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Summary Using our ‘‘echo-dynamography’’, blood flow structure and flow dynam-
ics during ventricular systole were investigated in 10 normal volunteers. The velocity
vector distribution demonstrated blood flow during ejection was laminar along the
ventricular septum. The characteristic flow structure was observed in each car-
diac phases, early, mid- and late systole and was generated depending on the wall
dynamic events such as peristaltic squeezing, hinge-like movement of the mitral ring
plane, bellows action of the ventricle and dimensional changes in the funnel shape
of the basal part of the ventricle, which were disclosed macroscopically by using
the new technology of high speed scanning echo-tomography and microscopically by
the strain rate distribution measured by phase tracking method.

The pump function was reflected on the changes in the flow structure represented
by the flow axis line distribution and the acceleration along the flow axis line. The
acceleration of the ejection had three modes, ‘‘A’’, ‘‘B’’ and ‘‘C’’, and generated by

the wall dynamic events. ‘‘A’’ appeared from the apical to the outflow area along
the main flow axis line, ‘‘B’’ along the anterior mitral leaflet and the branched
flow axis line, and ‘‘C’’ generated by the high speed vortex behind the mitral
valve. The magnitude of the acceleration was estimated quantitatively from the
velocity gradient along the flow axis line. Macroscopic and microscopic asynchrony in
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the myocardial contraction and extension appeared systematically in the local part
of the ventricular wall, which was helpful for making the flow structure and for
performing the smooth pump function.
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the ventricular wall

The ridge line (ref. Fig. 1 right column; blue line)
© 2008 Japanese Colleg
reserved.

ntroduction

ll energy involved blood flow within the cardiac
hambers is supplied by myocardial contraction
nd extension. In these circumstances, an effective
ransformation of the regional part of the myocar-
ial wall is supposed to offer the most appropriate
patial pressure distribution, which helps three-
imensional (3D) blood movement.

Up to the present time, cardiac pump function
as been evaluated by global pressure and volume
easurements, but the changes in the spatial dis-

ribution of the regional flux and pressure (flow
ynamics) have not been analyzed in detail because
f the lack of the suitable measurement technology.

To solve this problem, we evaluate quanti-
atively the local flow structure and dynamics
sing ‘‘echo-dynamography’’, which enables us
o assess instantaneously flow dynamics non-
nvasively [1—5], especially to obtain the mapping
f the flow velocity vector during individual cardiac
hases and also to visualize the cardiac function.

ubjects

en presumably healthy volunteers aged 30—50
ere the subjects. In all, information within the

eft ventricle (LV) was obtained as to the flow veloc-
ty, flow velocity vector, flow axis line, wall motion
nd other variables during each early, mid- and late
ystole.

ethods

easurement of flow velocity and selection
f the plane for the analysis

ommercially available ultrasonic equipment
Alolka Co. model 6500) was applied in the supine
r left lateral recumbent position. The ultrasonic
requency was 3 MHz with the repetition rate
f 4 kHz. Apical or parasternal two-dimensional
2D) echocardiograms were obtained by 90◦ sector

can.

For the most advantageous section plane, we
elected flow axis plane passing through the cen-
er of the mitral and aortic orifices and including

r
c
v
d

Cardiology. Published by Elsevier Ireland Ltd. All rights

he centers of both the left ventricle (LV) and
eft atrium and the apex. This plane includes both
nflow and outflow axes of the LV. We named this
‘long axis’’ plane. Normal intra-ventricular flow is
‘plane symmetry’’ with respect to this plane, and
he rectangular ones are short axis planes.

Data obtained from both 2D echocardiogram and
D Doppler flow velocity processed off-line using
ur own software of ‘‘echo-dynamography’’ were
ransferred to the personal computer through MO
isk memory.

D flow velocity vector mapping obtained
rom the Doppler flow velocity

he flow velocity vector mapping on the scan-
ing plane was obtained by the use of echo-
ynamography which has been developed by us
ntroducing the two hydrodynamic theories of the
tream function [7] and the flow function [8] and
xplained in details in the literature [6]. This map-
ing shows a cross-section picture of the 3D blood
ow in the LV.

