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Abstract
Purpose The generalized coherence factor (GCF), an adaptive beamforming technique, can reduce unnecessary signals from 
an unfocused position without reducing the contrast-to-noise ratio. However, the computational complexity of this method 
is large compared to the conventional delay-and-sum (DAS) beamformer. In the present paper, we propose a novel method 
to achieve the same reduction effect of unnecessary signals with a smaller computational load than that of the conventional 
GCF approach.
Methods One of the factors increasing the computational complexity of the GCF-based beamformer compared with DAS 
is the generation of analytic signals at receiving elements. We clarified the mechanism of generating unnecessary signal 
components to enable the calculation of the GCF value directly from real signals without generating analytic signals. Fur-
thermore, we proposed a method to filter out these components without generating analytic signals.
Results The GCF values obtained using the proposed and conventional methods were compared and verified using the 
actual data acquired from a phantom with an ultrasound diagnostic system. We also compared the B-mode images. As a 
result, equivalent GCF values and similar B-mode image quality were achieved with the proposed method with reduced 
computational complexity.
Conclusion With the proposed method, generation of analytic signals at receiving elements can be omitted, and as a result, 
the computational load of the GCF method can be greatly reduced, while preserving the effect of reducing unnecessary 
signals like with the conventional method.

Keywords Ultrasound imaging · Adaptive beamforming · Generalized coherence factor

Introduction

Ultrasound imaging is widely used for medical diagnosis 
purposes as it provides real-time cross-sectional images of 
the human body noninvasively. In conventional ultrasound 
diagnostic systems, the received signals are focused at any 
position in the B-mode image using delay-and-sum (DAS) 
beamforming. However, even with the use of DAS beam-
forming, reflected signals from positions other than the 

desired one, such as, for example, a signal generated by the 
sidelobe, cannot be completely removed. Due to such unnec-
essary signals, artifacts are generated on a B-mode image, 
and the image quality deteriorates. In ultrasound image diag-
nosis, the examiner often diagnoses the lesion based on a 
slight change in brightness. Consequently, the deterioration 
in the image quality affects the diagnosis and might lead to 
misdiagnosis and stress on the examiner.

Many adaptive beamformers have been proposed to 
improve image quality by reducing unnecessary signals 
contained in received signals. For example, minimum vari-
ance beamforming (MVB), which adaptively calculates the 
weight values of the signals in receiving elements, has been 
actively studied [1-3]. However, the computational com-
plexity of MVB is large, and it is difficult to implement in 
general ultrasound systems. Coherence-based beamforming 
(CBB) using the coherence factor (CF) [4, 5] has been pro-
posed as an adaptive beamforming technique with relatively 
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small computational complexity. CF is a factor representing 
the coherence of the received signals after the delay com-
pensation of individual elements. In CBB, by weighting the 
CF value to the received signal after DAS, the brightness 
value of the pixel where the unnecessary signal is dominant 
is reduced. Moreover, various factors other than CF have 
been proposed in the literature [6-9].

Speckle noises [10, 11] are generated in B-mode images 
as scatterers are uniformly distributed in most parts of the 
human body. Speckle noise is caused by the interference 
of sound waves from many scatterers and is a variation of 
a brightness value that is not directly related to the struc-
ture in the human body. In such a region, the phases of 
the received signals are not completely aligned with each 
other, and minor phase fluctuations occur. If CF is applied 
to such a region, it can result in a problem where the average 
brightness in the region of the diffuse scattering medium is 
lowered, and speckle noise is emphasized [6, 12]. Although 
there have been studies seeking to clinically obtain useful 
information from the characteristics of the speckle noise 
[13] on B-mode images, enhancement of the speckle noise 
generally causes degradation of the contrast-to-noise ratio 
(CNR), which hinders making a correct diagnosis. There-
fore, speckle reduction methods, such as spatial compound 
[14], frequency compound [15], or image processing [16, 
17], have been studied and developed. Therefore, when using 
CBB for imaging of a diffuse scattering medium, it is impor-
tant not to emphasize speckle noises. The generalized coher-
ence factor (GCF) [6], which is one of the factors used for 
CBB, can reduce unnecessary signals without emphasizing 
speckle noise and has CNR higher than that of other factors 
[12]. As another approach that focuses on the imaging ability 
in diffuse scattering media, a phase coherence factor (PCF), 
in which phase variation is suppressed by applying DAS in 
each divided sub-aperture, has been proposed [18].

