameters

TAKEI et al.: DATA-TRANSFER-AWARE DESIGN OF AN FPGA-BASED HETEROGENEOUS MULTICORE PLATFORM WITH CUSTOM ACCELERATORS
2665

Fig. 16 Problem formulation for a given set of design parameters.

Fig. 17 Processing time estimation.

are shown in Fig. 16(a). According to the parameters PW

and PH , we partition the image into 16 partial images as
shown in Fig. 16(b). Since the number of cores (NC) is 4,
we assign four different partial images to each core. The
scan areas of a partial image is shown in Fig. 16(c). Since
NW = 4, one core processes four scan areas belongs to four
different partial images in parallel.

Figure 17 shows the time chart of processing. As ex-
plained in Sect. 3.2, the total processing time is the sum-
mation of tinit, tmid and ttotal. Each term is calculated using
Eqs. (11), (13) and (14) respectively. During tinit, the first
scan area belongs to a partial image is transferred to the ac-
celerator cores. Since the bus-width (BB) is 32 bits and the
input data width BCA is 8 bits, The data of four windows are
transferred to the accelerator core in parallel. However, the
output data width BAC is 16 bits so that only the process-
ing results of only two windows are transferred in parallel
during tmid and t f inal. During tmid, the data transfers and the
computations of scan areas 2 to 117 are done. During t f inal,
the remaining computations and the output data transfer cor-
responds to the last scan area is done.

We estimated the total processing time for all combi-
nations of design parameters by doing an exhaustive search.
The search could be done in few minutes on an Intel CPU
at 3.2 GHz. Table 2 shows the processing time for some of
those combinations. The total processing time is minimized
when WP = 16, PP = 1, NC = 4, NW = 4, PW = 94 and
PH = 246. Usually, it would take several days of design-
ing and compilation time to design an FPGA architecture.

In the proposed method, we can design a reasonably good
FPGA-based heterogeneous processor architecture by just
searching for the optimal design parameters. Even using
exhaustive search, the optimal design parameters are found
in a very short time. Therefore, we can reduce the FPGA
architecture design effort and time dramatically by the pro-
posed method. When exploring the design parameter space,
we consider all possible situations that belongs two different
cases shown in Fig. 12. For example, in the last column of
Table 2, tcomp = 0.4020 and (NC −1)× ttrans = 0.994. There-
fore, tcomp < (NC − 1) × ttrans so that this design belongs to
case A1, which is shown in Fig. 12(a).

4.2 Evaluation of the Optimized Design for Different Fil-
ter Sizes

Table 3 shows the optimized design parameters for different
filter sizes. Note that the window size equals to the filter
size. We assume that the maximum degree of parallelism is
16 due to the resource constraints. According to the results,
optimized design parameters vary with different filter sizes.
That means, the partitioning, scheduling and the hardware
design are different according to the specifications of the
application. However, in conventional heterogeneous multi-
core architectures such as [1], we cannot optimize the design
parameters since the number of accelerator cores, the num-
ber PEs, etc are fixed. Therefore, the proposed FPGA-based
heterogeneous platform has a high degree of flexibility, and
can be optimized for different applications.

The optimized design (decided by the design parame-
ters) in Table 3 belongs to either the case A1 in Fig. 12(a) or
the case A2 in Fig. 12(b). This shows that considering both
cases is important to obtain the optimal design. Although
not shown in Table 3, each of the above cases are further di-
vided in to another three cases, B1∼B3 as shown in Fig. 13.
When exploring the design parameter space, we considered
these cases also.

Tables 4 and 5 shows the optimized design parameters
when the maximum degree of parallelism is 32 and 64 re-
spectively. When the degree of parallelism increases, the
computation time reduces. As a result, the data transfer time
could be larger than the computation time. Therefore, most
of the optimized designs belong to the case A1 where the
data transfer time is not fully hidden by the computation
time.

For some optimized designs, the degree of parallelism
is smaller than the maximum value. For example, when the
window size is 8 × 8 in Table 5, the maximum degree of
parallelism allowed is 64. However, the degree of window
and pixel parallelisms in the optimized design are 8 and 2
respectively. This give a total degree of parallelism of 16
which is just 25% of the maximum available. In this case,
the computation time is much smaller than the data transfer
time due to the parallel computations. Therefore, the to-
tal processing time is decided by the data transfer time as
shown in Fig. 12(a), so that reducing the computation time
further does not make any impact on the total processing

2666
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.12 DECEMBER 2015

Table 2 Estimated processing time for different design parameters. All different combinations of
design parameters are searched to find the optimal parameters that minimize the total processing time.

