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For tissue characterization of atherosclerotic plaque, we have developed a method, namely, the phased tracking method, [H.
Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791] to measure the regional strain (change in wall
thickness) and elasticity of the arterial wall. In addition to the regional elasticity, we are attempting to measure the regional
viscosity for a more precise tissue characterization. Previously, we showed that the viscosity can be obtained by measuring the
frequency dependence of the elastic modulus using remote actuation [H. Hasegawa et al.: Jpn. J. Appl. Phys. 43 (2004) 3197].
However, in this method, we need to apply external actuation to the subject. To simplify the measurement, we instead to
obtain the frequency dependence of the elastic modulus from the change in arterial wall thickness spontaneously caused by the
heartbeat because this change in thickness consists of frequency components up to 20–30Hz. In this paper, the frequency
dependence of the elastic modulus of a silicone rubber tube was investigated by applying frequency analysis to the change in
wall thickness caused by the change in internal pressure simulating the actual arterial blood pressure.
[DOI: 10.1143/JJAP.44.4609]
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1. Introduction

There are significant differences between the elastic
moduli of a normal arterial wall and those affected by
atherosclerosis.1,2) Therefore, evaluation of the elasticity of
the arterial wall is useful for diagnosis of atherosclerosis.3) In
particular, mechanical properties of plaque are important
because the rupture of the plaque may cause acute
myocardial infarction and cerebral infarction.4–6) However,
the mechanical properties, such as elasticity, of plaque itself
cannot be noninvasively measured by previous methods7–9)

on the basis of the measurement of the change in diameter of
the artery caused by a heartbeat.10–14)

For assessment of the regional elasticity of plaque itself,
we have developed a method, namely, the phased tracking
method, for measurement of the small change in thickness of
the arterial wall (less than 100 mm) due to the heartbeat.15–23)

From basic experiments, the accuracy in measurement of the
change in thickness has been found to be less than 1 mm
using the phased tracking method.16,19,20) From the change in
thickness measured by our method, the regional strain and
the elasticity of the arterial wall can be noninvasively
evaluated.22,24)

From the measured elastic property, it should be possible
to discriminate tissues in the atherosclerotic plaque, such as
fibrous tissue and lipids, due to large differences in their
elasticities. However, it is difficult to discriminate some
tissues because of their small difference in elasticity. One of
the additional mechanical properties of tissues which has a
potential to provide useful information on discrimination of
tissues is viscosity.

We showed that the viscosity can be estimated based on
the measurement of the elastic moduli at multiple frequen-
cies by applying external actuation.25,26) To obtain the
regional elastic moduli at multiple frequencies, it is
necessary to generate the change in diameter (=change in
internal pressure) instead of the bending vibration of the
artery. However, it is not easy to stably generate the change
in internal pressure using remote actuation. To overcome

this problem and simplify the measurement procedure,
measurement of the frequency characteristics without ex-
ternal actuation is desired. It is reported that the rapid
increase in blood pressure in the early systole, which is
caused by contraction of the left ventricle, has frequency
components up to 20–30Hz.27) However, there is a large
increase in blood pressure of typically 50mmHg. Due to
such a large increase in blood pressure, the viscoelasticity
estimation is largely influenced by the nonlinearity of the
stress–strain relationship of the wall. To overcome this
problem, we focused on the rapid decrease in blood pressure
in the late systole. This pressure decrease is caused by the
following mechanism: Blood supply is stopped by closure of
the aortic valve. However, blood tends to flow away to the
periphery due to the inertia of blood. Then, blood pressure
decreases. In this stage, the absolute value of the change in
blood pressure is much smaller than that in the early systole,
and the influence of the nonlinearity can be assumed to be
negligible. In this paper, basic experiments using a silicone
rubber tube were conducted to measure the viscosity of a
cylindrical shell by applying frequency analysis to the
change in wall thickness caused by a sophisticated flow
pump that can simulate the change in arterial blood pressure.