Recently, with the improvement in graphical process-
ing units (GPU), high-performance beamforming including 
CBB can be realized in real time [19, 20]. On the other hand, 
miniaturization and portability of ultrasonic diagnostic appa-
ratuses have been progressing as well. In such small models 
and low-end models, it is important to achieve high image 
quality with limited computing power. Therefore, there is a 
need for a method with low computational complexity when 
applying CBB, so that CBB can be expanded to a wider 
range of models using this technique.

In the present study, we aimed to reduce the computa-
tional complexity of the GCF [6], which has CNR higher 
than that of other factors. The computational complexity 
of the GCF is higher than that of the DAS beamformer 
as it requires generation of analytic signals for individual 
elements and calculation of the discrete Fourier transform 
(DFT) of the element direction for each pixel. The genera-
tion of analytic signals for individual elements is required in 

many adaptive beamformers including the PCF. To omit the 
calculation of the DFT of the element direction, a method 
has been proposed in which the GCF value is estimated 
from autocorrelation [21]. In the present paper, we propose 
a method to calculate the GCF values from real signals, 
omitting generation of analytic signals. It has been reported 
that the correct GCF value cannot be calculated using real 
signals due to the presence of the carrier frequency [7]. 
However, the specific problems related to the presence of 
the carrier frequency have not been reported in detail. In 
the present paper, this problem is clarified by theoretically 
comparing cases where the GCF values are calculated from 
real signals and where the GCF values are calculated from 
analytic signals following the conventional method. Then, 
we propose a method to calculate the value equivalent to 
the conventional GCF using real signals. To conclude on 
the applicability of the proposed method, we evaluated the 
GCF values obtained using the channel data acquired from 
a phantom with the ultrasonic diagnostic equipment and the 
B-mode images calculated by the conventional and the pro-
posed methods.

Conventional methods

Coherence‑based beamforming [4, 6–9]

Figure 1a shows the system block diagram for CBB using 
CF. The focused beam is generated from received signals in 
the number of channels connected to the ultrasound diagnos-
tic apparatus. The received signals in channels are converted 
to digital signals discretized in the time direction by analog-
to-digital converters (ADC) and delayed to be in phase for 
waves coming from the focus point. The focused signal 
xin(n) is obtained by the sum of delayed signals s(m, n) , 
where m(m = 0, 1,… ,M − 1) represents the channel number 
corresponding to the element, M represents the number of 
received channels, and n is the sampling number in the time 
direction. CF is calculated from s(m, n) and then used as a 
weighting factor for xin(n) , as described below. As shown 
in Fig. 1, the calculated CF value can be adjusted using a 
look-up table (LUT).

Coherence factor (CF) [4]

The CF value CF(n) [4, 5] is obtained as follows:

The denominator is the total power value (incoher-
ent sum) of the received signals in the channel direction, 

(1)CF(n) =

���
∑M−1

m=0
s(m, n)

���
2

M ⋅

∑M−1

m=0
�s(m, n)�2

.
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and the numerator represents the power value of the DC 
component (coherent sum). As the difference between 
phases of the received signals among channels is small, 
the CF value increases because the numerator, which cor-
responds to the power of the DC component, becomes 
large. If the received signals are completely in phase and 
their amplitudes are equal for all channels, the CF value 
gets the maximum value of 1. However, when the differ-
ence between phases of the received signals among chan-
nels is large, the CF value decreases, because the power 
of the DC component becomes small. CF is large when 

a reflected or scattered wave is received only from the 
focus point. Therefore, by weighting CF to the signal xin(n) 
after applying DAS, xin(n) including unnecessary signals 
is suppressed. However, as CF becomes too small around 
the strong scatterer, the signals from the surrounding dif-
fuse scattering medium are excessively reduced, and a dark 
region artifact is generated [22]. Therefore, to apply CF 
to a B-mode image, it is necessary to adjust the reduction 
effect. In the present paper, similarly to the sign coher-
ence factor (SCF) [8], the index p in Eq. (2) was used as 
a weight:

Fig. 1  a System block diagram for coherence-based imaging. b GCF estimator. c The proposed method  (GCFreal)
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The adjustment by the power p is implemented using 
LUT, as outlined in Fig. 1a.