The magnitude of the flow velocity vector is
hown by the length of yellow line, and the standard
ength as the reference is shown at the left cor-
er of the screen. The direction is indicated by the
nclination and the head is marked by the red point
t the edge of the line (ref. Fig. 1 left column).

uantitative evaluation of distribution
ange of the velocity vector

o quantify distribution range of the velocity vec-
or, the contour lines of the magnitude of absolute
alue (red area) of the vector was superimposed on
he 2D echocardiogram (ref. Fig. 1 right column).
uantification was made by measuring the interval
etween two contour lines.

isplay of flow axis line for evaluating
entralization of the power produced by
epresenting the flow axis line in the LV as well as
entralization of the power was obtained in the
elocity vector distribution. This ridge line was
epicted by the connection of positive peak points
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Figure 1 Left: two-dimensional (2D) mapping of flow velocity vector in systole in the longitudinal section plane of the
left ventricle (LV) in a normal adult. The timing is shown in the ECG by a yellow line, and standard size of the vector
by a yellow bar at the upper left corner. A white arrow (E) shows the eddy flow. ES: early systole, MS: mid-systole, LS:
late systole, AO: aorta, IA: left atrium, LV: left ventricle, E: eddy. Right: 2D distribution of absolute value of velocity
vector in the longitudinal plane expressed by a equi-level line (yellow line). The flow axis line distribution (blue line)
during each ES, MS and LS is overlapped with the equi-level line map. An unit interval of the equi-level line is shown
at the upper left side. A: acceleration A, B: acceleration B, C: acceleration C, D: deceleration.
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lood flow structure and dynamics

n the absolute value of magnitude of the veloc-
ty vector and the change in the 2D pattern of the
idge line indicates local ventricular wall function
9,10].

nalysis of the LV wall movement

igh-speed (66 frames/s) 2D echocardiogram was
sed for the analysis.

Changes in the septal and posterior wall
hickness, the internal diameters at the level
f each apical, central and basal area of the
V, and the diameter and displacement of the
itral valve ring (MRD and MRM) during car-
iac cycle were measured macroscopically from
uccessive 24 echocardiograms selected at every
0 ms.

train and strain rate in the LV wall using a
ew scanning technique (high frame rate
parse scan)

hirty degree sector scan at a speed of 630 frames/s
ith the switching beam direction of every 5◦ inter-
al (sparse scan) was performed, and measured
all thickness change microscopically in each beam
irection at every thickness interval of 0.82 mm by
he phase difference tracking method [11], and thus
he strain rate was obtained [12,13]. Then, this
as displayed on the M-mode and 2D images as
olor-coded information. The cold or warm color
ndicates wax or wane of the stain rate (ref.
igs. 5 and 6).

D distribution of the acceleration for
hanging flow direction [14,15]

he direction of blood flow within the LV is greatly
hanged whenever ventricular wall, papillary mus-
les, valves and other structures are forced to
isplace and transform due to the wall contrac-
ion. Accordingly, measuring the ‘‘acceleration for
hanging flow direction’’ of the intra-ventricular
lood flow, the transmitting process of the ejecting
orce produced by the wall contraction is possible
o estimate. Then, we defined the product of the
orticity and velocity vector as the ‘‘acceleration
or changing flow direction’’ [7]. This product was
btained from 2D distribution, which showed radial

attern in the eddy, and stratified pattern near the
all whenever the force is perpendicular to the
lood from the ventricular wall [15] (ref. Fig. 7 left
olumn).

1
a
o
a
1

89

easurement of the Doppler pressure
istribution [16—19]

he 3D blood flow greatly changes during ventric-
lar contraction, particularly due to the dynamic,
ather than static, pressure change. To deduce this
hange from the distribution of the flow velocity
ata on the scanning plane, the Navier—Stokes’
quation of motion was applied for processing
oppler velocity data, and the theory of Helmholtz
as applied to transfer velocity information to the
ressure information as a scalar value [19]. The
ressure depicted by the color image was over-
apped on the 2D echocardiogram (ref. Fig. 7 right
olumn). Positive and negative components are dis-
layed as warm and cold color.

esults

low velocity vector distribution in the left
entricle

ypical 2D distributions of flow velocity vector dur-
ng systole is shown in Fig. 1.

arly systolic phase (ES)
he distribution was wide in the basal area with

arge velocity gradient, while that of small gradient
as seen in the anterior half area near the sep-

um in both central and apical areas (Fig. 1ES). The
ector directed from the apical area to the aorta
n the anterior half of the ventricular cavity adja-
ent to the septum and then shifted anteriorly at
he aortic area. A part of this vector separated at an
djacent area to the anterior mitral leaflet and con-
erted posteriorly. Thus the circular arrangement of
he vector was demonstrated (white arrow: E). The
agnitude of the vector was minimum at the poste-

ior half of the apical area adjacent to the posterior
all, whereas it increased rapidly toward the cen-

er of the outflow and was maximum just behind
he aortic valve.