2. Principles

2.1 Frequency analysis of change in wall thickness
measured with ultrasound

The change in wall thickness, �hðtÞ, caused by the change
in internal pressure, �pðtÞ, can be measured by the phased
tracking method,15) which uses the phase shift of echoes
reflected by a moving object. For assessment of the
frequency dependence of the elastic modulus of the wall,
frequency analysis was applied to the measured changes in
wall thickness, �hðtÞ, and internal pressure, �pðtÞ, to obtain
their amplitudes, �h0ð f Þ and �p0ð f Þ, at a frequency f .
Figure 1(b) shows the velocity of the carotid arterial wall of
a 30-year-old male for seven heartbeats measured by the
phased tracking method. Figure 1(c) shows the displacement
of the posterior wall obtained by integrating the measured
velocity. Figure 1(d) shows the power spectra of the
velocities during periods (A) and (B) obtained by applying�E-mail address: hasegawa@us.ecei.tohoku.ac.jp
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the Fourier transform. Plots and vertical bars show means
and standard deviations for seven heartbeats, respectively.
Furthermore, Fig. 1(e) shows the reproducibility function.15)

If the reproducibility function is one at a certain frequency,
f , the amplitude and phase of the frequency component at f
are identical for seven heartbeats. As shown in Fig. 1(e), the
rapid motion in the early systole, which is indicated as
period (A) in Fig. 1(b), was measured with respect to
frequency components up to 20Hz with good reproducibil-
ity. However, there is a large increase in internal pressure of
typically 50mmHg. For the subject shown in Fig. 1, the
blood pressure was increased from 60mmHg to 110mmHg
during period (A) of about 100ms. To obtain the frequency
spectrum from 5Hz to 20Hz, the required length of the time
window for the frequency analysis is at least 200ms, which
corresponds to one wavelength of the 5Hz components.
Therefore, the rapid increase in blood pressure from

60mmHg to 110mmHg for 100ms is included in the
analyzing period. It was reported that the stress-strain
relationship of the arterial wall is nonlinear.28) This fact
means that the viscoelasticity of the arterial wall itself is
modified by the change in internal pressure corresponding to
the stress acting on the wall. The viscoelasticity of the wall
is expressed by the complex elastic modulus. The real and
imaginary parts correspond to the static elastic modulus, Es,
and the viscous term, 2� f�, respectively. No data on the
pressure dependence of the arterial-wall viscosity, �, has yet
been presented in the literature. The pressure dependence of
the static elastic modulus, Es, of the carotid artery was
reported to be from 0.4MPa to 1.1MPa (from 60mmHg to
110mmHg).28) The viscosity of the carotid arterial wall is
reported to be about 5 kPa�s,28) and the viscous component,
2� f�, changes from 0 to 0.6MPa (from direct current to
20Hz). The change in static elastic modulus due to the
change in blood pressure is comparable to the change in the
viscous component with respect to frequency. Therefore,
from the measured elastic modulus, which corresponds to
the absolute value of the complex elastic modulus, it is
difficult to distinguish the frequency dependence from the
pressure (or stress) dependence during period (A).

We can find another pulsive velocity in the late systole
shown by period (B) in Fig. 1(b). From the wall displace-
ment shown in Fig. 1(c), the decrease in blood pressure is
expected to be from 110mmHg to 100mmHg during period
(B). This change in internal pressure is much smaller than
that in the early systole, and the change in elasticity was
reported to be from 1.1MPa to 1.0MPa.28) Therefore, it can
be assumed that only the frequency dependence of the elastic
modulus can be obtained in this timing. As shown in
Fig. 1(e), it was found that frequency components up to at
least 10Hz can be measured with good reproducibility. From
these results, the pulsive velocity of the wall in the late
systole has a potential for measurement of the frequency
dependence of the elastic modulus.

In this study, a change in internal pressure similar to that
at the human carotid artery was generated by a sophisticated
flow pump. The resultant change in internal pressure and the
wall thickness of a silicone rubber tube were measured with
a pressure transducer and ultrasound. The frequency depend-
ence of the elastic modulus was obtained by applying
frequency analysis to the vibration corresponding to that of
the arterial wall in the late systole.

2.2 Elastic modulus obtained by measured change in wall
thickness

From the measured change in wall thickness, the circum-
ferential elastic modulus is obtained as follows:22) Under in
vivo conditions, the artery is strongly restricted in the axial
direction. Therefore, a two-dimensional stress-strain rela-
tionship can be assumed.

Under such conditions, the radial incremental strain,
�"rðtÞ, which is defined by dividing the change in thickness,
�hðtÞ, by the original thickness of the wall, h0, at the end
diastole, is expressed by the radial and circumferential
incremental stresses, ��rðtÞ and ���ðtÞ, as follows:

�"rðtÞ ¼
�hðtÞ
h0
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Fig. 1. Vibration of human carotid arterial wall caused by heartbeat.