Generalized coherence factor (GCF) [6]

In a signal received from the diffuse scattering medium, 
the incoherent components are included due to the inter-
ference of ultrasonic waves from many scatterers. There-
fore, the CF value decreases, and weighting of CF reduces 
the brightness value in the region of the diffuse scatter-
ing medium accordingly. To deal with this problem, GCF, 
which is an improvement of CF, has been proposed. Fig-
ure 1b shows the configuration, where the CF estimator 
unit in Fig. 1a is changed to that of GCF. GCF is calcu-
lated from the following equation using the power value 
of the Fourier coefficient c(k, n) obtained using DFT of the 
analytic signal I(m, n) + jQ(m, n) in the channel direction:

where k is the frequency index in the channel direction, and 
k = −K,−K + 1,… , 0,… ,K − 1, (K = M∕2) for an even 
number M . Here, the CF value is calculated from the GCF 
value as CF(n) = GCF(n;0) . While CF is calculated from 
the power value of the DC component c(0, n) , GCF is cal-
culated from the power value of the frequency components 
in the range of 

[
−K0,K0

]
 . Therefore, the decrease in GCF 

caused by the phase fluctuation due to the diffuse scattering 
media is suppressed. The effect on GCF can be adjusted by 
K0 . The GCF value approaches the maximum value of 1 
if the frequency component around DC determined by K0 
is dominant over the entire power spectrum in the channel 
direction. As GCF aims to reduce unnecessary signals, it is 
necessary to set an appropriate value K0 to avoid inclusion of 
frequency components of signals outside of the focal point. 
As K0 becomes larger, unnecessary signal components far 
from DC are included in the numerator of Eq. (3). As a 
result, the GCF value increases, and unnecessary signals 
cannot be suppressed.

For example, the GCF value can be obtained from 
Eq. (3) after calculating c(k, n) for analytic signals in the 
channel direction using the fast Fourier transform (FFT). 
However, as the value of K0 is generally a small number, 

(2)xout(n) = [CF(n)]pxin(n).

(3)GCF(n;K0) =

∑K0

k=−K0
�c(k, n)�2

∑K−1

k=−K
�c(k, n)�2

,

the computational complexity can be reduced by DFT only 
for necessary components. Also, there is no need to cal-
culate DFT for the denominator, because the value can be 
calculated from the squared sum of the received analytic 
signals in the channel direction based on Parseval’s theo-
rem as follows:

where I(m, n) and Q(m, n) are the real and imaginary parts 
of the analytic signal, respectively. Substituting Eq. (4) into 
Eq. (3) provides the follows:

As in the case of CF, the signal xin(n) after applying DAS 
is weighted using the GCF value.

Proposed method

Generalized coherence factor estimated from real 
signal  (GCFreal)

According to the conventional formula, GCF is calculated 
using analytic signals generated from the received signals 
in individual channels. However, as multipliers such as 
mixers and low pass filters are required at a high sam-
pling frequency, the computational complexity becomes 
significantly large when generation of the analytic signal 
is applied to the signal in each element. Therefore, we 
propose a method to calculate GCF based on real signals 
to omit the generation of analytic signals.

First, let us consider the conventional GCF calculation. 
Although we derive analytic signals by Hilbert transform 
here, the same approach can also be applied to the case of 
baseband demodulation. For the delayed signal in channel 
m , the analytic signal calculated by the Hilbert transform 
in the n th direction is expressed as follows:

where A(m, n) is the complex amplitude including the phase 
change in the channel direction, and its absolute value rep-
resents the signal envelope. Here, f  represents the carrier 

(4)
K−1∑

k=−K

|c(k, n)|2 = M ⋅

M−1∑

m=0

|I(m, n) + jQ(m, n)|2,

(5)GCF(n;K0) =

∑K0

k=−K0
�c(k, n)�2

M ⋅

∑M−1

m=0
�I(m, n) + jQ(m, n)�2

.

(6)I(m, n) + jQ(m, n) = A(m, n)exp
[
j2�fnT

]
,
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frequency of the received signal, and T  represents the recep-
tion sampling period. When DFT is applied to the analytic 
signal in the channel direction, the Fourier coefficient c(k, n) 
is expressed as follows:

Consequently, the power value of c(k, n) is calculated by

(7)

c(k, n) =
1

M

M−1∑

m=0

{I(m, n) + jQ(m, n)} exp
[
−j

2mk�

M

]

=
1

M

M−1∑

m=0

A(m, n) exp
[
j2�fnT

]
exp

[
−j

2mk�

M

]

=
1

M
exp

[
j2�fnT

]M−1∑

m=0

A(m, n) exp
[
−j

2mk�

M

]
.

(8)|c(k, n)|2 = 1

M2

||||||

M−1∑

m=0

A(m, n)exp
[
−j

2mkπ

M

]||||||

2

,

Substituting d(k, n) instead of c(k, n) in Eq. (3) provides 
the following:

where notation GCFI(n;K0) is used to distinguish from the 
conventional GCF calculated from the analytic signals. 
The right hand side of Eq. (12) shows the case when the 
denominator is calculated from the real signal s(m, n) simi-
larly as in Eq. (5). Substituting Eq. (11) into Eq. (12) gives 
the following:

As

and

Equation (13) can be rewritten as follows:

where

(11)

|d(k, n)|2 = 1

4
|c(k, n) + c

∗(−k, n)|2

=
1

4

{
|c(k, n)|2 + c(k, n)c(−k, n)

+c∗(k, n)c∗(−k, n) + |c∗(−k, n)|2
}
.