The main flow axis line (A in Fig. 1) showed a
arrow ramified pattern at the apical and central
reas, and the velocity gradient along this ramified
ow axis line was about 5.2 in average. The flow
xis line in the basal area was confluent at the out-
ow with the axis line (B in Fig. 1) along the anterior
itral valve and the velocity gradient was about
8.6 (Acceleration B). This was greater at the aortic
rea, reaching about 21.3 (Fig. 3ES). The velocities
f ejected blood flow along the main flow axis line
t the apical, central and basal areas were about
0, 40, and 100 cm/s, respectively. The calculated
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velocity gradients in these three areas were about
4.5, 10.1 and 21.3 (Acceleration A) respectively,
i.e., in the latter two areas, the velocity gradient
were about two to four times bigger than that of
the apical area.

Velocity vector distribution showed that the
blood in the postero-apical area was stationary,
while the blood flow in another areas was accel-
erated toward the aorta along the septum. At the
same time, a part turned posteriorly, producing
strong eddy just behind the mitral valve (Accel-
eration C) (Fig. 1). This eddy flow axis line (C
in Fig. 1) joined again the main flow axis after

the circular motion. The eddy was about 22 mm
in diameter (D in Fig. 2), and about 56 cm/s
in the circumferential speed (Fig. 2-1, bottom
graph). Thus, the centrifugal force was larger

n
a
a
fl
w

Figure 2 Measurement of the eddy in the early systolic pha
(blue line) method, which is represented by the circular strea
the stream line; 2: 2D distribution of the Doppler pressure (
negative pressure and warm colored, a positive pressure. Th
center of the eddy appeared in the area just behind the anter
bottom graph. In a developing eddy, the pressure in a circum
in the center (c) of the eddy nevertheless the pressure in the
M. Tanaka et al.

han that of the eddy in the isovolumetric phase
20].

The vector in the outflow rapidly directed anteri-
rly toward the septum. Passing through the aortic
alve, it directed posteriorly and then anteriorly
gain.

id-systolic phase (MS)
he velocity vector was observed in the ante-
ior 2/3 areas near the left ventricular septum
Fig. 1MS) and the direction was almost straight
rom the apical area toward the aorta. The mag-

itude was extremely small in the postero-basal
rea, whereas it became gradually larger in the
ntero-basal area near the septum toward the out-
ow (about 100 cm/s). In the apical area the vector
as about 25—30 cm/s. Circular arrangement seen

se—–1: the diameter of the eddy using the stream line
m line (D). Bottom graph shows the flow velocity along

dynamic pressure) in the LV. Cold colored area shows a
e pressure distribution on the line passing through the
ior mitral leaflet (E: white arrow) is demonstrated in the
ferential part (cf) of the eddy becomes lower than that
eddy is negative.
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n the early systolic phase under the mitral valve

isappeared.

Level difference of the velocity gradient on
he main flow axis line was 1.4 times greater
n the central area compared to that in the

t
T
fl
(

igure 3 Velocity distribution and velocity gradient in the m
ample case. Left: flow axis lines of the ejection are overla
ines indicate apical, central and basal part, respectively, an
howing in the right column. Right: graphic display of the ve
arts is demonstrated. Abscissa shows velocity in mm/s, and
91

pical area, and further, 2.6 times greater in

he basal area compared to that of apical area.
hen, velocity difference between apical and out-
ow areas was smaller than that in early systole
Fig. 3MS).

ain flow axis line of the ejecting flow in the LV in one
pped on the color Doppler imaging. Red, pink and blue
d the color lines correspond with the velocity gradient
locity distribution. Velocity gradient (a/b) in the three
ordinate, distance in mm.
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As seen in early systole, the main flow axis line
was ramified at the apical and central areas, and
the velocity gradient was about 17.2 in average.
This main flow axis was parallel to the septum and
gradually increased in width toward outflow area,
and formed Y shape with branched line from the
area just under the mitral valve, and the velocity
gradient was 13.6 in average (Acceleration B).

The velocity vector of ejected blood directed
anteriorly at the outflow, and directed posteriorly
in the aorta (Fig. 1).