(a) Electrocardiogram. (b) Velocities of wall for seven heartbeats

measured by phased tracking method.15) (c) Wall displacements obtained

by integrating velocities. (d) Power spectra of velocities during periods

(A) and (B). (e) Reproducibility functions.
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¼
��rðtÞ
Er

� �
���ðtÞ
E�

; ð2:1Þ

where Er, E�, and � are the radial and circumferential elastic
moduli and Poisson’s ratio, respectively.

From the change in internal pressure, �pðtÞ, the circum-
ferential and radial incremental stresses, ��rðtÞ and ���ðtÞ,
are respectively expressed as follows:

���ðtÞ ¼
r0

h0
�pðtÞ; ð2:2Þ

��rðtÞ ¼ �
1

2
�pðtÞ; ð2:3Þ

where r0 is the inner radius at the end diastole.
By substituting eqs. (2.2) and (2.3) into eq. (2.1), eq. (2.1)

is rewritten as follows:

�"rðtÞ ¼ �
1

2

�pðtÞ
Er

� �
r0

h0

�pðtÞ
E�

: ð2:4Þ

By assuming that the arterial wall is incompressible
(� � 0:5) and elastically isotropic (Er � E�),

22,29) the elastic
modulus, Eh

� , obtained from the change in wall thickness is
defined as follows:

Eh
� ¼ �

r0

h0
þ

1

2

Er

E�

� �
�pðtÞ
��"rðtÞ

�
1

2

r0

h0
þ 1

� �
�pðtÞ

�
�hðtÞ
h0

: ð2:5Þ

When we describe a frequency component of changes in
wall thickness and internal pressure at a frequency f by
�h0ð f Þ � ej½2� ft� ð f Þ� and �p0ð f Þ � ej2� ft, eq. (2.5) is rewrit-
ten as the complex elastic modulus as follows:

Eh
� ð f Þ ¼

1

2

r0

h0
þ 1

� �
�p0ð f Þ
�h0ð f Þ

h0

� ej ð f Þ; ð2:6Þ

where �h0ð f Þ and �p0ð f Þ are the amplitude of the change in
wall thickness and that of the change in internal pressure,
respectively, and  ð f Þ is the phase delay of the change in
wall thickness from the change in internal pressure at
frequency f .

The imaginary part of the complex elastic modulus, which
depends on the viscosity, has a frequency dependence.
Therefore, both the absolute value, jEh

� ð f Þj, and the phase,
 ð f Þ, of the complex elastic modulus have frequency
dependences. However, particularly under an in vivo con-
dition, it is difficult to measure the change in internal
pressure, �pðtÞ, at the exact same point where the change in
wall thickness, �hðtÞ, was measured. Therefore, the phase,
 ð f Þ, of the complex elastic modulus cannot be estimated. In
this paper, the absolute value, jEh

� ð f Þj, of the complex elastic
modulus defined by eq. (2.6) is obtained from �h0ð f Þ and
�p0ð f Þ, which are obtained at each frequency f .

2.3 Viscoelasticity estimation using the Voigt model
In our previous study,25) it was found that the elastic

modulus, jEh
� ð f Þj, of the arterial wall increases with

frequency f . The reason for this is explained as follows.

When we assume the Voigt model, which is illustrated in
Fig. 2, as a viscoelastic model of the wall, the relationship
between the stress, ��ðtÞ, and the strain, �"ðtÞ, is expressed
as follows:

��ðtÞ ¼ Es ��"ðtÞ þ � �
d

dt
�"ðtÞ; ð2:7Þ

where Es and � are the static elastic modulus and the
viscosity constant, respectively, and Es and � are assumed
not to be changed by frequency.

By defining the frequency components at a frequency
f by ��ðt; f Þ ¼ ��0ð f Þ � ej2� ft and �"ðt; f Þ ¼ �"0ð f Þ�
ej½2� ft� ð f Þ�, eq. (2.7) can be rewritten as

��ðt; f Þ ¼ Es ��"ðt; f Þ þ j2� f� ��"ðt; f Þ; ð2:8Þ

where ��0ð f Þ and �"0ð f Þ are the amplitudes of the stress
and strain, respectively.

From eq. (2.8), the complex elastic modulus, EVoigtð f Þ ¼
jEVoigtð f Þjej ð f Þ ¼ ��ðt; f Þ=�"ðt; f Þ, is given by

jEVoigtð f Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
s þ ð2� f�Þ2

q
; ð2:9Þ

 ð f Þ ¼ tan�1 2� f�

Es

� �
: ð2:10Þ

In this paper, the viscosity constant, �, and the static elastic
modulus, Es, were determined so as to minimize the
difference between the measured jEh

� ð f Þj and the model-
based jEVoigtð f Þj.

