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Accurate measurement of elasticity of the radial artery wall considering changes
in cross-sectional shape of artery caused by pushing pressure applied by
ultrasound probe
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For the early diagnosis of atherosclerosis, our group developed an ultrasound probe that can simultaneously measure blood pressure and vessel
diameter at the same position. However, because the developed probe requires the blood vessel to be deformed by pushing to measure the blood
pressure, it affects the estimation of the vessel’s elastic modulus. In the present study, we derived a series of equations to estimate the elastic
modulus of a blood vessel considering the pushing pressure applied by the ultrasound probe and the resultant deformation of the blood vessel. The
validity of the proposed method was verified by numerical calculations, and then the method was applied to in vivo measurements. The proposed
method resulted in fewer variations in the elastic modulus estimates with different pushing pressures compared with the conventional method.

© 2022 The Japan Society of Applied Physics

1. Introduction

Cardiovascular diseases, including ischemic heart disease and
stroke, are the leading cause of death worldwide.1) The main
cause of cardiovascular diseases is atherosclerosis. It has
been clinically diagnosed using several techniques, including
intravascular ultrasound2) and X-ray imaging.3) However,
these techniques are not noninvasive. Alternatively, pulse
wave velocity,4) ankle-brachial index,5) cardio-ankle-brachial
index,6) stiffness parameter,7) and elasticity8) have been
proposed as noninvasive diagnostic methods for athero-
sclerosis. However, these methods can only be applied to
diagnose advanced-stage atherosclerosis, which is irrever-
sible. At the early stage of atherosclerosis, vascular endothe-
lial dysfunction occurs, and it is possible to be completely
cured of atherosclerosis by medication and/or lifestyle
improvement.9) Therefore, early diagnosis is important.
Plethysmography10,11) and the flow-mediated dilatation

(FMD) test12–14) are the main clinical methods used to
evaluate vascular endothelial function. In plethysmography,
vascular endothelial function is evaluated by measuring the
changes in blood flow caused by injecting a vasodilator such
as acetylcholine into the blood vessel. In the FMD test,
vascular endothelial function is evaluated by ultrasonically
measuring the dilatation ratio %FMD of the arterial diameter
after releasing the avascularization to that at rest. As the FMD
test is simple and non-invasive, it has been widely adopted by,
for example, the Framingham Heart Study, and the clinical
data on the relationship between %FMD and various risk
factors have been accumulated worldwide.15,16) However, the
distance resolution of the ultrasound measurement is 0.15 mm
with a typical 10 MHz ultrasound probe. For healthy subjects,
the %FMD is about 6% or more, which corresponds to only
0.24–0.30 mm when the diameter of the vessel is 4–5 mm.
Accurate evaluation of the %FMD is difficult.
Furthermore, a change in the diameter of an artery due to

endothelial function is caused by changes in the mechanical
properties of the arterial wall; however, these changes cannot
be used to directly evaluate endothelial function. A method
for evaluating endothelial function by analyzing the pulse

wave waveforms in the radial artery has also been
studied,17,18) referring to a method to estimate stiffness
parameters from the pulse wave analysis.19) However, this
method also indirectly evaluates endothelial function because
it evaluates the features of the pulse wave waveform.
In the FMD response, an increase in blood flow produces

the vasodilator nitric oxide (NO), which decreases the
elasticity of the arterial wall and increases the arterial
diameter.20,21) If the decrease in the vascular elasticity caused
by NO can be noninvasively measured, direct evaluation of
vascular endothelial function can be achieved.
Our group has focused on ultrasonic measurement of the

relationship between the changes in the strain of the vessel
wall and the blood pressure during one heartbeat to estimate
the changes in the elastic and viscous moduli during
FMD.22–25) However, accurate viscoelasticity measurements
were difficult because the measurement positions of the
vessel diameter for the calculation of the strain and the
pressure waveform were different.
Sakai et al. proposed a method for measuring the blood

pressure waveform and the strain of the vessel wall at the same
position by a correction determined from the delay between the
pressure waveforms measured by two pressure sensors, where
the ultrasound probe for the strain measurement was placed at
the center of the two pressure sensors.26,27) However, it was
difficult to accurately determine the delay between the two
pressure waveforms because it depends on the instantaneous
pressure of the pressure waveforms.
Therefore, our group has developed an ultrasound probe