Late systolic phase (LS)
The velocity vector distributed unevenly in the
anterior half area of the ventricle near the septum
(Fig. 1LS). The magnitude of ejected velocity vec-
tor was about 20 cm/s, and increased slightly at the
aortic orifice.

The direction of the vector was nearly parallel
to the septum from the apical to basal areas, but
some parts in the outflow branched to posterior
direction. Then, about 1/3 to 1/6 of the ejected
flow moved downward, and thereafter anteriorly,
to the apical area along the ventricular inner sur-
face (Fig. 1LS).

The velocity gradient of the branched flow axis
line (D in Fig. 1LS) was about −11.1 and that of
the other branched flow axis line (B in Fig. 1) was
about 10.9. The velocity gradient from apical area
to outflow area was almost constant (Fig. 3LS).
Just under the aortic valve, blood was accelerated
slightly from about 20 to 50—60 cm/s, and blood
flow markedly lost the velocity in late systole.

A part of blood turned backward from the basal
area toward the apical area, producing clockwise
rotation along the inner surface of the posterior
wall and small circular arrangement of the vector
was observed in the apical area, and resulted in the
deceleration of blood movement.

Displacement of the LV structures in systolic
phase measured by high-speed scanning
technique

Mean value in 10 normal cases are shown in Fig. 4.

Changes in the thickness of LV wall during one
cardiac cycle
The thickness of the septum (IVS) increased just
before the onset of the first heart sound (S1) at

the apical part, whereas the increase delayed at
the central and basal parts. The maximum thick-
ness appeared in the order of the apical, central
and basal part. The time difference between the
apical and basal part was about 180 ms.

t
d
s
s
f
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The thickness of the posterior wall (PW)
ncreased about 4—6 mm during systolic phase. The
nset of the increase at the apical part coincided
n time with the R wave of ECG, whereas at the
ther two parts the increase was in early systole
fter transient decrease. The maximum thickness
ppeared in the order of the apical, central and
asal part. The time difference between the apical
nd basal parts was about 210 ms.

hanges in internal diameter of the LV and
isplacement of the mitral valve structure

n systolic phase

he internal diameter decreased at almost the
ame time of the onset of the S1 in all three parts,
nd the minimum was observed at apical, central
nd basal part in this order, showing about 60—90 ms
n time differences between the apical and basal
arts. The largest of the change was in the cen-
ral part. The downward movement of the lateral
art of the mitral valve ring (MRM) began with the
nset of the S1 and continued to the end of isovol-
metric relaxation. The mitral valve ring diameter
MRD) was minimal just before the onset of the S1
nd increased about 10 mm during systole until the
nd of isovolumetric relaxation. Thus, the increase
n the antero-posterior diameter of the mitral valve
ing was followed by the change in the shape from
val to circular form, increasing the orifice area
uring systole, though the ring is fibrous tissue with
ittle extensibility.

train rate distribution in the myocardium
easured by sparse scan method [14—16]

train rate of the IVS and PW measured to analyze
icroscopically the myocardial mechanical events.
he results were shown in Figs. 5 and 6.

train rate distribution in the IVS (Fig. 5)
emarkable differences in the distribution pre-
ented in the apex between right ventricular (RV)
nd LV sides at the beginning (about 100 ms) and
nding (about 100 ms) of systolic phase (Fig. 5-4,5).
amely, at the beginning, it increased in the LV side
nd decreased in the RV side, and the reverse was
rue at the end of systolic phase. In mid-systole,
oth positive and negative strain rate areas were
ixed in the apical part of the IVS. In the cen-
ral and basal parts, the strain rate temporarily
ecreased and the both parts expanded in early
ystolic phase. Thereafter, it increased throughout
ystole, and the part having large strain rate moved
rom RV side to LV side with the progress of sys-
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Figure 4 Top: changes in thickness of the posterior wall (PW) and the septum (IVS) at the basal (B, blue line), central
(C, red line), and apical area (A, green line) of the LV during one cardiac cycle. Bottom: changes in internal diameter
of the LV at the basal (B), central (C) and apical (A) area as well as the mitral ring (MRD). MRM changes in the distance
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f down ward displacement of the posterior part of mitr
f the change. Is: 1st heart sound, IIs: 2nd heart sound.

ole. In late systolic phase, this increased strain
ate rapidly decreased in both RV and LV sides simul-
aneously.

