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Propagation of Spontaneously Actuated
Pulsive Vibration in Human Heart Wall and

In Vivo Viscoelasticity Estimation
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Abstract—Though myocardial viscoelasticity is essential
in the evaluation of heart diastolic properties, it has never
been noninvasively measured in vivo. By the ultrasonic
measurement of the myocardial motion, we have already
found that some pulsive waves are spontaneously excited
by aortic-valve closure (AVC) at end-systole (T0). These
waves may serve as an ideal source of the intrinsic heart
sound caused by AVC. In this study, using a sparse sector
scan, in which the beam directions are restricted to about
16, the pulsive waves were measured almost simultaneously
at about 160 points set along the heart wall at a sufficiently
high frame rate. The consecutive spatial phase distribu-
tions, obtained by the Fourier transform of the measured
waves, clearly revealed wave propagation along the heart
wall for the first time. The propagation time of the wave
along the heart wall is very small (namely, several millisec-
onds) and cannot be measured by conventional equipment.
Based on this phenomenon, we developed a means to mea-
sure the myocardial viscoelasticity in vivo. In this measure-
ment, the phase velocity of the wave is determined for each
frequency component. By comparing the dispersion of the
phase velocity with the theoretical one of the Lamb wave
(the plate flexural wave), which propagates along the vis-
coelastic plate (heart wall) immersed in blood, the instan-
taneous viscoelasticity is determined noninvasively. This is
the first report of such noninvasive determination. In in
vivo experiments applied to five healthy subjects, propaga-
tion of the pulsive wave was clearly visible in all subjects.
For the 60-Hz component, the typical propagation speed
rapidly decreased from 5 m/s just before the time of AVC
(t = T0 � 8 ms) to 3 m/s at t = T0 + 10 ms. In the ex-
periments, it was possible to determine the viscosity more
precisely than the elasticity. The typical value of elastic-
ity was about 24–30 kPa and did not change around the
time of AVC. The typical transient values of viscosity de-
creased rapidly from 400 Pa�s at t = T0�8 ms to 70 Pa�s at
t = T0 +10 ms. The measured shear elasticity and viscosity
in this study are comparable to those obtained for the hu-
man tissues using audio frequency in in vitro experiments
reported in the literature.

I. Introduction

For tissue characterization, shear waves are artificially
actuated in tissues or phantoms to determine their
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propagation speed and viscoelasticity [1]–[7]. However,
spontaneously actuated vibrations propagating in the
heart wall, which differ from electrically excited waves [8]–
[10], have not been recognized at all. This is understand-
able given that the actual wave that propagates along the
heart wall is minute (namely, only several tenths of a mil-
limeter) and that the delay time from the base to the apex
of the heart is very small, only several milliseconds.

Conventional ultrasonography, computer tomography
(CT) [11], and magnetic resonant imaging (MRI) [12], [13]
enable clinical visualization of cross-sectional images of the
human heart, but their imaging is restricted to large mo-
tion (> 1 mm) and low-frequency components (< 30 Hz).
Analysis of the motion-mode (M-mode) image [14], [15] is
a candidate for transthoracic measurement of the minute
and rapid heart-wall motion. However, the detectable am-
plitude is greater than the wavelength, which is equal to
411 µm for ultrasound with a frequency of 3.75 MHz nor-
mally applied to the heart in the clinical setting. Even
when a higher frequency of 10 MHz is used, the wavelength
and the detectable amplitude are still 154 µm.

The tissue Doppler imaging (TDI) technique [16]–[21]—
modified ultrasound two-dimensional (2-D) color flow
mapping—enables determination of motion distribution of
the myocardium in real time. Even in current measure-
ment, however, the sampling frequency of the motion of
the heart wall is low (at most 200 Hz [21]), that is, the
sampling period is 5 ms, which is too long to detect the
propagation time of the wave. Moreover, frequency anal-
ysis such as the Fourier transform has not been applied
to the measured motion signal to detect the phase compo-
nents.

To measure the original vibrations of the heart sounds
(which are audible by stethoscope) using ultrasound from
the chest wall, we have already developed a method to
transcutaneously measure the heart-wall vibrations as a
waveform at one point or multiple points preset along an
ultrasonic beam in the heart wall [22], [23]. We found that
there is a steep dip in the pulse that occurs exactly at
the time of AVC (T0) [24]. This notch also has been mea-
sured by the TDI approach with a commercial scanner to
determine the time of AVC (T0) [25].

Moreover, we have developed a method to measure the
vibrations simultaneously at about 160 points preset in the
heart wall [24]. In [24], it was revealed that there is a short
delay of several milliseconds in the excitation of the steep
dip of the notch pulse from the base to the apex of the
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heart along the interventricular septum (IVS). However,
no propagation phenomenon of the notch pulse along the
heart wall was recognized in the previous report [24].

The use of the sparse sector scan has allowed us to si-
multaneously measure heart-wall motion at 160 points at
a sufficiently high frame rate to measure the propagation
of the notch pulse along the IVS. Therefore, from consec-
utively obtained spatial distributions of the phase value of
the vibration wave, the present study reveals for the first
time that the steep dip of the notch pulse, excited exactly
at the time of AVC (T0), propagates along the IVS from the
base to the apex, and its phase velocity is determined. By
analyzing various frequency components up to 90 Hz, the
propagation speed shows the frequency dispersion. This
dispersion characteristic agrees with the theoretical one of
the Lamb wave that propagates in the viscoelastic plate
immersed in fluid. By introducing the single Voigt model
into the equation of the Lamb wave and fitting the derived
theoretical phase velocity to the measured dispersion, the
myocardial viscoelastic properties were determined nonin-
vasively for the first time. The shear elastic and viscosity
values in the in vivo experiments are comparable to those
already obtained for human soft tissue in in vitro exper-
iments for a similar audible frequency range as reported
in the literature. This method offers potential for in vivo
myocardial tissue characterization of diastolic properties,
which cannot be obtained by conventional echocardiogra-
phy, TDI, CT, or MRI.