(12)

GCFI(n;K0) =

∑K0

k=−K0
�d(k, n)�2

∑K−1

k=−K
�d(k, n)�2

=

∑K0

k=−K0
�d(k, n)�2

M ⋅

∑M−1

m=0
�s(m, n)�2

,

(13)GCFI(n;K0) =

∑K0

k=−K0

�
�c(k, n)�2 + c(k, n)c(−k, n) + c∗(k, n)c∗(−k, n) + �c∗(−k, n)�2

�

∑K−1

k=−K

�
�c(k, n)�2 + c(k, n)c(−k, n) + c∗(k, n)c∗(−k, n) + �c∗(−k, n)�2

� .

(14)
K0∑

k=−K0

|c(k, n)|2 =
K0∑

k=−K0

|c∗(−k, n)|2

(15)

K0∑

k=−K0

{c(k, n)c(−k, n) + c
∗(k, n)c∗(−k, n)}

= 2

K0∑

k=−K0

Re{c(k, n)c(−k, n)},

(16)

GCFI(n;K0) =

∑K0

k=−K0
�c(k, n)�2 +

∑K0

k=−K0
Re[c(k, n)c(−k, n)]

∑K−1

k=−K
�c(k, n)�2 +

∑K−1

k=−K
Re[c(k, n)c(−k, n)]

=
p(−K0,K0, n) + x(−K0,K0, n)

p(−K,K − 1, n) + x(−K,K − 1, n)
,

(17)p(k1, k2, n) =

k2∑

k=k1

|c(k, n)|2,

where it has no terms depending on f  . Then, GCF is calcu-
lated by substituting Eq. (8) into Eq. (3) or Eq. (5). The term 
that changes in the n th direction in Eq. (8) is only A(m, n) . 
As A(m, n) is the complex amplitude of the envelope, the 
change is gradual compared to f  . In the case of baseband 
demodulation, there is no carrier frequency component in 
Eq. (6), and as a result, the power value of c(k, n) is the same 
as in Eq. (8).

Next, let us consider the case when GCF is calculated 
from the Fourier coefficients obtained by DFT for the real 
signal I(m, n) . As the real signal is represented by

the Fourier coefficient d(k, n) of I(m, n) is represented by

Therefore, the power value of d(k, n) is expressed as 
follows:

(9)
I(m, n) =

1

2

[
{I(m, n) + jQ(m, n)} + {I(m, n) + jQ(m, n)}∗

]
,

(10)d(k, n) =
1

2
{c(k, n) + c∗(−k, n)}.
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In Eq. (16), the cross term represented by Eq. (18) is 
added to the denominator and numerator in Eq. (3). As 
the term in Eq. (17) is equivalent to the denominator and 
numerator in Eq. (3), it is expressed as a GCF term in 
the present paper. The term c(k, n)c(−k, n) in Eq. (18) is 
calculated by

where there is a component of frequency 2f  in the time ( n
th) direction. Due to this component, GCFI(n) has oscillation 
of 2f  , which does not appear in the GCF value calculated 
from the analytic signals. To calculate  GCFreal equivalent to 
GCF by removing this unnecessary cross term, we used the 
finite impulse response low pass filter (FIR-LPF) with the 
coefficient fLPF(l), (l = −L,… , L) for the n th direction, as in 
the following equation:

Figure 1c shows a block diagram for estimating  GCFreal 
in the CF estimator unit presented in Fig. 1a. Compared to 
Fig. 1b, the Hilbert transformer at each channel is elimi-
nated, and LPF is added after the denominator and numera-
tor calculations. As LPF is the processing after which the 
channel signals are delayed and summed, the number of cal-
culations can be reduced to approximately 2/(channel num-
ber) when the computational load of the Hilbert transform 
for one channel is comparable to LPF.

Results and discussion

Experimental setup

To verify the proposed method, the RF data were acquired 
from 96 channels using the ultrasound diagnostic system 
ProSound α10 (Hitachi, Tokyo, Japan). The measurement 
object was a multipurpose phantom 403 GS-LE (Gammex, 

(18)x(k1, k2, n) =

k2∑

k=k1

Re[c(k, n)c(−k, n)].