Design Parameters Type of the design
Degree of Degree of Number Windows Partial Partial Total
window pixel of per a image image tcomp ttrans Type processing

parallelism parallelism cores core width height (ms) (ms) time
WP PP NC NW PW PH (ms)
1 4 1 1 640 480 0.4001 0.2531 Case A2 305.80
4 2 1 4 328 248 0.4007 0.1868 Case A2 137.98
4 2 4 1 172 480 0.2010 0.0663 Case A2 127.02
4 2 2 2 172 480 0.2010 0.0663 Case A2 125.61
16 1 1 16 94 248 0.2024 0.1981 Case A2 94.70
16 1 2 8 94 248 0.2023 0.0993 Case A2 71.83
16 1 4 4 172 132 0.4020 0.0955 Case A2 61.02
16 1 4 4 94 248 0.2023 0.0499 Case A2 60.38*
16 1 8 2 94 248 0.4020 0.0663 Case A1 67.47
16 1 16 1 172 132 0.4020 0.0663 Case A1 134.14

*The smallest total processing time.

Table 3 Optimized design parameters for different filter sizes. The maximum degree of parallelism
is 16.

Design Parameters
Window Window Pixel Number Windows Partial image Total Type

size parallelism parallelism of cores per a core width height processing of the
WH = WW WP PP NC NW PW PH time (ms) design

8 16 1 2 8 166 126 46.24 Case A1
9 16 1 2 8 166 126 45.88 Case A1

10 16 1 2 8 167 127 46.20 Case A1
12 16 1 4 4 169 129 46.93 Case A1
13 16 1 4 4 169 129 46.62 Case A1
15 16 1 4 4 93 247 54.50 Case A2
16 16 1 4 4 94 248 60.38 Case A2
17 16 1 4 4 94 248 65.53 Case A2
18 16 1 8 2 95 249 70.50 Case A2
20 16 1 8 2 58 480 83.97 Case A2
24 16 1 8 2 62 480 115.89 Case A2

Table 4 Optimized design parameters for different filter sizes. The maximum degree of parallelism
is 32.

Design Parameters
Window Window Pixel Number Windows Partial image Total Type

size parallelism parallelism of cores per a core width height processing of the
WH = WW WP PP NC NW PW PH time (ms) design

8 8 2 2 4 166 244 45.58 Case A1
9 16 1 2 8 166 126 45.88 Case A1

10 8 2 2 4 167 245 45.53 Case A1
12 16 1 4 4 169 129 46.93 Case A1
13 16 1 4 4 169 129 46.62 Case A1
15 32 1 2 16 93 131 49.00 Case A1
16 32 1 4 8 94 132 49.53 Case A1
17 32 1 4 8 94 132 49.05 Case A1
18 32 1 4 8 95 133 49.55 Case A1
20 32 1 8 4 97 135 50.75 Case A1
24 32 1 8 4 62 252 61.60 Case A2

time.
Table 6 shows the comparison of the total processing

time of the proposed method against the method given in
[10]. The window-based processing model used in both
methods are the same. However, the work in [10] does
not consider the overlap of data transfers with the compu-
tation. In [10], the total processing time is calculated simply

by adding the total computation time, the total data transfer
time and the total control time together. It uses one large
accelerator core that can process the data in parallel using
multiple PEs. The comparison is done for three different
resource constraints. The maximum degree of parallelism
(WP × PP) is calculated to be 16, 32 and 64 in each of the
three constraints.

TAKEI et al.: DATA-TRANSFER-AWARE DESIGN OF AN FPGA-BASED HETEROGENEOUS MULTICORE PLATFORM WITH CUSTOM ACCELERATORS
2667

Table 5 Optimized design parameters for different filter sizes. The maximum degree of parallelism
is 64.

Design Parameters
Window Window Pixel Number Windows Partial image Total Type

size parallelism parallelism of cores per a core width height processing of the
WH = WW WP PP NC NW PW PH time (ms) design

8 8 2 2 4 166 244 45.58 Case A1
9 16 1 2 8 166 126 45.88 Case A1

10 8 2 2 4 167 245 45.53 Case A1
12 16 2 2 8 169 129 46.93 Case A1
13 16 1 4 4 169 129 46.62 Case A1
15 32 1 2 16 93 131 49.00 Case A1
16 16 2 4 4 172 132 47.33 Case A1
17 32 1 4 8 94 132 49.05 Case A1
18 16 2 4 4 173 133 47.35 Case A1
20 16 2 4 4 97 250 49.75 Case A2
24 64 1 4 16 62 480 57.43 Case A1

Table 6 Total processing time reduction of the proposed method compared to [10].