that can simultaneously measure the blood pressure wave-
form and the change in the vascular diameter at the same
position.28,29) Furthermore, we have proposed a method for
measuring viscoelasticity over time by calibrating the blood
pressure waveform at rest in advance,30) and have measured
the changes in viscoelasticity at the radial artery during the
FMD.31) However, the voltage output from the center
element of the probe depends on the pressure applied by
the ultrasound probe during the measurement.
Therefore, we introduced the pulse transit time method to

determine the blood pressure, as it is not affected by the
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absolute value of the acquired voltage output, and a stable
blood pressure measurement was achieved with it during the
FMD.32) However, the changes in the cross-sectional shape
of the vessel caused by the pushing pressure applied by the
ultrasound probe still had an effect on the viscoelasticity
estimation.
Therefore, to consider the effect of the deformation of the

arterial cross-section from a circular to an elliptical shape
caused by the pushing of the ultrasound probe, we derived a
series of equations to estimate the elastic modulus33) based on
the derivation of the equations for estimating the elastic
modulus of the artery with a circular shape proposed by
Hasegawa et al.34)

In the present study, we applied the derived equations to
estimate the elastic modulus using in vivo measurements.
The elastic modulus was estimated by measuring the changes
in the vessel diameter and blood pressure in the radial artery
during one heartbeat when different pushing pressures were
applied by the ultrasound probe. From the experiments
conducted with a healthy subject, it was confirmed that the
estimates of the elastic modulus obtained using the derived
equations were similar regardless of the change in the cross-
sectional shape of the vessel caused by the pushing pressure
applied by the ultrasound probe.

2. Experimental methods

The pushing by the probe to measure the blood pressure
using the center element of the developed ultrasound probe
causes deformation of the cross-sectional shape of the blood
vessel.28,29) By assuming that the cross-sectional shape of the
vessel after deformation is elliptical, a series of equations that
can be used to estimate the elastic modulus under the pushing
by the ultrasound probe was derived. In general, the relation-
ships among the elastic modulus E, incremental stress sD ,
and incremental strain eD of viscoelastic material in a
cylindrical coordinate system are given by:35)
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where qr, , and z are the direction of the vessel wall, the
circumferential direction of the vessel wall, and the axial
direction of the vessel, respectively, as shown in Fig. 1, and n
is Poisson’s ratio. As the vessel is strongly constrained in the
axial direction in vivo, the incremental axial strain sD z can be
ignored. In the present study, the vessel wall was assumed to
be isotropic, that is, = = =qE E E E .r z Moreover, assuming
that the strain caused by the heartbeat is incompressible
( /n = 1 2), Eqs. (1)–(3) can be rewritten as
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From Eq. (6),
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By rearranging Eqs. (4) and (5) for E and substituting Eq. (7)
into them, we obtain
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Thus, the elastic modulus E can be estimated from eD r or
eD q, sD ,r and sD q.
Let us now consider the case in which the radial artery is

deformed by a change in internal pressure p1 due to a heartbeat
under the pushing pressure p3 applied by the ultrasound probe.
The cross-sectional shape of the artery is assumed to deform from
a circular to an elliptical shape with a long radius b and a short
radius a because of the uniform pressure p3 acting on the upper
surface of the artery in the y direction, as shown in Fig. 2(a).
Figure 2(b) shows a magnified view of a small region of the
vessel, where p2 is the atmospheric pressure, T is the tension
acting along the circumferential direction f of the wall, r is the
curvature radius of the region of the vessel, and h is the thickness
of the vessel wall. The intravascular pressure p1 is assumed to
be uniformly applied regardless of f. The thickness h of the
vessel wall was assumed to be constant during the transformation
of the cross-sectional shape of the vessel from a circle to an
ellipse. The tension T acting along the circumferential direction
of the wall is not uniform because the cross-sectional shape of the
vessel is an ellipse, and it changes even for the region.
From the balance among the forces acting on the region in

the x direction and the y direction, Eqs. (10) and (11) are
obtained as follows:

( ) ( ) ( )f f f f- - + +T d T dT dsin sin

( )f f+ - =p dL p dLcos cos 0, 101 1 2 2

( ) ( ) ( )f f f f- - + + +T d T dT dcos cos

( )f f f+ - - =p dL p dL p dLsin sin sin 0, 111 1 2 2 3 2

Fig. 1. (Color online) Schematic of the cylindrical coordinate system in a
blood vessel.