(19)

c(k, n)c(−k, n) =
1

M2
exp

[
j4�fnT

]M−1∑

m=0

A(m, n)

exp

[
−j

2mkπ

M

]M−1∑

m=0

A(m, n)exp
[
j
2mkπ

M

]
,

(20)

GCFreal(n;K0) =

∑L

l=−L

�
fLPF(l) ⋅

�∑K0

k=−K0
�d(k, n − l)�2

��

∑L

l=−L

�
fLPF(l) ⋅

�∑K

k=−K
�d(k, n − l)�2

��

=

∑L

l=−L

�
fLPF(l) ⋅

�∑K0

k=−K0
�d(k, n − l)�2

��

∑L

l=−L

�
fLPF(l) ⋅

�
M

∑M−1

m=0
� s(m, n − l)�2

�� .
WI, USA). In this experiment, we set M = 96 and K = 48 . 
The GCF and  GCFreal values were calculated offline using 
the acquired RF data and compared to each other, and 
B-mode images weighted according to the obtained values 
were also constructed. As GCF has better CNR than other 
factors in the case of uniform scattering media [12], a 60R 
convex probe (UST-9130, 3.5 MHz, element pitch 0.38°) 
mainly used for observation of the abdomen, where there 
are many regions of diffuse scattering media, was employed 
in the experiment. The transmitting center frequency was 
5 MHz, and the depth of the transmitting focus position was 
105 mm from the probe surface. The sampling frequency of 
the RF data was 20 MHz. Figure 2a shows a B-mode image 
obtained by the conventional DAS. The image consists of 
312 received scanning lines in the range of a viewing angle 
of 60°. We analyzed the signals of the scanning lines in the 
three regions of interest (ROI) shown in the B-mode image. 
Region A contained a wire target. Region B was shifted by 
six scanning lines (about 2 mm (1.1°) from the wire target) 
in the azimuth direction with respect to region A. Region C 
contained a diffuse scattering medium. All three ROIs were 
set at the same depth (42–52 mm). As shown in Fig. 2b, the 

Fig. 2  a Original B-mode image (delay and sum). The blue line A 
shows the ROI containing the wire target. The red line B shows the 
ROI shifted about 2 mm (1.1°) in the azimuth direction with respect 
to the wire target. The yellow line C shows the ROI of the diffuse 
scattering medium. b Schematic diagram showing the transmit and 
receive aperture used in each ROI



185Journal of Medical Ultrasonics (2020) 47:179–192 

1 3

transmitting and receiving aperture used for measuring each 
ROI were set such that the lateral position of each ROI was 
located in the center of the aperture.

Channel data and power spectrum in each ROI

In this section, we discuss the channel data s(m, n) and the 
power spectrum |c(k, n)|2 used for the GCF estimation in 
each ROI. Figure 3a–c show the channel data s(m, n) in ROIs 
A, B, and C after delayed processing. Figure 3d–f show the 
absolute values of the analytic signal I(m, n) + jQ(m, n) 
obtained by the Hilbert transform of s(m, n) for each m in 
the n th direction, and their phases are shown in Fig. 3g–i. 
Figure 3j–l show the power spectra obtained by DFT of 
the analytic signals in the m th direction for each n , and the 
DC component ( k = 0 ) is shown by the white dashed lines. 
The display range ([MIN, MAX]) differs depending on the 
ROI, except for Fig. 3g–i. The GCF values were calculated 
from |c(k, n)|2 in Fig. 3j–l using Eq. (3). In Fig. 3a, d, g for 
ROI A, after the signals from the wire target were received 
and delayed, they were aligned in the m th direction as the 
position of the receiving focus matched the position of the 
wire target. Therefore, the power value from the wire tar-
get was concentrated on the DC component, and the other 
frequency components were minor, as shown in Fig. 3j. In 
Fig. 3b, e, h for ROI B, the position of the wire target and 
the receiving focus position do not coincide. Therefore, after 
delayed processing, the reception time of the reflected waves 
from the wire target was shifted for m , and the phases in the 
m th direction changed. Received signals in ROI C shown 
in Fig. 3c, f, i tended to be in phase in the m th direction. 
However, as the scattered waves from many scatterers inter-
fere, the phases fluctuated, as can be seen in comparison 
to Fig. 3g. Therefore, the power spectrum in Fig. 3l was 
distributed around DC and was observed to have a wider 
bandwidth than that presented in Fig. 3j.