3. Experimental Setup

3.1 Experimental system for basic experiments
The experimental system for basic experiments using a

silicone rubber tube is illustrated in Fig. 3. In this system,
the change in pressure inside the silicone rubber tube was
generated by a sophisticated flow pump (Shelly Medical
Systems, CompuFlow1000). The change in wall thickness
due to the resulting change in internal pressure was
measured with ultrasound, and the internal pressure was
also measured by a pressure transducer (NEC, 9E02-P16)
placed inside the tube. From measured changes in the wall
thickness and internal pressure, the elastic modulus was
obtained using eq. (2.6).

viscosity

modulus

Es

Es: static elastic

∆σ(t)

∆ε(t)

η: coefficient of

η

Fig. 2. Voigt model.
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3.2 Measurement system
An ultrasonic pulse (center frequency: 7.5MHz) was

transmitted and received by the ultrasonic probe of a
standard ultrasonic diagnostic apparatus (Toshiba SSH-
140A). The received signal was amplified and demodulated.
The resultant in-phase and quadrature signals were simulta-
neously A/D converted by a 12-bit A/D converter at a
sampling frequency of 10MHz. The measured digital signals
were transfered to a computer, and the change in wall
thickness was obtained by applying the phased tracking
method15) to these digital signals.

4. Basic Experiments Using a Silicone Rubber Tube

Figure 4 shows the B-mode image of a silicone rubber
tube. The M-mode image was obtained along an ultrasonic
beam, as shown in Fig. 5(a). Figure 5(c) shows the measured
internal pressure. From Fig. 5(c), it was found that the
change in internal pressure, which is similar to that in the
human artery, was generated by the flow pump. By setting
two points, A and B, along the ultrasonic beam at a time
t ¼ 0 in the M-mode image, the velocities, vAðtÞ and vBðtÞ,
of these points were obtained by the phased tracking
method, as shown in Figs. 5(e) and 5(f), respectively. The
change in thickness of the posterior wall was obtained by
integrating the difference between vAðtÞ and vBðtÞ, as shown
in Fig. 5(h).

Then, the amplitude, �h0ð f Þ, of the measured change in
wall thickness at a frequency f was obtained by applying the
Fourier transform to the rate of the change in wall thickness,
� _hhðtÞ ¼ vBðtÞ � vAðtÞ, shown in Fig. 5(g). A Hanning
window with a length of 200ms was applied to the period
shown in Fig. 5(g). Together with the change in wall
thickness, the amplitude, �p0ð f Þ, of the measured change in
internal pressure shown in Fig. 5(c) was obtained from the
‘‘rate’’ of the change in internal pressure � _ppðtÞ. The direct
current component of the change in internal pressure is much
larger than the alternating current components, and the
Hanning window with the length of 200ms has a main lobe
with a half bandwidth of �5Hz in the frequency domain.
Therefore, the large direct current component affects the
estimated frequency spectra at the other frequency. To
remove this direct current component, the change in internal

pressure, �pðtÞ, was differentiated with respect to time
before applying the Fourier transform. From the amplitudes,
� _hh0ð f Þ and � _pp0ð f Þ, of � _hhðtÞ and � _ppðtÞ estimated at each
frequency f , �h0ð f Þ and �p0ð f Þ were obtained as follows:

�h0ð f Þ ¼
� _hh0ð f Þ
2� f

; ð4:1Þ

�p0ð f Þ ¼
� _pp0ð f Þ
2� f

: ð4:2Þ

Figure 6(a) shows the power spectra of rates of changes in
wall thickness, � _hhðtÞ, and internal pressure, � _ppðtÞ. Plots and
vertical bars show means and standard deviations for eleven
beats, respectively. Figure 6(b) shows the reproducibility
functions. In Fig. 6(b), it was found that both changes in
wall thickness and internal pressure were measured with
good reproducibilities up to 30Hz. The elastic modulus,
jEh
� ð f Þj, was obtained from �h0ð f Þ and �p0ð f Þ for eleven

beats, as shown in Fig. 7. In Fig. 7, the frequency character-
istics of the elastic modulus were measured three times for
the same silicone rubber tube (eleven beats for each
measurement). Plots and vertical bars show means and
standard deviations of the elastic moduli measured for
eleven beats, respectively. In the frequency range under
10Hz, where the reproducibility function is almost one, it
was found that the elastic modulus, Eh