II. In Vivo Experimental Results for Examining

Potential Mathematical Model

A. Vibrations in and on the Heart Wall

Fig. 1(a) shows a typical cross-sectional image (the
transthoracic parasternal longitudinal-axis view) of a heart
obtained by conventional echocardiography for a healthy
young subject (subject A, 21 years old). The upper-right
inset shows the scanning range of the ultrasonic beams
in this imaging. From the conventional motion picture of
Fig. 1(a), in our experience the human eye can detect mo-
tion only larger than 1 mm and slower than 1/30 second.
The recognized slow motion also includes the lateral mo-
tion from the base to the apex during systole, the direction
of which is perpendicular to the ultrasonic beam. However,
for a short period of about 70 ms, it can be assumed that
each point preset in the heart wall stays in the same focal
area of each ultrasonic beam. This assumption was used
in this study.

We previously developed an ultrasound-based transtho-
racic method (phased tracking method) to directly mea-
sure the heart wall vibrations [22], [23], [26]. Radio fre-
quency (RF) pulses are transmitted from an ultrasonic
transducer at a pulse repetition interval ∆T , and the re-
flected ultrasonic wave is received by the same transducer
and quadrature demodulated. The time-domain complex
cross-correlation technique is applied to determine the
phase shift between the consecutively obtained resultant

Fig. 1. (a) A cross-sectional image measured by conventional echocar-
diography in a healthy young male (subject A, 21 years old). The
upper-right inset shows the scanning range of the ultrasonic beams
in this imaging. The arrows show the directions of the 16 ultra-
sonic beams used to measure the vibrations at about 160 points in
the heart wall. Supplemental animation shows the conventional

B-mode image in the parasternal view obtained by a conventional
ultrasonic diagnosis equipment for subject A. The cross-sectional im-
age just before the time of AVC (T0) from the animation is shown
here. (b) In vivo measurement results for the healthy man in (a) at
two points set along the 13th ultrasonic beam. Each waveform for
six consecutive cardiac cycles is overlaid. The time of AVC is de-
noted by T0. Exactly at this time (T0), a steep dip in the pulsive
wave is observed with sufficient reproducibility. The audible vibra-
tion signal was detected for the point preset at the LV side of

the IVS along the 13th ultrasonic beam using the method developed
for subject A. The audible heart sound was detected on the

chest surface using the microphone for subject A. The audible vibra-
tion signal and the heart sound were simultaneously measured. LV,
left ventricle; LA, left atrium; RV, right ventricle; RA, right atrium;
US probe, ultrasonic probe; IVS, intraventricular septum; Ao, aorta;
ECG, electrocardiogram; PCG, phonocardiogram (heart sound).
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signals. The phase shift corresponds to the displacement
∆x(t) during the short-period ∆T and the average velocity
v(t) = ∆x(t)/∆T during that period. By accumulating the
instantaneous displacement ∆x(t), the large motion x(t)
due to the heartbeat is tracked over one heartbeat; and at
the same time, the minute vibration v(t) superimposed on
the large motion is obtained as a waveform. For this mea-
surement, the sampling frequency (the time resolution) is
increased from the 30 Hz in conventional echocardiography
to 450 Hz to avoid aliasing. To realize this, the number of
directions in which the ultrasonic beams are transmitted
is greatly decreased from 240 to 16 as shown by the arrows
in Fig. 1(a).

By applying the above phase tracking method to sub-
ject A in Fig. 1(a), Fig. 1(b) shows a typical example of the
vibrations on both sides—the right ventricular (RV) side
and left ventricular (LV) side—of the IVS. These velocity
signals in Fig. 1(b) are audible, similar to the phonocardio-
gram (PCG) in Fig. 1(a) detected by a microphone on the
chest wall. The audible vibration on the LV side along the
the 13th ultrasonic beam and the PCG is available

online. In Fig. 1(b), six consecutive heartbeats are overlaid.
Because it is well-known that there are some fluctuations
in the duration of diastole even among consecutive cardiac
cycles, there are some differences in the six waveforms in
the right-hand side of Fig. 1(b). However, during systole
and the isovolumic relaxation (IR) period, even the rapid
components of the measured vibrations have high repro-
ducibility. As shown by these waves, some discriminative
pulsive waves are observed, especially at end systole. Just
before the time of AVC (T0), a slow upward pulse con-
tinues for about 30 ms. A steep notch pulse then occurs
exactly at T0, which coincides with the beginning of the
IR period [27].

B. Spatial Distribution of the Heart Wall Vibrations

Using a sparse sector scan in 16 directions, multiple
points were preset at 770-µm intervals in the heart wall
along each of 16 ultrasonic beams, and the vibrations at
about 160 points were simultaneously measured as wave-
forms with a sampling frequency of 450 Hz by the phased
tracking method [24]. Though, in a strict sense, a time
lag of {(k − 1)/16} × ∆T is hidden in the sampling time
of the vibrations in the direction of the k-th scan line
(k = 1, · · · , 16), this time lag can be corrected [24]. Fig. 2
shows the simultaneously obtained heart-wall vibrations
for all points, but the duration is restricted to the short
period from T0 −35 ms to T0 +35 ms. The central vertical
axis in each wavelet shows the time of AVC (T0). As shown
by the wavelets near the root of the aortic valve, a steep
notch pulse occurs at T0. The occurrence of this notch is
delayed gradually from the root of the aortic valve to the
apex by several milliseconds. To the contrary, a steep up-
ward pulse is delayed gradually from the root of the aortic
valve to the base.