SG1042-2 © 2022 The Japan Society of Applied Physics

Jpn. J. Appl. Phys. 61, SG1042 (2022) Y. Shoji et al.



where dL1 and dL2 are the lengths of PP′ and QQ′,
respectively, and are given by

( )r f=dL d2 , 121

( ) ( )r f= +dL h d2 . 132

By substituting Eqs. (12) and (13) into Eqs. (10) and (11), we
obtain
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By expanding these equations using the additive theorem of
trigonometric functions and the approximations

/f f f f= = -d d d dsin and cos 1 2,2 where fd is assumed
to be minute, we obtain
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By approximating these equations to first-order equations in
terms of fd and dT , and rearranging them in terms of dT , we
obtain
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Eliminating dT by substituting Eq. (19) into Eq. (18) and
rearranging in terms of T gives
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Assuming that the circumferential stress is uniform along the
through-wall direction, the circumferential stress sq is ob-
tained by dividing the tension T of Eq. (20) by the wall
thickness h:
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On the other hand, because the through-wall stress sr equals
-p1 at PP′ in the inner wall and it equals the sum of –p2 and
the through-wall component of -p3 at QQ′ in the outer
wall, assuming the through-wall stress sr is distributed
uniformly in the direction of the through-wall, then sr is
given by the average values of p1 and the sum of p2 and

fp cos3 considering the balance of forces:

( ) ( )s f= - + +p p p
1

2
cos . 22r 1 2 3

By rewriting Eqs. (21) and (22) using a b, , and q shown in
Fig. 2(a) instead of the curvature radius r, fcos , and ftan , we
obtain
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Thus, sq and s ,r which are required for estimating the elastic
modulus E, are calculated from a, b, the angle q of the region
from the y axis, p ,1 p ,2 and the pushing pressure p3 applied
by the ultrasound probe.
By subtracting the stresses sq and sr at diastole from at

systole, the incremental stresses sD q and sD r can be
obtained. The elastic modulus E is estimated by substituting
sD q and sD ,r and the circumferential strain eD q measured by

ultrasound into Eq. (9).

(a)

(b)

Fig. 2. (Color online) Cross-section of the blood vessel deformed into an
ellipse by a uniform pressure. (a) Schematic of the cross-section of a blood
vessel and (b) magnified view of the small portion of the blood vessel wall.
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The process of estimating the elastic modulus in the actual
measurements is now described. To estimate the elastic
modulus, the value of the circumferential strain eD q is
required. However, eD q cannot be measured directly. Using
the change in the short radius b of the vessel obtained by
applying the phased-tracking method36) to the RF signal of
the beam passing through the center of the vessel, as in the
conventional method,30–32) eD q can be obtained as the ratio
of the change in circumference to the original circumference:

( )e
p p

p
D =

-
=

-
q

b b

b

b b

b

2 2

2
, 25

sys dias

dias

sys dias

dias

where bsys and bdias denote the short radii at systole and
diastole, respectively, and the small region is a part of a circle
with radii bsys or b .dias

When the strain eD q is defined along the beam passing
through the center of the vessel ( )q = 0 , the stress should
also be calculated at q = 0 , and Eqs. (23) and (24) are given
by

( ) ( ) ( )s = - - - +q
a

bh
p p p p p , 26

2

1 2 3 2 3

( ) ( )s = - + +p p p
1

2
. 27r 1 2 3

Therefore, the circumferential stress sq and through-wall
stress sr are determined from a b h p p, , , , ,1 2 and p ,3 each
of which is measured as follows.
Figure 3(a) shows the B-mode image of the radial artery of

a healthy subject. Figure 3(b) shows the normalized envel-
oped amplitude of the RF signals along the beam passing
through the center of the vessel, as shown by the white line in
Figs. 3(a)–3(c) shows the normalized enveloped amplitude of
the RF signals along the red line in Fig. 3(a). From these
figures, a and b were determined as 2.1 mm and 1.09 mm,
respectively.
The change in b, -b b ,sys dias of Eq. (25) was measured by

applying the phased-tracking method36) to the RF signal
along the white line in Fig. 3(a). p1 was measured by the

center element of the developed ultrasound probe28,29) with a
center frequency of 7.5 MHz. The atmospheric pressure p2
was assumed to be 1013.25 hPa in the present study. p3 was
measured by the pressure sensors separately attached to the
ultrasonic probe, as described below in Fig. 4.
It is difficult to accurately measure the wall thickness h of

the radial artery in vivo by ultrasound at 7.5 MHz owing to
the lack of distance resolution. Therefore, in the present
study, the wall thickness of the subject’s radial artery was
separately measured in advance using another ultrasound
probe with a center frequency of 40 MHz, and
=h 0.235 mm was used for the subject.