train rate distribution in the PW (Fig. 6)
n the apical part, the strain rate remarkably
ncreased in early systolic phase and the large stain
ate area spread from the epicardial side to the
ndocardial side, resulting in the progressive thick-
ning from the early stage of systole from the outer
ide to the inner side of the PW. Up to just before
he end of systolic phase (judged by the second
eart sound: S2), there were mixed large and small
reas of the strain rate. There was a tendency to

ncrease in the inner half, whereas to decrease in
he outer half of the myocardium, indicating the
ersisting contraction in the former and relaxation
r extension in the latter portion. The strain rate
n the apical part decreased markedly in the end of

o
e
i
s

ng during one cardiac cycle. The number shows a speed

ystolic phase, resulting in the relaxation or dilata-
ion. The strain rate in the central to basal parts
emporarily decreased markedly in the beginning
f systolic phase, giving rise to the decrease in the
hickness of the myocardium and dilatation of the
V cavity.

The increase in the strain rate in the basal
art spread to the isovolumetric relaxation beyond
he timing of the S2. From the end-systolic phase
o the isovolumetric relaxation period, the basal
art showed the inner half having increasing strain
ate and the outer half having decreasing strain
ate simultaneously, indicating the simultaneous
ppearance of thickening of the inner half and
xtension or thinning of outer half. In the middle

f central part, there was the area where neither
xtension nor contraction occurred due to the strat-
fied coexistence of increase and decrease in the
train rate.
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Figure 5 M-mode images of a time sequential change of the strain rate distribution in the interventricular septum
(IVS) measured by sparse scan method on the longitudinal section plane of the LV during one cardiac cycle is shown.
The M-mode display of the strain rate of 1—5 correspond to those of 2D echo-cardiogram in the left row. Left middle
figure shows 2D strain rate image in the time point of the green line in the ECG.

Figure 6 M-mode images of a time sequential change in the strain rate distribution of the posterior wall (PW) measured
by the same method as in Fig. 5.
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Figure 7 Left column: 2D distribution of the acceleration for changing the flow direction in the LV in the early systole
(ES), mid-systole (MS), and late systole (LS). The acceleration vector (blue line) is localized in the outflow area in
ES, and the eddy shows a radial pattern (E: white arrow). In MS, the stratified distribution appeared perpendicular to
the inner surface of the PW and IVS. In LS, the stratified distribution is seen perpendicular to the IVS and small radial
distribution (white arrow) indicating the eddy shows in the apical area. Right column: 2D distribution of the Doppler
pressure in the LV. Cold color area shows a negative pressure and warm color area, positive pressure. In ES, the negative
pressure caused by the eddy (E) appears in the basal area near the mitral valve. In LS, the negative pressure (white
arrow) spread and appeared at the area adjacent to the basal and central parts of the PW indicating the occurrence
of the premature dilatation and the beginning of the sucking action of the LV.



e
o

D

S
f
m
t
H
o

f
p

(

(

(

a
h
t
u
i
f
o
t
s

a
d
t
c

(

(

(

(

C
i
p

C

96

Systolic flow dynamics evaluated by 2D
distribution of the acceleration for changing
the flow direction

Distribution of the acceleration vector for changing
the flow direction within the LV is demonstrated in
the left column of Fig. 7.

In the early systolic phase, stratified pattern
of acceleration appeared at the basal area near
the IVS. At the same time, radial pattern (E) of
acceleration caused by the eddy was observed just
behind of the anterior mitral valve (Fig. 7-ES). In
the mid-systolic phase, the direction of accelera-
tion vectors showed perpendicular from the inner
surface of the IVS and PW and the distribution was
observed from apical to basal area indicating the
distribution of the force produced in the short-axis
direction by wall contraction (Fig. 7MS). In the mid-
and late systolic phase, the line drawing with the
tip of the acceleration vector showed parallel to
the inner surface of the IVS and PW, showing the
wave pattern. In the late systolic phase (Fig. 7LS),
two small radial patterns of the acceleration vector
were observed at the central and apical area near
the PW (white arrow) indicating production of the
small eddy. At the same time, the arrangement of
the tip of the vector showed the flat pattern paral-
lel to the inner surface of the PW and the vectors
in the inflow tract area mainly directed to the PW
indicating the outward expansion of the PW nev-
ertheless the direction of vectors in the adjacent
area to the IVS showed perpendicular from the inner
surface of the IVS.

2D Doppler pressure distribution in the
systolic phase

2D Doppler pressure distribution is demonstrated in
the right column in Fig. 7.