� ð f Þ, was measured
with sufficient reproducibility and Eh

� ð f Þ increased with
frequency f . Such frequency characteristics can be ex-
plained by the Voigt model. Therefore, from the frequency
characteristics under 10Hz, the viscosity constant, �, and the
static elastic modulus, Es, were determined by applying the
Voigt model. In Fig. 7, the estimated Voigt models are
shown by solid curves, and the estimated parameters, � and
Es, for each measurement were the following: first measure-
ment, 7.2 kPa�s and 2.2MPa; second, 6.8 kPa�s and 2.1MPa;
and third, 7.6 kPa�s and 2.1MPa. These values were in good
agreement with � ¼ 6:46 kPa�s and Es ¼ 2:26MPa obtained
by the different mechanical test (Shimadzu, Tritech2000) in
which the amplitude and phase of the strain generated by the
applied sinusoidal stress was measured for a string extracted
from the silicone rubber tube. In this mechanical testing, Es

was not obtained from the static experiment, and a sinusoidal
stress at a frequency of 5Hz, which corresponds to the center
of the frequency range for the estimation of Es and � in the

specimen

ultrasonic
probe

measurement
system

pressure sensor

flow pump

(9E02–P16)

(CompuFlow1000)

Fig. 3. Experimental setup.

anterior
wall

lumen

1 cm

1 cm

Fig. 4. B-mode image of silicone rubber tube.

4612 Jpn. J. Appl. Phys., Vol. 44, No. 6B (2005) H. HASEGAWA and H. KANAI



mmHg/s

mm/s

mm/s

mµ

0.6

mm/s

–600

3.
75

 m
m

mmHg

80

(b)

(c)

(d)

(e)

(f)

(g)

(h)

0
time [s]

40
0

0

600

–0.6
0

0.6

0

–0.6
0.2

0
–0.2

20

0

–20
1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

B

Hanning window

Hanning window

(a)

Fig. 5. (a) M-mode image of silicone rubber tube. (b) Drive signal of flow pump. (c) Internal pressure. (d) Rate of internal pressure.

(e) Velocity at A. (f) Velocity at B. (g) Rate of change in thickness of anterior wall. (h) Change in wall thickness.

ra
te

 o
f c

ha
ng

e 
in

th
ic

kn
es

s 
[d

B
m

m
/s

]

ra
te

 o
f p

re
ss

ur
e

ch
an

ge
 [d

B
m

m
H

g/
s]

0 10 20 30
frequency [Hz]

re
pr

od
uc

ib
ili

ty

0

0.2

0.4

0.6

0.8

1

0

–100

–50

50

pressure

change in thickness

(b)

(a)

change in thickness pressure

Fig. 6. (a) Power spectra of rates of changes in internal pressure and wall

thickness. (b) Reproducibility functions.

1st measurement
2nd measurement

3rd measurement

2.4

2.3

2.2

2.1

2.0

1.9

el
as

tic
 m

od
ul

us
 [M

P
a]

0 2 4 6 8 10 12
frequency [Hz]

Fig. 7. Elastic moduli at each frequency measured for three trials. Vertical

bars show standard deviations of elastic moduli measured for eleven

beats.

Jpn. J. Appl. Phys., Vol. 44, No. 6B (2005) H. HASEGAWA and H. KANAI 4613



ultrasonic measurements, was applied. Therefore, Es ob-
tained from the ultrasonic measurements and that from the
mechanical test was slightly different. The string was
produced by cutting the tube along the axial direction, and
the sinusoidal stress was also applied along the axial
direction by assuming isotropy.

From these results, the proposed method was shown to
have a potential for estimating the viscosity of a cylindrical
shell by applying frequency analysis to the change in wall
thickness caused by the change in internal pressure.

5. Conclusions

In this study, we aimed to assess the viscosity of the
arterial wall by frequency analysis of the change in wall
thickness caused by the heartbeat in the late systole. Basic
experiments using a silicone rubber tube were conducted to
validate this approach. The change in internal pressure,
which is similar to that at the human artery, was generated
by a sophisticated flow pump, and the frequency analysis
was applied to the measured changes in wall thickness and
internal pressure. In the frequency range up to 10Hz, in
which the measured waveform had high reproducibility, the
elastic modulus increased with frequency, and the viscosity
constant was estimated from such measured frequency
characteristics. These results show the potential of the
proposed method for assessment of the viscosity of the
arterial wall with ultrasound.
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