3. Experiments

3.1. Validation of the proposed equations by
numerical calculations
We assumed that the pushing pressure p3 was a constant
during one heartbeat because the ultrasound probe was fixed
for the measurement. On the other hand, the shape of the
blood vessel changes between systole and diastole, and the
stress sq of Eq. (26), which includes a and b, is affected at
q = 0 . In the present study, therefore, the derived equations
for the estimation of elasticity during one heartbeat were
confirmed by the following numerical calculations using the
actual measured values of the intravascular pressure p1= 106
mmHg, long radius asys= 1.1 mm, and short radius

=b 0.81 mmsys of the radial artery in systole, and
p1= 55 mmHg, adias= 1.1 mm, and bdias= 0.71 mm in
diastole. By assuming that the pressure p3 was greater than
p1 in diastole because the vessel was deformed by the
ultrasound probe, =p 70 mmHg3 was employed. These
values were substituted into Eq. (26).
First, to examine the relationship between the circumfer-

ential stress sq and the position x on the arterial cross-section,
sq at systole and diastole, and the incremental stress sD q from
diastole to systole were obtained for various values of q from
0 to 180 using Eq. (26). Next, to examine the relationship
between the circumferential stress sq and the vessel shape,
sD q from diastole to systole was obtained for various aspect

(a) (b)

(c)

Fig. 3. (Color online) Calculation of the short and long radius of the vessel. (a) B-mode image of the radial artery, (b) normalized enveloped amplitude at the
beam through the center of the vascular lumen, and (c) normalized enveloped amplitude at the depth of the center of the vascular lumen.
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ratios /a b of the vessel shape from 1 to 3. Finally, to examine
the relationship between sq and the pushing pressure p ,3 sD q
from diastole to systole was obtained for various pressure
values p3 from 0 to 150 mmHg using Eq. (26), with q = 0 .
3.2. In vivo experiment
Figure 4(a) shows a schematic of the entire experimental
system, and Fig. 4(b) shows a photograph of the ultrasound
probe. The long radius a of the vessel, the short radius b of
the vessel, and the blood pressure p1 were measured in the
right radial artery using the developed ultrasound probe.28,29)

The output from the piezoelectric element at the center of
the ultrasound probe was passed through an amplifier with an
amplification factor of 40 dB and a low-pass filter with a
cutoff frequency of 30 Hz, and the blood pressure waveform
was obtained by integrating the waveform. The measurement
position was set such that the center of the probe was just
above the radial artery while viewing the B-mode image. As
the measured blood pressure waveform was output as a
voltage, the absolute value of the blood pressure at systole
and diastole measured by a sphygmomanometer and the
absolute value of the waveform were calibrated by the pulse
transit time method.32) In the ultrasound measurement, the
center frequency, sampling frequency, and frame rate were
set to 7.5 MHz, 40 MHz, and 252 Hz, respectively. The long
and short radii of vessels a and b were measured at systole
and diastole, respectively. Electrocardiograms were also
obtained.
The pushing pressure p3 applied to the radial artery by the

ultrasound probe was measured using four pressure sensors

(Kyowa, PS-1KC). A probe holder consisting of the upper
and lower parts that enclosed the ultrasound probe was
fabricated, and four pressure sensors were placed between
the two parts, as shown in Fig. 4(c). The ultrasound probe
was fixed to the lower part of the probe holder, and the upper
part could freely move up and down. From the force applied
to the upper part of the probe holder, the pressure p3 applied
to the ultrasound probe was measured by an oscilloscope via
strain amplifiers. p3 was obtained by the sum psum of the
forces applied to the four pressure sensors multiplied by the
contact area Ssensors of the pressure sensors and divided by the
contact area Sprobe of the ultrasonic probe attached to the skin
as follows:

·
( )=p

p S

S
, 283

sum sensors

probe

where Ssensors = p ´ -36 10 m6 2 and = ´S 1.53probe
-10 m4 2 in the present study.
A healthy male subject in his early twenties was measured

in a sitting position at rest. The subject was asked to avoid
eating for three hours before the measurement and to rest for
30 min before the measurement to eliminate the effects of
eating and exercise on blood pressure and the elastic modulus
of the blood vessel, and to approach the condition in the
FMD test. We obtained the approval of the ethics committee
of our university and informed consent from the subject
before the measurements. The blood pressure waveform and
the blood vessel diameter were measured under three
different conditions of various pushing pressures of the