Maximum Window Work in [10] This work Reduction
degree of size Computation Control Data transfer Total processing Total processing Percentage

parallelism WH = WW time (ms) time (ms) time (ms) time (ms) time (ms) (%)

8 12.00 0.20 44.21 56.42 46.24 18.04
10 18.60 0.20 44.01 62.81 46.20 26.45

16 15 41.05 0.20 43.50 84.75 54.50 35.69
20 71.60 0.20 43.00 114.79 83.97 26.85
24 101.53 0.20 42.59 144.32 115.89 19.70

8 6.02 0.20 44.21 50.43 45.58 9.63
10 9.32 0.20 44.01 53.53 45.53 14.94

32
15 20.54 0.20 43.50 64.24 49.00 23.72
20 35.81 0.20 43.00 79.00 50.73 35.79
22 43.00 0.20 42.79 85.99 54.10 37.09
24 50.78 0.20 42.59 93.57 61.60 34.17

8 3.02 0.20 44.21 47.44 45.58 3.92
10 4.67 0.20 44.01 48.88 45.53 6.86

64 15 10.28 0.20 43.50 53.98 49.00 9.23
20 17.92 0.20 43.00 61.11 49.75 18.59
24 25.40 0.20 42.59 68.19 57.43 15.78

According to the results in Table 6, the total processing
time is reduced up to 37% using the proposed method. The
computation amount increases with the window size. For
small window sizes, the computation time is smaller com-
pared to the data transfer time so that most of the data trans-
fer time is not hidden. For larger window sizes, the compu-
tation time is larger compared to the data transfer time due
to large computation amount. In this case, the data transfer
time is hidden, so that the total processing time is decided
by the computation time. Therefore, the largest total pro-
cessing time reduction is achieved when the computation
time nearly equals the data transfer time. When we increase
the degree of parallelism, the computation time decreases.
However, both the data amount and the number of paral-
lel data transfers are unchanged (the maximum amount of
parallel data transfers is already reached), so that the data
transfer time remains the same. Nevertheless, the total pro-
cessing time is reduced in both methods due to the reduction
of the computation time.

According to the results in Table 6, the total process-
ing time in the proposed method is smaller than that in [10].
Even in the extreme cases where one of the data transfer

time or the computation time is negligibly smaller com-
pared to the other, the total processing time of the proposed
method would be at least equals to [10]. During the design
parameter exploration, the method in [10] is also one of over
thousand combinations considered by the proposed method.
Therefore the proposed method would never get worse than
that in [10].

5. Conclusion

We have proposed a design methodology for FPGA-based
heterogeneous multi-core platform with custom accelerator
cores. The proposed approach optimizes the total process-
ing time by considering this overlap of data-transfers and
computations. According to the evaluation, the processing
time estimation has a sufficient accuracy, so that the archi-
tecture of the FPGA-based heterogeneous platform can be
optimized. FDTD (finite-difference time-domain) computa-
tion, which is basically a stencil computation, has already
been implemented in FPGAs [21], [22]. Therefore, we be-
lieve that the proposed architecture model could be opti-
mized for such applications grid-based HPC (high perfor-

2668
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.12 DECEMBER 2015

mance computing) applications such as stencil computation
[23] in future works.

Acknowledgment

This work is supported by MEXT KAKENHI Grant Num-
ber 24300013.

References

[1] H. Shikano, M. Ito, M. Onouchi, T. Todaka, T. Tsunoda, T. Kodama,
K. Uchiyama, T. Odaka, T. Kamei, E. Nagahama, M. Kusaoke, Y.
Nitta, Y. Wada, K. Kimura, and H. Kasahara, “Heterogeneous multi-
core architecture that enables 54x AAC-LC stereo encoding,” IEEE
J. Solid-State Circuits, vol.43, no.4, pp.902–910, 2008.

[2] H. Kondo, M. Nakajima, N. Masui, S. Otani, N. Okumura, Y. Takata,
T. Nasu, H. Takata, T. Higuchi, M. Sakugawa, H. Fujiwara, K.
Ishida, K. Ishimi, S. Kaneko, T. Itoh, M. Sato, O. Yamamoto, and
K. Arimoto, “Design and implementation of a configurable hetero-
geneous multicore SoC with nine CPUs and two matrix processors,”
IEEE J. Solid-State Circuits, vol.43, no.4, pp.892–901, 2008.