Throughout systole, high pressure area in the
LV was adjacent to the PW from the apical to
basal part, whereas low pressure area was in
the outflow tract and in the basal area of the
aorta beyond the valve. The lowest Doppler pres-
sure was about −11 mmHg just under the aortic
valve.

The pressure distribution in the eddy flow behind
the anterior mitral leaflet in the early systolic phase
was about −0.3 mmHg at the center of the eddy and
−0.8 mmHg at the circumferential part. Thus the

eddy in the early systolic phase was in the devel-
oping stage (Figs. 7ES and 2-2). In the late systolic
phase, the negative pressure appeared again at the
basal to apical area adjacent to PW (white arrow
in Fig. 7-LS) due to the premature relaxation and
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xtension of the ventricle indicating the beginning
f the sucking action.

iscussion

ince the advent of modern cardiology, cardiac
unction has been evaluated by global measure-
ents, such as cardiac output, ejection fraction,

otal flux and pressure and many others [21—23].
owever, these are inadequate because of the lack
f the local information of the heart and blood flow.

Using non-invasive technology, we need the
ollowing three measurements for the clinical pur-
ose. These are:

1) blood flow structure and flow dynamics in car-
diac chambers,

2) mechanical events of cardiac structure during
pulsation,

3) local myocardial function of the LV.

For these purposes, several trials using computer
nalysis [24—26] or X-ray ventriculography [10,27]
ave developed, but these are not available at
he bedside. Recent clinical methodology, such as
ltrasonic method [28—30] or magnetic resonance
maging (MRI) [31,32], has been proposed, but the
ormer has a difficulty to obtain the vector value
f blood flow velocity and the latter is not enough
o analyze flow dynamics because of the limited
patial resolution.

Present report deals with the analysis of
bove-mentioned three informations using echo-
ynamography, strain rate analysis with sparse scan
echnique and high frame rate echo-tomography to
larify the following four systolic phenomena.

1) characteristics of the blood flow structure in
the LV and its generation mechanism,

2) correlation between the flow structure and
mechanical events of the ventricular wall,

3) correlation among the flow structure, flow
dynamics and pump function,

4) asynchronism in myocardial contraction for
generating the flow structure.

haracteristics of the flow structure of the
ntra-ventricular flow during the systolic
hase and its generation mechanism

haracteristics of the blood flow structure in the

ntraventricular flow during systole are summarized
s shown in Fig. 8. The blood flow passing through
he outflow tract area during systole was laminar
nd the flowing structure showed a plane symmetry
o the longitudinal section plane which includes the
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Figure 8 Schematic representation of the flow structure in the early, mid- and late systolic phase and summarized
correlation among the flow structure, flow dynamical changes and ventricular wall dynamics during systolic phase.
G ectio
d r flow
a ttern

l
t
p
s
m

a

ray arrow (F): flow structure, Black arrow in figures: dir
ynamic pressure, Right under picture shows the Dopple
nd correlation between timing of the schematic flow pa

ong axis line of the LV. As demonstrated in Fig. 8,

he blood in the basal area in the early systolic
hase (ES) begin to move to the aorta, and at the
ame time, a part of the blood in the basal area
oved toward posteriorly along the mitral valve

c
m
c
g

n and magnitude of the wall movement, Blue arrow (P):
velocity curve obtained in the outflow tract of the LV,
and real flow is represented.

nd produced an accelerated eddy at the area adja-

ent to the ventricular surface of the MV. In the
id-systolic phase (MS), the flow speed in the api-

al and central area gradually increased while being
athered the blood in the inflow area near the PW to
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the outflow area near the IVS. The flow velocity in
the inflow tract area remarkably decreased. In the
late systolic phase, the speed of the ejected flow
was obliged to decelerate. At this time, some part
of the blood flow separated from the main flow at
the basal area and moved downward to the apical
area along the PW and a rotating flow appeared in
the posterior half area of the LV together with small
eddies at the apical area. Thus, the flow structure
in the systolic phase had respective characteristics
in the early, mid- and late systolic period, respec-
tively.

The flow structure is produced by the changes in
the regional wall motion and wall dynamics during
ventricular pulsation. The investigation disclosed
the following characteristics concerning mechani-
cal phenomena; i.e.

(1) The LV short-axis transformation occurred
together with deduction of the internal diam-
eter, and the increase in the predominant PW
thickness propagated from the apical to basal
region (peristaltic squeezing).