Characteristic of cross term

Once the Fourier coefficient c(k, n) is obtained, the cross 
term x(k1, k2, n) in Eq. (18), which has to be removed in 
Eq. (16), can be calculated. To confirm the necessity of the 
cross term reduction by LPF and its effect, we compared 
magnitudes of the cross term and the GCF term. As men-
tioned above, when reducing unnecessary signals by GCF, 
K0 should be set to an appropriate value. Here, to investigate 
the cross term, two cases of K0 = 1 and K0 = 5 were exam-
ined. Figure 4Ia–c show the GCF term p(−1, 1, n) and the 
cross term x(−1, 1, n) values calculated for K0 = 1 in ROIs 
A, B, and C. If GCF is calculated from real signals, the sum 
of GCF and cross terms are calculated as shown in Eq. (16). 
Also, the power spectra by DFT in the n th direction for the 

signals are shown in Fig. 4IIa–c. In ROI A, the peak of the 
cross term was about − 10 dB with respect to the peak value 
of the GCF term (i.e., power of the DC component), while it 
was as small as about − 20 dB in ROIs B and C. To illustrate 
this difference quantitatively, the ratio of the squared sum 
of the cross term to the GCF term was calculated from the 
following equation in each ROI:

where N1 and N2 represent the sample numbers at the top 
and bottom in each ROI, respectively. The cross term of the 
numerator oscillates at 2f  , while there is less fluctuation in 
the GCF term of the denominator, which is the power value 
of the envelope. Therefore, even if the cross term of the 
numerator and the GCF term of the denominator have the 
same amplitude, the power value of the cross term is half 
of that of the GCF term. Thereby, the maximum value of 
r(k1, k2) is 0.5. The value of r(−1, 1) in each ROI is shown 
in Table 1. As it was close to the maximum value of 0.5 in 
ROI A, the amplitude value of the cross term was almost the 
same as that of the GCF term. r(−1, 1) in ROIs B and C were 
close to each other. Figure 5 shows the GCF term p(−5, 5, n) 
and the cross term x(−5, 5, n) , and those of power spectra for 
K0 = 5 in ROIs A, B, and C. The ratio r(−5, 5) is also pre-
sented in Table 1. For ROI A, both amplitudes of the GCF 
term and the cross term were equivalent in the case of K0 = 1. 
However, in ROI B, the peak value of the cross term in the 
power spectrum was about − 30 dB with respect to the GCF 
term, as shown in Fig. 5IIb, and it can be seen that r(−5, 5) 
is considerably smaller than those corresponding to the other 
ROIs. In ROI C, r(−5, 5) is slightly smaller than r(−1, 1).

Considering the above results, we can conclude on the 
difference between K0 = 1 and K0 = 5 in each ROI. As can 
be seen in Fig. 3j, the power value of the signal in ROI 
A, where the wire target was included, is concentrated at 
DC ( k = 0 ) in the power spectrum. Therefore, changing the 
value of K0 from 1 to 5 does not lead to significant changes 
in either the GCF term or the cross term. Moreover, assum-
ing that the signal component at k = 0 is dominant, the GCF 
term in Eq. (8) and the envelope of the cross term in Eq. (19) 
have the same amplitude despite the fact that the cross term 
oscillates at 2f  . In ROI B (Fig. 3k), as the signal compo-
nent from the wire target hardly exists in the narrow range 
of K0 = 1, the signal from the diffuse scattering medium on 
the focal point is dominant. Therefore, r(−1, 1) in ROI B 
was equivalent to that in ROI C. In the case of K0 = 5, the 
frequency component, which was biased to the positive side 
by the reflected wave from the wire target, was included in 
the range of [ −K0,K0] , as shown in Fig. 3k. Therefore, the 
cross term calculated from multiplication of the positive and 

(21)r(k1, k2) =

∑N2

n=N1

��x(k1, k2, n)��
2

∑N2

n=N1

��p(k1, k2, n)��
2
,
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negative frequency components was smaller compared to 
that of the GCF term. In ROI C, r(−5, 5) was lower than 
r(−1, 1) . This is because the observation range of the power 
spectrum at K0 = 1 is narrower than the one at K0 = 5, and the 
influence of the DC component ( k = 0 ), where the GCF term 
and the envelope of the cross term have the same amplitude, 
became dominant.

As mentioned above, the GCF value becomes smaller in 
the case of setting K0 in such way that the component of the 
unnecessary signal is not included in the range of [ −K0,K0] . 
Therefore, in the case of ROI B, K0 should be set to avoid 
inclusion of the signal from the wire target. For this reason, 

K0 = 1 is preferable in this experimental data. Furthermore, 
there are few situations where only a strong reflector like 
a wire target exists in a human body. In general, due to the 
presence of similar scatterers around it, the spectrum has a 
bandwidth similar to that shown in ROI C (Fig. 3l). Therefore, 
within a narrow range such as K0 = 1, the frequency compo-
nent is less biased to positive or negative sides. Consequently, 
there are few regions where the cross term becomes smaller, 
as shown in Fig. 5Ib and IIb. In most of the data obtained from 
the biological object, the cross terms cannot be ignored, and 
their reduction by LPF is essential. If the cross term remains, 
the  GCFreal value differs from that of the conventional GCF, 
and there is a possibility that speckle noise may be empha-
sized by the presence of high-frequency components.