[3] S. Dutta, V. Rajagopolan, B. Taylor and R. Wittig, “Xilinx Zynq
embedded processing platform” A Symp. High Performance Chips
(HOT Chips 23), 2011.

[4] https://www.altera.com/products/soc/portfolio/cyclone-v-soc/overvi
ew.html

[5] Y. Takei, H.M. Waidyasooriya, M. Hariyama, and M. Kameyama,
“Evaluation of an FPGA-based heterogeneous multicore platform
with SIMD/MIMD custom accelerators,” IEICE Trans. Fundamen-
tals, vol.E96-A, no.12, pp.2576–2586, 2013.

[6] M. Hariyama, H. Sasaki, and M. Kameyama, “Architecture of
a stereo matching VLSI processor based on hierarchically paral-
lel memory access,” IEICE Trans. Inf. & Syst., vol.E88-D, no.7,
pp.1486–1491, 2005.

[7] H.M. Waidyasooriya, Y. Ohbayashi, M. Hariyama, and M.
Kameyama, “Memory-access-driven context partitioning for win-
dow-based image processing on heterogeneous multicore proces-
sors,” IEICE Trans. Inf. & Syst., vol.E95-D, no.2, pp.354–363,
2012.

[8] D.G. Lowe, “Object recognition from local scale-invariant features,”
Proc. Seventh IEEE International Conference on Computer Vision,
vol.2, pp.1150–1157, 1999.

[9] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), vol.1, pp.886–893,
2005.

[10] H.M. Waidyasooriya, Y. Ohbayashi, M. Hariyama, and M.
Kameyama, “Memory allocation exploiting temporal locality for
reducing data-transfer bottlenecks in heterogeneous multicore pro-
cessors,” IEEE Trans. Circuits Syst. Video Technol., vol.21, no.10,
pp.1453–1466, 2011.

[11] Y. Hiramatsu, H.M. Waidyasooriya, M. Hariyama, T. Nojiri, K.
Uchiyama, and M. Kameyama, “Acceleration of block match-
ing on a low-power heterogeneous multi-core processor based on
DTU data-transfer with data re-allocation,” IEICE Trans. Electron.,
vol.E95-C, no.12, pp.1872–1882, 2012.

[12] H.M. Waidyasooriya, Y. Ohbayashi, M. Hariyama, and M.
Kameyama, “Memory-access-driven context partitioning for win-
dow-based image processing on heterogeneous multicore proces-
sors,” IEICE Trans. Inf. & Syst., vol.E95-D, no.2, pp.354–363,
2012.

[13] H.M. Waidyasooriya, D. Okumura, M. Hariyama, and M.
Kameyama, “Task allocation with algorithm transformation for re-
ducing data-transfer bottlenecks in heterogeneous multi-core pro-
cessors: A case study of HOG descriptor computation,” IEICE
Trans. Fundamentals, vol.E93-A, no.12, pp.2570–2580, 2010.

[14] H.M. Waidyasooriya, M. Hariyama, and M. Kameyama, “Accel-
eration of optical-flow extraction using dynamically reconfigurable
ALU arrays,” International Conference on Engineering of Reconfig-
urable Systems and Algorithms, pp.291–294, 2009.

[15] Y. Kobayashi, M. Hariyama, and M. Kameyama, “Memory allo-
cation for multi-resolution image processing,” IEICE Trans. Inf. &
Syst., vol.E91-D, no.10, pp.2386–2397, 2008.

[16] H.M. Waidyasooriya, M. Hariyama, and M. Kameyama, “Memory
allocation for window-based image processing on multiple memory
modules with simple addressing functions,” IEICE Trans. Funda-
mentals, vol.E94-A, no.1, pp.342–351, 2011.

[17] H.-N. Ta and S. Lee, “High-performance computing model for 3D
camera system,” 2011 IEEE International Conference on Robotics
and Biomimetics, pp.354–359, 2011.

[18] K. Iwai, T. Kurokawa, and N. Nisikawa, “AES encryption imple-
mentation on CUDA GPU and its analysis,” 2010 First International
Conference on Networking and Computing, pp.209–214, 2010.

[19] T. Chen, Z. Sura, K. O’Brien and J.K. O’Brien, “Optimizing the
use of static buffers for DMA on a CELL chip,” Proc. 19th Int.
Conf. Languages and Compilers for Parallel Computing, vol.4382,
pp.314–329, 2006.

[20] http://www.xilinx.com/support/documentation/boards and kits/zc70
2 zvik/ug850-zc702-eval-bd.pdf

[21] J.P. Durbano, F.E. Ortiz, J.R. Humphrey, P.F. Curt, and D.W. Prather,
“FPGA-based acceleration of the 3D finite-difference time-domain
method,” 12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, pp.156–163, 2004.