(2) The LV long-axis transformation occurred
together with the anterior displacement of the
PW with protrusion of the papillary muscle. The
plane encircled by the mitral ring had hinge-like
movement. The fibrous trigone act as a fulcrum
and downward movement of the posterior part
of the ring changed the shape from elliptic to
circular with an increment of the surface area.

(3) Diminished volume and short-axis diameter of
the LV caused by (1) and (2) modes was followed
by the shift of the main flow axis line toward the
IVS during systole. This is a bellows action.

(4) Dimensional changes of the funnel-shaped out-
flow tract which was formed by the basal IVS,
the anterior leaflet of the mitral valve and the
basal PW.

Based on the flow structure and the mode of wall
dynamics above-mentioned, the possible mecha-
nism of ventricular ejection is as follows:

As summarized in Fig. 8, at the beginning of ven-
tricular contraction, peristaltic motion (mode (1))
starts at the apical part with mode (2) ventricular
transformation, high pressure at the apical area is
transmitted the basal area and ejects the blood.
Simultaneously, the basal part of LV is expanded
posteriorly in a short period following isovolumetric
contraction, and consequently some parts of blood
move posteriorly along the mitral valve. The bel-

lows action of the mode (3) helps the development
of the forceful accelerated vortex with equal dis-
persion of the centrifugal force, which causes the
smooth closure of the mitral valve as pointed by
Bellhouse [33] and Reul [34].
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In mid-systole and later on, bellows action is
mphasized. Namely, the ejected flow is generated
y mechanical events (mode (3) and (4)).

At the later half of ejection period, myocar-
ial thickness successively increased from apical to
asal part as shown in the data of wall dynamics and
train rate distribution. Furthermore, the greater
isplacement of the wall occurred at the PW rather
han IVS in the short-axis direction, all contribute
lood flow toward outflow tract. Such a wall motion
eems to maintain the completeness of ejection and
roceeds to the closure of the aortic valve.

Rushmer [35] and Sakuma [36] described the
mportant role of bellows action to the effective
ight ventricular ejection, while our present data
ndicated that the combined role of peristaltic
ction as well as bellows action of the ventricular
all is important for the completeness of systolic
jection in the LV.

In late systole, progressing the increment of the
yocardial thickness at the basal part of the PW

ccompanying with the inward displacement, the
osterior part of the mitral ring is made to move
ntero-upward and the antero-posterior diameter
f the mitral ring diminish. At the same time, ten-
ion in the myocardium at the apical and central
rea is relieved in spite of the ejection period,
nd the premature relaxation and extension of
yocardium begin and the LV tends to dilate (begin-

ing of the sucking action).
The premature relaxation and extension produce

he negative pressure in the area adjacent to the
W. At the same time, the negative pressure will
ct not only for generating the small eddies at the
pical area but also for dragging posteriorly about
ne-thirds to one-sixth of the maximal flux dur-
ng early phase of ejection, and gives rise to the
otating flow at the central area, which works as
brake to the ejecting force along the main flow

xis line. Thus the velocity vector of the ejecting
ow becomes nearly the same size from the api-
al to basal area and the successive ejecting flow is
bliged to be moved solely by inertia.

orrelation between the blood flow
tructure and pump function of the heart

cceleration process for ejecting blood from the
V is essential for evaluating myocardial function,
owever, it is difficult to understand the mecha-

ism of acceleration using sole pressure gradient
etween the LV and aorta. We have to know spatial
istribution of the force and magnitude of the force
enerated. The spatial distribution of the force in
he LV will be reflected in the centralization of the
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lood flow structure and dynamics

lood flow in the ventricle. The centralization of
he flow is evaluated in the flow axis distribution.
he magnitude of the force will be reflected in the
agnitude of the acceleration of the blood flow and

he acceleration mode. In this study, we analyzed
cceleration mechanism, ventricular wall dynamics
nd their correlation based on the four items, i.e.

1) two-dimensional distribution of the flow axis
line of the ejecting blood flow,

2) the velocity vector distribution on the main
flow axis line and the velocity gradient along
the main flow axis line,

3) their transition (time course) during the systolic
phase,

4) two-dimensional distribution of the accelera-
tion for changing the flow direction.

ummarized results demonstrated in Figs. 1 and 8.
e found three kinds of acceleration modes along

he flow axis lines; accelerations A, B and C. The
entricular ejection is accomplished by the combi-
ation of these three modes acceleration generated
long the blood flow axes (Figs. 1 and 3).