In the present study, we roughly determined the time of
AVC (T0) by using the heart sound and conventional mo-

Fig. 2. Spatial distribution of 160 measured wavelets in the IVS at
end systole along the 5th to 16th ultrasonic beams in Fig. 1. The
subject is the same healthy, young male (subject A) as in Fig. 1,
but the measurement was on a different day. These wavelets were
simultaneously obtained and shown for the short period between
T0 − 35 ms and T0 + 35 ms. The time of AVC (T0) is determined by
the waveform at the LV side along the 9th ultrasonic beam. The two
waves A and B correspond to velocity waveforms on the RV side and
LV side of the IVS along the 13th ultrasonic beam in Fig. 1(b).

tion picture , but the time resolution was not so high.
In [25], the time of AVC (T0) was determined by the notch
on the septal radial myocardial velocity profile in a TDI
study, and the correlation between the time of AVC (T0)
determined above and the one measured from the hemo-
dynamic data was confirmed. Thus, we define the exact
time of AVC (T0) as the time of the dip observed in the
velocity signal at a point close to the root of the aortic
valve. In Fig. 2, this point is at the LV side along the 9th
beam.

The displacement of the myocardium due to the steep
dip around the time of AVC (T0) is roughly estimated as
−120 µm because the waveform v(t) is approximated by
a downward isosceles triangle, the maximum amplitude of
the dip is about 30 mm/s, and the duration is about 8 ms.
This displacement is far smaller than both the wavelength
and the duration of the ultrasound used. Thus, it can be
assumed that the preset point stays in the same place in
the myocardium during this short period of 70 ms around
the time of AVC (T0).

Because the wavelength of the detected pulsive wave
is about 100 mm for a 30-Hz component and is compa-
rable to the size of the whole heart, its propagation phe-
nomenon cannot be clearly visualized by showing the spa-
tial distribution of the instantaneous amplitude of each
resultant pulsive wave in Fig. 2. Instead, the phase value
varies from 0 to 360 degrees within one wavelength. There-
fore, using the method in [24], 2-D spatial distribution of
the instantaneous phase values of the measured wave is
shown in Fig. 3. For this imaging, the short-time Fourier
transform is applied to the pulsive wave at each point in
Fig. 2 after the pulsive wave is multiplied by the Hanning
window with a short length of 35 ms. The phase value
is detected for each frequency component from 10 Hz to
90 Hz, then color coded based on the upper-right circu-
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Fig. 3. Spatial distributions of color-coded phase values for 60-Hz
component of the wavelets in Fig. 2. The spatial distributions are
shown consecutively from T0 − 8 ms to T0 + 10 ms around the time
of AVC (T0). White lines show the instantaneous phase θ(x; t) used in
(1) of the pulsive wave at the LV surface of the IVS, and blue lines
show the estimated phase θ̂(x; t) in (1). These phase values were
interpolated between the adjacent ultrasonic beams and are shown
here. The supplemental animation shows the distributions of the

phase values for 60-Hz component in the parasternal view for subject
A. Each figure around the time of AVC (T0) is shown here.

lar figure in both panels of Fig. 3. In Fig. 3, the phase
distributions are shown for a 60-Hz frequency component
along the IVS around the time of AVC (T0). For example,
at a time t = T0 + 2 ms in Fig. 3, the phase values vary
from cyan (+180 degrees) near the root of the aortic valve,
through green (+90 degrees), and to red (0 degree) at the
apex. As shown in the upper-right circular figures, the cyan
corresponds to the downward pulse that exists exactly at
the center position of the multiplied Hanning window. The
green corresponds to a 90-degree delay for the downward
pulse observed in the analyzed window, and the red corre-
sponds to a 180-degree delay for the same downward pulse.
These facts show the possibility that there is a time delay
in the spatial distribution and that this time delay gradu-
ally increases from 0 ms near the root of the aortic valve
to +9 ms (= +180◦/(360◦ × f0)) near the apex.

C. Propagation Phenomenon of Pulsive Wave Along
Heart Wall

Based on the imaging method in [24], Fig. 2 and one of
the cross-sectional images in Fig. 3 are obtained. It can be

seen from them that there is a delay in the generated time
of the pulsive wave. However, it should be confirmed that
the steep pulsive wave does propagate from the base near
the root of the aortic valve to the apex. For this purpose,
from these consecutively obtained cross-sectional 2-D im-
ages in Fig. 3, a motion picture is presented. From the
consecutiveness observed in Fig. 3 around the time of AVC
(T0), it can be seen that a few pulsive waves are radiated
from the root of the aortic valve and propagate along the
IVS. The delay due to the propagation of the pulse from
the root to the apex is several milliseconds, which has not
been recognized at all by any other clinical technique.

The white lines in Fig. 3 show the instantaneous phase
θ(x; t) of the pulsive wave at the LV surface of the IVS.
The phase value is spatially interpolated between each con-
secutive two points along the adjacent ultrasonic beams.
Because there is phase discontinuity between the IVS and
the base at the root of the aortic valve, the phase is not
connected between the 8th and 9th beams. The instan-
taneous phase θ(x; t) spatially varies almost linearly from
the root to the apex.