[22] H.M. Waidyasooriya, Y. Takei, M. Hariyama, and M. Kameyama,
“Low-power heterogeneous platform for high performance comput-
ing and its application to 2D-FDTD computation,” Proc. Interna-
tional Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA), pp.147–150, 2012.

[23] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D.
Patterson, J. Shalf, and K. Yelick, “Stencil computation optimization
and auto-tuning on state-of-the-art multicore architectures,” Interna-
tional Conference for High Performance Computing, Networking,
Storage and Analysis, pp.1–12, 2008.

Yasuhiro Takei received the B.E. degree in
electronic engineering in Information Sciences,
M.S. degree in Information Sciences from To-
hoku University, Sendai, Japan, in 2011 and
2013 respectively. He is currently a Ph.D. stu-
dent in Graduate School of Information Sci-
ences, Tohoku University. His research inter-
ests include heterogeneous multicore processor
architectures.

Hasitha Muthumala Waidyasooriya re-
ceived the B.E. degree in Information Engi-
neering, M.S. degree in Information Sciences
and Ph.D. in Information Sciences from Tohoku
University, Japan, in 2006, 2008 and 2010 re-
spectively. He is currently an Assistant Pro-
fessor with the Graduate School of Information
Sciences, Tohoku University. His research in-
terests include reconfigurable computing, pro-
cessor architectures for big-data processing and
high-level design methodology for VLSIs.

http://dx.doi.org/10.1109/jssc.2008.917531
http://dx.doi.org/10.1109/jssc.2008.917528
https://www.altera.com/products/soc/portfolio/cyclone-v-soc/overview.html
http://dx.doi.org/10.1587/transfun.e96.a.2576
http://dx.doi.org/10.1093/ietisy/e88-d.7.1486
http://dx.doi.org/10.1587/transinf.e95.d.354
http://dx.doi.org/10.1109/iccv.1999.790410
http://dx.doi.org/10.1109/cvpr.2005.177
http://dx.doi.org/10.1109/tcsvt.2011.2162277
http://dx.doi.org/10.1587/transele.e95.c.1872
http://dx.doi.org/10.1587/transinf.e95.d.354
http://dx.doi.org/10.1587/transfun.e93.a.2570
http://dx.doi.org/10.1093/ietisy/e91-d.10.2386
http://dx.doi.org/10.1587/transfun.e94.a.342
http://dx.doi.org/10.1109/robio.2011.6181311
http://dx.doi.org/10.1109/ic-nc.2010.49
http://dx.doi.org/10.1007/978-3-540-72521-3_23
http://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
http://dx.doi.org/10.1109/fccm.2004.37
http://dx.doi.org/10.1109/sc.2008.5222004

TAKEI et al.: DATA-TRANSFER-AWARE DESIGN OF AN FPGA-BASED HETEROGENEOUS MULTICORE PLATFORM WITH CUSTOM ACCELERATORS
2669

Masanori Hariyama received the B.E. de-
gree in electronic engineering, the M.S. degree
in information sciences, and the Ph.D. degree
in information sciences from Tohoku University,
Sendai, Japan, in 1992, 1994, and 1997, respec-
tively. He is currently an Associate Professor
with the Graduate School of Information Sci-
ences, Tohoku University. His research interests
include real-world applications such as robotics
and medical applications, big data applications
such as bio-informatics, high-performance com-

puting, VLSI computing for real-world application, high-level design
methodology for VLSIs, and reconfigurable computing.

Michitaka Kameyama received the B.E.,
M.E. and D.E. degrees in Electronic Engineer-
ing from Tohoku University, Sendai, Japan, in
1973, 1975, and 1978, respectively. He is cur-
rently a Professor in the Graduate School of
Information Sciences, Tohoku University. His
general research interests are intelligent inte-
grated systems for real-world applications and
robotics, advanced VLSI architecture, and new-
concept VLSI including multiple-valued VLSI
computing. Dr. Kameyama received the Out-

standing Paper Awards at the 1984, 1985, 1987 and 1989 IEEE Interna-
tional Symposiums on Multiple-Valued Logic, the Technically Excellent
Award from the Society of Instrument and Control Engineers of Japan in
1986, the Outstanding Transactions Paper Award from the IEICE in 1989,
the Technically Excellent Award from the Robotics Society of Japan in
1990, and the Special Award at the 9th LSI Design of the Year in 2002.
Dr. Kameyama is an IEEE Fellow.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