Acceleration A was produced along the main flow
xis line from the apical to outflow tract area of
he LV. Two kinds of branched flow axes joined at
he central and basal areas. The velocity gradient
long the main flow axis line in the central area
as about twice than that in the apical one and the
radient in the basal area about four times further
han that in the apical ones. Thus, the acceleration
ncreased at the central area, and further at the
asal area (Fig. 3). This type of acceleration was
enerated by the wall dynamical mode 3.

Acceleration B, which appeared at the basal
rea parallel to the anterior leaflet of the mitral
alve and generated by passing though the funnel
tructure constructed by the IVS, mitral leaflet and
osterior wall, joined to the main flow axis line.
ecause of the extremely large antero-posterior
iameter at the basal area compared with that
f the aortic ostium, the convective acceleration
enerated becomes very large. This type of accel-
ration was generated by the wall dynamics modes
and 4.
Acceleration C, which observed along the circu-

ar flow axis line just behind the anterior mitral
eaflet joined with the main flow axis line at the
entral area is essentially due to the high speed
otating flow. The centrifugal force is proportion
o square of the rotation speed and is inverse

roportion to the radius of rotation. Accordingly,
ccompanying decrease in the radius of rotation as
n the early systolic period, the centrifugal force
aused will be increased remarkably. The blood in
he adjacent area is dragged into the accelerated
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otation flow and thus the accelerated outflow is
roduced in the central area.

In the early systolic phase, all three modes work,
nd the acceleration increase about two times in
he central area and about four times in the basal
rea compared with that in the apical area along
he main flow axis line. In the mid-systolic phase,
he acceleration A and B work, and the velocity gra-
ient is about 1.3 times in the central area and
bout 3 times in the basal area compared with
he velocity gradient in the apical area. In the
ate systolic phase, only B is active, so that the
elocity gradient decreases and the flow veloc-
ty keeps nearly the same level according to the
nertia.

From the 2D distribution of the flow axis line and
he velocity gradient and acceleration distribution
n the flow axis line, it is concluded that the pump
unction including the local function can be eval-
ated from the non-invasive information of blood
ow structure.

ignificance of the asynchronism in the
yocardial contraction and extension for

enerating the flow structure

s indicated by the distribution of the velocity vec-
or and the main and branched flow axis lines, both
ontracting and relaxing states coexisted simulta-
eously during ventricular systole, as indicated by
he simultaneously contracting the apical part and
elaxing basal part at the early systole and the
everse was true in the late systole.

The time difference of the wall thickness and
nternal diameter of the LV, and also the peristaltic
queezing and bellows action indicated that the
yocardial contraction and relaxation in the local
art have time discrepancy and also myocardial
synchrony always exist even during systole in the
icroscopic point of view by the strain rate distri-
ution.

Furthermore, the strain rate distribution indi-
ated that the reverse strain rate occurred in early
ystole, resulting contraction of the apical part and
elaxation of the basal part. Even though, myocar-
ial wall has laminar layer, positive strain rate in
he inner half of contraction accompanied with neg-
tive rate in the outer half of relaxation and thus
he wall thickness change propagated from epicar-
ial to endocardial side.

From these facts, asynchronism of myocar-

ial contraction and the time discrepancy of the
synchrony among local parts seems to play an
mportant roll in the smooth intra-ventricular blood
ow and the effective pump function of the LV.



[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

100

Conclusions

Systolic blood flow in the left ventricle analyzed
by using the echo-dynamography was the lami-
nar flow along the interventricular septum. The
flow structure is quite different in its character
in such cardiac phases as early, mid- and late sys-
tole and was produced by the wall dynamic events
such as peristaltic squeezing of the ventricular
wall, hinge-like movement of the mitral valve ring
plane, bellows action and dimensional change in
the funnel shape of the basal part of the LV. Con-
cerning the correlation between the flow structure
and pump function, distribution of the force in
the LV is reflected on the flow axis line distribu-
tion, and the flow acceleration composed of three
varieties, i.e., A: from apex to outflow along the
main flow line, B: along the mitral leaflet, and
C: vortex at the mitral valve. Even during sys-
tole, macroscopic and microscopic asynchronous
contraction and relaxation in local part of the wall
contribute to not only the generation of the flow
structure but also the smooth and effective pump
function.
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