Results of the same measurement applied to four other
healthy young male subjects (subjects B-E) can be seen in
the motion pictures , , , and of the distribution
of the phase values for 60-Hz component. Propagation of
the pulsive waves is clearly observed for all these subjects.

D. Propagation Phenomenon of Longitudinal Component
Along the Base-Apex Direction

Until now in the present study, the shear component
with motion along the ultrasonic beam propagating along
IVS has been shown in the parasternal view as in Figs. 2,
3, and in motion pictures , , , , and . How-
ever, by attaching the ultrasonic probe to the apex (apical
approach) in in vivo experiments, the longitudinal compo-
nent propagating along the IVS is shown as follows. Fig. 4
shows a conventional B-mode image of the IVS from the
apex just before the time of AVC (T0) for the same sub-
ject A as in Figs. 1, 2, and 3. The conventional motion
picture is available online. Because it is necessary to
detect a deeper area, the direction in which the ultrasonic
beams are transmitted is limited to nine as shown by the
arrows in Fig. 4. By applying the same procedure as in
Fig. 3, Fig. 5 shows the consecutive spatial distributions
of the instantaneous phases for the 60-Hz component of
the detected vibrations at all points along the nine beams.
Their motion picture reveals that a few pulses also are
excited around the time of AVC (T0) and propagate along
the IVS from the root of the aortic valve to the apex.

III. Estimation of Viscoelasticity Using Lamb

Wave and Voigt Models

Based on these results, in this section, the principle of
determination of the phase velocity and modeling of the
pulsive wave are proposed to estimate the myocardial vis-
coelasticity.
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Fig. 4. Cross-sectional image in the apical view exactly at the time
of AVC (t = T0) measured by a conventional ultrasonic diagnosis
system for the same subject A as in Figs. 1, 2, and 3. Nine ultra-
sonic beams were used to measure the vibrations at points preset in
the IVS for Fig. 5. The blue lines show the directions of the nine
ultrasonic beams. The supplemental animation shows the con-

ventional B-mode image in the apical approach obtained by a con-
ventional ultrasonic diagnosis equipment for subject A. This figure
shows the cross-sectional image just at the time of AVC (T0).

A. Determination of Instantaneous Phase Velocity

To determine the instantaneous phase velocity of the
pulsive wave, if the straight line with a constant gradi-
ent k [rad/m] is spatially fit to the instantaneous spatial
distribution of the measured phase in the region on the
left-hand side in each cross-sectional image in Fig. 3, the
instantaneous phase velocity for the frequency component
f0 is determined by 2πf0/k. However, because there is ini-
tially some spatial distribution of the phase that is inde-
pendent of the propagation, the wavelength and thus the
wave number k do not correspond to the actual phase ve-
locity.

Therefore, in this study, based on the definition of the
phase velocity, the distance ∆x between two consecutively
obtained phase distributions is determined. For this, the
phase distribution θ(x; t) at a time t is compared with the
shifted phase distribution θ(x + ∆x; t − ∆T ) obtained at
a time t − ∆T . In actual calculation, a complex exponen-
tial function is introduced so that no special unwrapping
procedure is necessary for the phase jump between −π
and +π. The root γ(∆x;ω) of the averaged squared differ-
ence between the two exponential functions of θ(x; t) and
θ(x+∆x; t−∆T ) for the angular frequency ω is defined by:

γ(∆x;ω) =√√√√√√
∑
x

|exp{jθ(x; t)} − exp{jθ(x + ∆x; t − ∆T )}|2

∑
x

|exp{jθ(x; t)}|2
. (1)

The optimum distance ∆̂x is determined so that the
root γ (∆x;ω) is minimized. The phase velocity cphase

Fig. 5. For the data in Fig. 4, the spatial distributions in the apical
view of color-coded phase values for the 60-Hz component of the
measured wavelets consecutively from T0 −8 ms to T0 +8 ms around
the time of AVC (T0). The blue line in the left-hand side of each figure
shows the instantaneous phase θ(x; t) along the 4th ultrasonic beam.
The phase jump is not unwrapped. The supplemental animation

shows the distribution of the phase values for 60-Hz component in
the apical view for subject A. Each figure around the time of AVC
(T0) is shown here.

[m/s] then is obtained for each angular frequency ω by
cphase(ω) = ∆̂x/∆T , where ∆T = 1.96 ms for the experi-
ment.

B. Vibration Modeling

Regarding the phenomenon of the wave propagation
along the viscoelastic plate with thickness 2h, it is well-
known that there are three kinds of plate wave [28]–[31],
that is: the shear horizontal (SH)-wave, the Lamb wave
with symmetric mode (shear vertical (SV) wave with ex-
tensional vibration), and the Lamb wave with asymmetric
mode (SV-wave with flexural vibration as illustrated in
Fig. 6), in which symmetric and asymmetric refer to the
central plane (y = 0 in Fig. 6) of the plate. In the paraster-
nal longitudinal-axis view of Fig. 3, the direction (−y) of
each ultrasonic beam is almost perpendicular to the IVS,
and the detected motion is along each beam (y-direction
in Fig. 6). As shown in Fig. 3 and the motion picture ,
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Fig. 6. Lamb wave with asymmetric mode of plate waves in the
viscoelastic plate with thickness 2h. The SV-wave component (y-
displacement) and longitudinal component (x-displacement) are cou-
pled; the Lamb wave then propagates along the x-direction. Although
a slightly higher order mode is illustrated, the lowest mode is prob-
ably dominant in actual vibration in the IVS.