Fig. 3  Delayed RF signals and their analytic signals in each ROI. a–c 
show RF signals in ROIs A, B, and C. d–f show amplitude values of 
analytic signals generated from (a)–(c). g–i show phases of analytic 
signals generated from (a)–(c). j–l show power spectra obtained by 
DFT in the m-th direction on analytic signals generated from (a)–(c)

◂

Fig. 4  GCF term p(−1, 1, n) and 
cross term x(−1, 1, n) values 
in ROIs Ia A, Ib B, and Ic C. 
Power spectra obtained by DFT 
in the n-th direction with respect 
to ROIs IIa A, IIb B, and IIc C
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Cross term reduction by FIR‑LPF

Here, the effect of reducing the cross term by applying 
FIR-LPF in Eq. (20) is discussed, considering the case of 
K0 = 1 , which is effective for reducing unnecessary sig-
nals. As shown in Eq.  (8), the GCF term has only low-
frequency components in the n th direction, because it has 
no carrier frequency component. As the center frequency 
of the acquired data was approximately 3 MHz, that of the 
cross term is considered to be distributed around 6 MHz 

according to Eq. (19). For all of the power spectra shown 
in Figs. 4 and 5, it was confirmed that the GCF term was 
distributed around the DC component, and the cross term 
was distributed around 6 MHz. Therefore, the cross term was 
reduced using an 8th-order FIR-LPF with a cutoff frequency 
of 3 MHz. Figure 6Ia–c show the results of applying LPF to 
the numerator values p(−1, 1, n) + x(−1, 1, n) in Eq. (16) in 
ROIs A, B, and C. The value of p(−1, 1, n) obtained by the 
conventional GCF and that of LPF

[
p(−1, 1, n) + x(−1, 1, n)

]
 

obtained by the proposed method were in agreement for all 
ROIs. Although the reduction effect of the cross term was 
different depending on the frequency characteristics of LPF, 
the differences were minor, and the correlation coefficients 
of p(−1, 1, n) and LPF

[
p(−1, 1, n) + x(−1, 1, n)

]
 were suf-

ficiently high (0.99 or more in each ROI) in the 8th-order 
FIR-LPF. Figure 6IIa–c show the power spectra obtained by 
DFT in the n th direction in Fig. 6Ia–c. In addition, the power 
spectra of the signal p(−1, 1, n) + x(−1, 1, n) before LPF and 

Table 1  Ratio of the squared sum of the cross term to the GCF term 
r(k1, k2)

ROI A ROI B ROI C

r (− 1,1) 0.482 0.289 0.285
r (− 5, 5) 0.463 0.002 0.127

Fig. 5  GCF term p(−5, 5, n) and 
cross term x(−5, 5, n) values 
in ROIs Ia A, Ib B, and Ic C. 
Power spectra obtained by DFT 
in the n-th direction with respect 
to ROIs IIa A, IIb B, and IIc C
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the frequency characteristic of the 8th-order FIR-LPF are 
shown in Fig. 6IIa–c. It can be confirmed that the frequency 
component of the cross terms was reduced, and the GCF 
term became dominant after applying LPF.

Comparison of  GCFreal and GCF

Figure 7a, b, c show the values of the proposed  GCFreal 
obtained from Eq. (20) and the conventional GCF obtained 
from Eq. (5) at K0 = 1 adopted as outlined in Fig. 6.  GCFreal 
and GCF were close to each other, and the correlation coef-
ficient of them showed 0.99 or more in each ROI. The vicin-
ity of nT = 60�s . corresponds to the time, where the sig-
nals from the wire target were received. In ROI B, the value 
became almost 0 around nT = 60�s , and it can be concluded 

that the output signal including the signal received from 
outside of the focus point was suppressed by weighting of 
 GCFreal. However, as the  GCFreal values were too small, the 
use of these values as the weight values resulted in the dark 
region artifact [22]. Therefore, adjustment of the GCF values 
by the power p in Eq. (2) is required to apply weighting. 
Figure 7d shows a B-mode image obtained by DAS, and 
Fig. 7e, f show B-mode images weighted by  GCFreal and 
GCF at p = 0.2 . The dynamic range of each image is 80 dB. 
Sidelobes were generated in the azimuth direction for wire 
targets in Fig. 7d; however, they were reduced in Fig. 7e, 
f. As a representative example, the intensity profiles in the 
azimuth direction at the depth of the wire target surrounded 
by the green square in Fig. 7d are shown in Fig. 7g. Regard-
ing  GCFreal and GCF, it can be confirmed that the sidelobe 
generated around the wire target was reduced, while the 