the pulsive wave propagates along the IVS (x-direction).
As shown in the spatial distribution of Fig. 2, the vibra-
tions at the RV side and those at the LV side are almost
parallel (asymmetric). The wavelength λ is about 100 mm
for the 30-Hz component and 40–65 mm for the 90-Hz
component. The thickness 2h of the IVS is about 10 mm
in healthy adults. Thus, the thickness is sufficiently thin.
Moreover, Fig. 5 and the motion picture show that the
longitudinal component with x-displacement also propa-
gates along the IVS (x-direction). By comparing Fig. 3 and
the motion picture with Fig. 5 and the motion picture

, the propagation speed of the shear component is seen
to be close to that of the longitudinal component. Thus,
there is a likelihood of coupling between the SV compo-
nent and the longitudinal component. Given these facts,
the detected vibration signal can be modeled by a Lamb
wave with asymmetric mode in Fig. 6. Though the wave-
length of 100 mm at 10 Hz corresponds to the size of the
whole heart, the duration of the notch pulse is very short
(10 ms), corresponding to about 1 cm in length. Thus, the
traveling wave does not overlap the reflected wave in this
measurement.

For the IVS, the blood in RV and LV should be con-
sidered. Thus, the model of the Lamb wave of Fig. 6,
propagating along the viscoelastic plate (IVS) immersed
in blood, is used in the present study. Let us define the
wave number of the Lamb wave by kL. By referring to
equation 4.24 in [31], the function—termed f(kL, kp, ks),
which should be zero—is given by:

f(kL, kp, ks) = 4k2
Lηβ cosh(ηh) sinh(βh)

− (2k2
L − k2

s )
2 sinh(ηh) cosh(βh)

− ρbηk4
s

ρmηb
cosh(ηh) cosh(βh) = 0,

(2)

where kp and ks are the wave numbers of the primary
(longitudinal) wave and the secondary (shear) wave, re-
spectively, in the myocardium. Using kp, ks, and the
wave number kb in blood, η, β, and ηb are defined by

η =
√

k2
L − k2

p [rad/m], β =
√

k2
L − k2

s [rad/m], and

ηb =
√

k2
L − k2

b [rad/m]. ρm and ρb are the myocardium
density and the blood density, respectively, and ρm can be
approximated by ρb = 1.1 × 103 kg/m3. The thickness 2h
of the IVS is determined from the conventional B-mode
image.

C. Introduction of Voigt Model and Approximation
Due to µ � λ

By introducing a single Voigt dash-pot model in the fre-
quency range up to 90 Hz, the Lamé elastic constants λ
and µ become complex values as λ = λ1 + jωλ2 [Pa] and
µ = µ1 + jωµ2 [Pa], respectively [32]. Because λ is about
103 times larger than µ for soft tissue due to noncompress-
ibility [32], kp is approximated by kp = ω

√
ρm/(λ + 2µ) ≈

ω
√

ρm/λ = kb. Because the wave number kL of the Lamb
wave is close to ks, k2

L is about 103 times larger than k2
p.

Thus, η =
√

k2
L − k2

p ≈ kL and ηb =
√

k2
L − k2

b ≈ kL.
Therefore, f(kL, kp, ks) of (2) is approximated by:

f ′(cL, µ, ω) = 4k3
Lβ cosh(kLh) sinh(βh)

− (2k2
L − k2

s )
2 sinh(kLh) cosh(βh)

− k4
s cosh(kLh) cosh(βh) = 0,

(3)

where kL = ω/cL(µ, ω) [rad/m] and ks = ω
√

ρm/µ
[rad/m]. Thus, f ′(cL, µ, ω) depends on both the phase ve-
locity cL(µ, ω) of the Lamb wave and the Lamé elastic
constant µ = µ1 + jωµ2.

D. Actual Procedure to Determine the Lamé Elastic
Constant µ

Based on the model described above, the theoretical
value of the phase velocity cL(µ, ω) of the Lamb wave
is determined to be close to the measured phase veloc-
ity cphase(ω), where cL(µ, ω) depends on µ = µ1 + jωµ2.
For the nonlinear optimization, we follow the procedure
described below.

Assuming one combination of values µ1 and µ2, µ is
given for an angular frequency ω. For the value of µ, by
setting one value of the phase velocity cL(µ, ω), the wave
number kL = ω/cL and all other parameters included in
f ′(cL, µ, ω) of (3) can be obtained. The phase velocity
cL(µ, ω) then is determined for the assumed value µ so
that f ′(cL, µ, ω) becomes zero. Actually, ĉL(µ, ω) is chosen
so that the absolute value ‖f ′(ĉL, µ, ω)‖ is closest to zero.
By varying the angular frequency ω, the values {ĉL(µ, ω)}
of the phase velocity are all determined for the assumed
value µ. Thus, the root of the normalized mean squared
difference, α(µ1, µ2), between these theoretical phase ve-
locities {ĉL(µ, ω)} and the measured ones {cphase(ω)} is
defined as:

α(µ1, µ2) =

√√√√√
∑
ω

w(ω)2 |cphase(ω) − ĉL(µ, ω)|2∑
ω

w(ω)2
[m/s],

(4)
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where w(ω) is the weight for each measurement of cphase(ω)
and corresponds to its reliability. In this study, the in-
verse of the minimum of the squared difference γ (∆x;ω)
of (1) between the consecutive phase distributions is used
as w(ω). By scanning the combination of the complex value
µ, the optimum Lamé constant µ̂ = µ̂1 + jωµ̂2 is deter-
mined so that α(µ1, µ2) is minimized:

αmin(µ̂1, µ̂2) = min
µ1, µ2

α(µ1, µ2) [m/s]. (5)

By this procedure, for each time t, from the measured dis-
persion, the optimum Lamé constant µ̂ (shear elastic con-
stant µ̂1 and shear viscosity constant µ̂2) is determined
using the model of the Lamb wave that propagates along
the thin viscoelastic plate (IVS) immersed in blood.

IV. In Vivo Experimental Results for Healthy

Subjects

A. Phase Velocity of the Pulsive Wave

By analyzing the spatial distribution of the phase of
each wavelet in Fig. 2 for each time from T0 − 8 ms to
T0 + 10 ms and for each frequency component from 10 Hz
to 90 Hz, the instantaneous phase velocity cphase(ω) was
obtained as in Fig. 7(b). There is dispersion among the in-
stantaneous phase velocities {cphase(ω)}, and they rapidly
decrease for all frequency components in this short period
around the time of AVC (T0). Exactly at the time of AVC
(T0), the instantaneous phase velocities {cphase(ω)} of the
27-, 60-, and 87-Hz components are 2.0, 4.0, and 4.5 m/s,
respectively. As described in Section V, the order of mag-
nitude of these velocity values is similar to those measured
in in vitro experiments in the literature.

Fig. 7(c) shows the minimum γ
(
∆̂x;ω

)
of the root of

the averaged squared difference of (1) for the frequency of
f = ω/2π hertz. For higher frequencies, the errors become
larger. However, for less than 70 Hz, the velocity estimate
cphase(ω) is fairly reliable. These errors are used as the
inverse of the weight w(ω) in (4).

The phase velocity of the longitudinal component prop-
agating from the root of the aortic valve to the apex was
determined as follows. The blue line in each panel of Fig. 5
shows the spatial distribution of the phase θ(x; t) for the
60-Hz component. In the depth range from 60 mm to
90 mm, the phase velocity cphase(f) was determined based
on the procedure in Section III-A. At a time T0 − 10 ms,
cphase(f) is 5.5 m/s for the 60-Hz component. As time
increases, cphase(f) gradually decreases, and at a time
T0 + 10 ms, cphase(f) is 4.0 m/s. These velocity values are
close to those of the shear component obtained in Fig. 7(b).

B. Viscoelasticity of IVS and the Transient

For subject A, the estimated elasticity is about 24–
30 kPa and does not change around the time of AVC.
In the experiments, the viscosity can be determined more

Fig. 7. (a) The analyzed period from T0−8 ms to T0+10 ms in Fig. 3
is shown by using the waveforms of electrocardiogram (ECG), those
of PCG, velocity signals at the RV side along the 9th ultrasonic beam,
velocity signals at the LV side along the 9th ultrasonic beam, velocity
signals at the RV side along the 13th ultrasonic beam, and velocity
signals at the LV side along the 13th ultrasonic beam. Each waveform
contains the signals for two consecutive cardiac cycles. (b) Measured
instantaneous phase velocity values {cphase} and fitted theoretical
curves ĉL(µ̂, f) using the optimization procedure in Section III-D for
the frequency components from 10 Hz to 90 Hz during the period
from T0 −8 ms to T0 +10 ms in (a). (c) For each time from T0 −8 ms
to T0 + 10 ms, the achieved minimum γ(∆̂x; ω) of the root of the
averaged squared difference between the phase components of (1),
where f = ω/2π Hz.
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Fig. 8. (a) Transient of the viscosity parameters {µ2} measured dur-
ing the period from T0 −8 ms to T0 +10 ms in Fig. 7 for five healthy
young male subjects, including subject A. Supplemental animation
of the distribution of the phase values for 60-Hz component is avail-
able, showing the distribution of the phase values for 60-Hz compo-
nent in the parasternal view for subjects B , C , D , and

E . Subject B, 25 years old; subject C, 21 years old; subject D,

25 years old; and subject E, 23 years old. (b) The minimum value
αmin(µ̂1, µ̂2) [m/s] of the normalized mean squared difference of (5)
for each subject.

precisely than the elasticity. In Section V, the preciseness
in the estimation of the elasticity and the viscosity is dis-
cussed. The transient of the viscosity {µ2} determined for
each time from T0 − 8 ms to T0 + 10 ms in Fig. 7 for sub-
ject A is shown in Fig. 8(a). Around the beginning of the
IR period, the instantaneous viscosity of the myocardium
rapidly decreases from about 400 Pa·s to 70 Pa·s. As de-
scribed in Section V, this would be due to the rapid de-
crease in the LV inner pressure from about 120 mmHg to
several milliters of mercury, which is caused by relaxation
of the myocardium.

For the other four subjects, B–E, the same measurement
and analysis were applied, and similar transient character-
istics of the viscosity were obtained as shown in Fig. 8(a).

Fig. 8(b) shows the minimum value αmin(µ̂1, µ̂2) of the
mean squared difference of (5) between the measured phase
velocities {cphase(ω)} and the theoretical ones {ĉL(µ, ω)}
for each analysis. The errors are at most 0.3–0.8 m/s in
the analysis. These errors correspond to about 10–20% of
the phase velocity at the center frequency (50 Hz).

Using the estimated Lamé constant µ̂, the phase veloc-
ity ĉL(µ̂, f) is obtained in the procedures in Section III-D.
The results are shown by the solid lines in Fig. 7(b) for
each time t. The estimates {ĉL(µ̂, f)} well fit the measured
dispersion characteristics cphase(f) in Fig. 7(b).