Fig. 6  Ia–Ic Signals and IIa–
IIc power spectra in which 
cross terms have been reduced 
by low-pass filtering for signals 
of p(−1, 1, n) + x(−1, 1, n) . Ia 
and IIa show results for ROI A, 
Ib and IIb show results for ROI 
B, and Ic and IIc show results 
for ROI C
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brightness of the wire target was at the same level as in the 
DAS. The CNR values were calculated from the following 
equation [23] using the brightness values after log compres-
sion in the yellow ROI as region 1, and the red ROI as region 
2, as shown in Fig. 7d:

where �1 and �1 are the average brightness and the stand-
ard deviation of region 1, respectively, and �2 and �2 
are those of region 2. The CNR values in the respective 
images are 2.29, 2.65, and 2.64 for DAS,  GCFreal, and GCF, 

(22)CNR =
||�1 − �2

||√
�
2
1
+ �

2
2

,

respectively. Therefore, the CNR improvement effect of the 
proposed method was equivalent to that of the conventional 
GCF. It was confirmed that the computational complexity 
for applying FIR-LPF in the proposed  GCFreal calculation 
was approximately 1/50 compared with that for generating 
the analytic signals in all channels in the conventional GCF 
calculation so that the computational complexity can be 
drastically reduced by the proposed method. The quality of 
the B-mode image weighted by the proposed  GCFreal was 
equivalent to that weighted by the conventional GCF. Here, 
the computational complexity indicates the number of cal-
culations for generating the analytic signals in all channels, 
which is only used in the conventional method, or applying 
FIR-LPF, which is only used in the proposed method.

Fig. 7  GCFreal and GCF values 
calculated in ROIs a A, b 
B, and c C. B-mode images 
generated by d DAS and those 
weighted by e  GCFreal and f 
GCF. The dynamic range of 
each image is 80 dB. g Lateral 
amplitude profiles in the depth 
of the wire target are shown by 
the green square in (d)
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The conventional GCF has the advantage of reducing the 
sampling frequency when using baseband demodulators. 
Reducing the sampling frequency is equivalent to reducing 
the number of subsequent GCF value calculations. The con-
ventional GCF is composed of analytic signal generation and 
GCF value calculation, whereas the proposed method only 
needs  GCFreal value calculation. The analytic signal genera-
tion needs to filter the signals in the time ( nth) direction for all 
channels. Therefore, the number of multiplications required 
per pixel is LfM , where Lf  is the number of filter coefficients 
and M is the number of received channels. On the other hand, 
the processing for the channel signals in the  GCFreal value 
calculation is DFT and power value calculation in the chan-
nel ( mth) direction. Therefore, the number of multiplications 
required per pixel is 

(
2K0 + 1

)
M +M = 2

(
K0 + 1

)
M , where 

K0 = 1 was used in the present paper. In general, since Lf  is 
larger than 2

(
K0 + 1

)
 , the number of calculations is smaller 

in the  GCFreal value calculation than in the analytic signal 
generation. Therefore, the number of calculations in the pro-
posed method is small even when compared with the conven-
tional GCF, in which the sampling frequency is reduced by 
baseband demodulation.

Conclusions

Adaptive beamforming based on GCF can reduce unnec-
essary signals without reducing CNR. However, in this 
method, it is necessary to generate analytic signals for 
the received signals in individual channels, and, therefore, 
the computational complexity increases compared to the 
conventional DAS beamforming. In the present paper, 
we proposed a method to calculate the values equivalent 
to that of the conventional GCF method using only real 
signals. The proposed method can omit the generation of 
analytic signals without deteriorating the accuracy of the 
GCF value. Additional processing is required in terms of 
applying only FIR-LPF after DAS. Regarding this part, 
the computational complexity can be reduced to approxi-
mately 2/(receive channel number) as compared to the con-
ventional GCF method. The proposed method can improve 
the feasibility of small and low-end models of ultrasonic 
diagnostic apparatuses. There are two factors that increase 
the computational complexity of conventional GCF com-
pared to DAS. One is the generation of analytic signal 
in each channel, and the other is the part that calculates 
the GCF value by DFT in the channel direction for each 
pixel. In the present paper, we focused on the former and 
succeeded to omit the generation of analytic signals. In 
future research, we will consider the latter by developing 
a method to further reduce the computational complexity 
of the GCF calculation units.
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