V. Discussion

As shown in Section IV-A, the phase velocity measured
in the present study ranges from 1 to 7 m/s for the relax-
ation phase. As shown in Table I, the order of magnitude
of the phase velocity values is similar to those measured re-
cently using low-frequency, shear-wave vibrations reported
in the literature for human quadriceps muscle [2], for hu-
man bicep muscle [5], for pig leg/shoulder muscles [1], and
for beef muscle [4]. It is known that the propagation speed
of the electrically excited waves along the cardiac muscle
and the Purkinje fiber in the myocardium is about 0.3 m/s
[8], [9] and 2–3 m/s [10], respectively. However, the electri-
cal excitation mainly occurs around the beginning of the
ejection period. Therefore, the pulsive wave propagation
found around the AVC in the present study is a mechani-
cal phenomenon.

For the IR period, in which the myocardial viscoelastic-
ity is estimated, the myocardium can be characterized as
being passive. The clinical effect of such viscous properties
before the onset of filling on myocardium relaxation was
investigated in [33]. Application of the present method to
the beginning of systole, in which the mitral valve closes
and the first heart sound is radiated, could possibly con-
tribute to the determination of the active properties of the
myocardium as modeled in [34], [35].

The elastic values and viscosity values obtained in the
present study are compared with those reported for the
myocardium and soft tissues in the literature as follows.
The methods used can be divided into the following two
categories with regard to the frequency (see Table II). Ex-
cept for those of the present study, all data were measured
in in vitro experiments.

In [36], by the ultrasonic measurement of transverse-
mode acoustic impedance at 2–14 MHz, the shear stiffness
µ1 and viscosity µ2 were obtained as 1 MPa and 0.004–
0.03 Pa·s for canine soft tissue. In [37], using a similar
method, µ1 and µ2 were 124 kPa and 0.0159 Pa·s, respec-
tively, for the cardiac muscle. In [38], using a 3-MHz trans-
verse mode propagated perpendicular to the fiber axis of
a formalin-fixed normal human myocardium, the stiffness
(C66) and viscosity, calculated from the velocity and at-
tenuation, were 8.45 MPa and 0.404 Pa·s, respectively.

On the contrary, with mechanical measurement using
audio or lower frequency components, using a surface wave
[39], the elastic component (C66) and viscosity (µ2) were
measured as 5 kPa and 1.6 Pa·s, respectively, at 2 kHz
for bovine myocardium [40]. In [32], for the low frequency
of 500–5,000 Hz, the shear parameters were measured as
µ = 2.5 kPa + j15 Pa·s for human muscle tissue. In [41], for
the canine left ventricle, using pressure perturbations, µ1
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TABLE I
Typical Values of Speed of the Shear Wave Measured for Soft Tissues in the Literature and Present Study.

Frequency used Speed of sound Measured region Reference

20 Hz 1–2 m/s Human myocardium (during IR, in vivo) Present study (Fig. 7)
30–120 Hz 4–5.4 m/s Human quadriceps (in vivo) [2]

50 Hz 3–4 m/s Human myocardium (during IR, in vivo) Present study (Fig. 7)
50 Hz About 2 m/s Human bicep (no load) [5]
90 Hz 3–7 m/s Human myocardium (during IR, in vivo) Present study (Fig. 7)

100–225 Hz 5–6.5 m/s Pig leg and shoulder muscle [1]
About 150 Hz 5.3 m/s Beef muscle (2-ms pulsed excitation) [4]

TABLE II
Typical Values of the Elasticity µ1 and Viscosity µ2 Measured for Soft Tissues in the Literature and Present Study.

1

Frequency used Elasticity µ1 Viscosity µ2 Measured region Reference

About 2 Hz 290–1,460 kPa 2,800–19,000 Pa·s Canine descending thoracic [43]
aorta to femoral artery

10 Hz 1,000–7,000 kPa 5,000–30,000 Pa·s Human carotid artery to human [42]
femoral artery

20 Hz 7.5 kPa 75 Pa·s Pig kidney [44]
22 Hz 30–400 kPa 200–1,400 Pa·s Canine left ventricle [41]

10–90 Hz 30 kPa 70–400 Pa·s Human myocardium (in vivo) Present study
50 Hz 30–400 kPa 30–200 Pa·s Cow muscle [45]
50 Hz 30 kPa 30 Pa·s Cow muscle (freshest) [45]

150 Hz 21 kPa 23 Pa·s Beef muscle [4]
500–5,000 Hz 2.5 kPa 15 Pa·s Human muscle tissue [32]

2,000 Hz 5 kPa 1.6 Pa·s Bovine myocardium [40]

3 MHz 8,450 kPa 0.4 Pa·s Formalin fixed human myocardium [38]
2–14 MHz 124 kPa 0.02 Pa·s Cardiac muscle [37]
2–14 MHz 1,000 kPa 0.004–0.03 Pa·s Canine soft tissue [36]

1Except for the present study, all data were measured in in vitro experiments.

and µ2 were determined as 30–400 kPa and 200–1,400 Pa·s,
respectively, for 22 Hz. In [42], the artery was subjected to
pressure oscillations, and µ1 and µ2 were measured from
the human carotid artery to the femoral artery. For 10 Hz,
µ1 and µ2 were 1–7 MPa and 5–30 kPa·s, respectively.
Similar experiments were conducted in [43]. In [44], using
a standard strain-controlled rheometer, the shear elastic-
ity and viscosity of fresh pig kidney were 1–7.5 kPa and
20–75 Pa·s, respectively, for 0.01 to 20 Hz with a strain of
0.2%. In [45], by applying an electromagnetic transducer
to muscle tissue taken from freshly killed cows in a fre-
quency range from 25–2,500 Hz, in which the shear stress
was applied parallel to the muscle fibers, µ1 = 30–400 kPa
and µ2 = 30–200 Pa·s for 50 Hz. Especially in the fresh-
est specimen, the values were lower at µ1 = 30 kPa and
µ2 = 30 Pa·s for 50 Hz. The elasticity slightly increased
with increased frequency, but the viscosity remarkably de-
creased with the increase in frequency. In [45], moreover,
it was experimentally found that both µ1 and µ2 increase
with time after slaughtering. That paper [45] discussed
that this dependency on the elapsed time is related to the
loss of water from the fresh tissue.

Roughly speaking, the elasticity is large for very low
frequency less than 10 Hz and for frequency higher than
1 MHz. In [44], the experimental results for pig kidney

showed that the elasticity increases with frequency in the
frequency range from 0.01 Hz to 20 Hz. The viscosity data
are well fitted to µ2 = 626.7 × f−0.722 [Pa·s], which shows
that the viscosity decreases with the increase in frequency
f . Especially at megahertz frequencies (in the first cate-
gory above), the viscosity values in the literature are much
lower than those reported at audio frequencies (in the sec-
ond category). By considering the frequency dependency
and the freshness of the specimens in Table II, the elastic-
ity and viscosity measured in the present study are close
to those measured for the same frequency range in the
literature.

In [46], the anisotropy of the speed of sound and the
elastic properties have been measured. In the actual heart
wall, along the radial axis (the thickness direction) of the
LV, the myocardial fiber orientation changes gradually. For
patients with hypertrophic cardiomyopathy, parallel align-
ment of muscle cells becomes irregular (myocardial disar-
ray). However, in the present study, such anisotropy and
change in fibrous orientation are not considered at all.

When the preciseness of elasticity and viscosity is com-
pared, it is apparent that the elasticity is not precisely
estimated. The reason is due to the fitting of the theo-
retically derived phase values {cL(µ, f)} to the measured
ones {cphase(f)}. Because the Voigt model µ = µ1+jωµ2 is
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used, the gradient of the dispersion characteristics in Fig. 7
mainly depend on the viscosity µ2, and there is large dis-
persion in the frequency range from 10 to 90 Hz in these
in vivo experiments. Thus, the viscosity is relatively pre-
cisely estimated. However, the elasticity µ1 corresponds to
the bias component (the velocity of the frequency com-
ponents close to 0 Hz) of the dispersion characteristics.
Because the detected notch pulse is nonstationary and the
short-time Fourier transform is applied to the pulse, it is
difficult to detect its very low frequency components and
the propagation. Thus, the viscosity can be precisely de-
termined, but the elasticity cannot.

In Section III-B, the model in which the viscoelastic
plate is immersed in blood is used. The blood density ρb,
the myocardium density ρm, the longitudinal velocity cb in
blood, and the longitudinal velocity cm in the myocardium
can be approximated as being almost constant for blood
pressure ranging from 0–120 mmHg. It is known that the
viscosity in muscle highly depends on the velocity of the
stretch [47] or the instantaneous muscle length [34]. How-
ever, in the short period analyzed in the present study, the
change in length is negligible. According to [2] and [5], the
shear wave velocity and shear elasticity of the human mus-
cle increase as a load is applied in in vivo experiments. As
in [48] and [49], the viscosity also depends on the pressure.
Thus, there is a close relationship between the transient of
the viscosity obtained in Fig. 8(a) and the change in inner
pressure of the LV. Thus, the blood pressures in RV and
LV and their transient should be further introduced into
the boundary conditions for the wave equations.

The estimation process of the viscoelasticity in this
study should be validated using an elastic spherical shell
as a heart phantom; this is currently being conducted. By
such phantom experiments, it also should be confirmed
whether the transient characteristics in viscosity corre-
spond to the change in inner pressure.

In [50], experimental results on soft tissue have been
discussed in the framework of the linear theory of vis-
coelasticity relating stress and strain on the basis of the
Voigt, Maxwell, and Kelvin models. The main objective of
these models is to identify the parameters that are directly
related to the mechanical behavior of the constituents of
the tissue to produce a simple description of the gross me-
chanical behavior of the tissue. Such behavior is influenced
by collagen and its interactions with other components
of the tissue [44], by water content [45], and by time af-
ter death [51]. Not only the myocardial elasticity but also
the viscosity depend on the interaction between the giant
muscle protein titin and actin filaments in the sarcom-
ere during both diastolic stretch and systolic shortening
[52]. However, the mechanical response of many soft tis-
sues to mechanical loading is not well described by cur-
rent models in [44]. Thus, the physiological origin of the
myocardial viscoelasticity should be further investigated.
At the same time, more accurate modeling, such as the
Maxwell or Kelvin models and their combinations, should
be undertaken, whereas the Voigt model was used in the
present study. Many researchers have measured the relax-

ation time in the step response of the soft tissue [34], [53],
in which the relaxation time can be compared with the
viscosity using appropriate modeling.

VI. Conclusions

We measured rapid and minute vibrations simultane-
ously at multiple points in the IVS. We found that the pul-
sive wave is spontaneously actuated due to the AVC at the
beginning of the IR period. Clear propagation of the pul-
sive wave along the IVS was recognized for the first time.
From the dispersion of the phase velocities, the myocar-
dial viscoelasticity was determined noninvasively for the
first time. This method offers potential for in vivo imag-
ing of the spatial distribution of the passive mechanical
properties of the myocardium and its rapid change during
the IR period, which would enable direct assessment of di-
astolic properties based on myocardial relaxation in heart
failure [54], [55], which cannot be obtained by conventional
echocardiography, CT, or MRI.
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