(a)

(b) (c)

Fig. 4. (Color online) Schematic of the entire experimental system. (a) Block diagram, (b) photograph around the ultrasonic probe, and (c) arrangement of
the pressure sensors.
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ultrasound probe while the subject was at rest. Data were
acquired for four seconds per measurement.
The proposed method was applied to the estimation of the

elastic modulus of a blood vessel after three consecutive
heartbeats using the measured vessel shape, blood pressure,
and pushing pressure, and the results were compared with
those obtained with our previous conventional method.30–32)

4. Result and discussion

4.1. Results of the numerical simulations

Figure 5 shows the calculated results of the circumferential
stress sq for systole and diastole, and incremental stress sD q
from diastole to systole in the red, blue, and green lines,
respectively. Both the circumferential stresses sq at systole
and diastole have a minimum at q = 0 and 180 and the
maximum at q = 90 . The incremental stress sD q has a
minimum value at q = 90 and maximum values at q = 0
and 180 . The q dependence in these results is reasonable
because the artery expands along the short-axis direction
(q = 0 and 180 ) more than the long-axis direction
( )q = 90 because of the deformation from the ellipse at
diastole to the circular shape at systole.
Figure 6 shows the calculated results for the shape

dependence of sq. As the aspect ratio increased and the
vessel cross-section collapsed, the circumferential stress sq
became larger at systole and smaller at diastole, resulting in a
larger incremental stress sD q. The larger the cross-sectional
area of the vessel collapsed, the larger the maximum strain
during one heartbeat; therefore, this calculation result is
reasonable.
Figure 7 shows the calculation results for the pushing

pressure p3 dependence of sq. As the pushing pressure p3
increased, sq decreased, while its incremental stress sD q was
almost unchanged. The larger the pressure p ,3 the greater the
force in the direction in which the vessel wall elongated in
the circumferential direction, and it caused greater stress in
the compressive direction to balance it. On the other hand,
sD q was almost constant when p3 was constant during one

heartbeat. Therefore, we considered that this is the reason
why the elasticity has been stably estimated at rest in our
previous study because the pushing pressure has been kept
constant at rest.30)

4.2. Results of the in vivo experiments
Pushing pressures p3 of 59.3 mmHg, 64.2 mmHg, and
81.1 mmHg were applied in the three measurements. The
pushing pressure was almost constant during each measure-
ment and was not affected by the heartbeats. Therefore, the
assumption in Sect. 3.1 was confirmed as reasonable. The
average of the pushing pressures measured by the four
sensors was used to estimate the elastic moduli of the radial
artery. Figure 8 shows the relationship between blood
pressure and strain during one heartbeat between the suc-
ceeding R waves of the electrocardiogram for each pushing
pressure p .3 The strain increased with an increase in p ,3
which is consistent with the previous results obtained by our
research group.31) From the dashed lines in Fig. 8 obtained by
connecting the most distant points in the hysteresis loops, the
elastic modulus E was estimated based on the proposed
method. For the conventional method, the elastic modulus
was estimated as the slope of the line; therefore, the elastic

modulus estimated by the conventional method greatly varied
depending on the pushing pressure p .3
Figures 9(a–i)–9(c–ii) show the B-mode images of the radial

artery for the three different pressures p .3 Figure 9(i) correspond
to the diastole, and Fig. 9(ii) correspond to the systole.
Figures 9(a)–9(c) show the results at =p 59.3 mmHg,3

=p 64.2 mmHg,3 and =p 81.1 mmHg,3 respectively.
Table I shows the measured values of the intravascular pressure
p ,1 the pushing pressure p ,3 the long radius a and the short
radius b of the vessel for each B-mode image. Ellipses
determined by the obtained a and b values were superimposed
on each B-mode image of Fig. 9. Each ellipse was well fitted,

Fig. 5. (Color online) q dependence of the circumferential stresses sq for
systole, diastole, and incremental stress.

Fig. 6. (Color online) Dependence of the circumferential stresses sq for
systole, diastole, and incremental stress on the aspect ratio /a b of the cross-
section of the vessel.

Fig. 7. (Color online) Dependence of the circumferential stresses sq for
systole, diastole, and incremental stress on pushing pressure p .3
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and the assumption of the cross-section of an ellipse was
reasonable.
Figure 10 shows the relationships between the incremental

strain eD q and the corresponding stress /( )s sD - Dq3 4r

of Eq. (9) for the three p .3 The stresses /( )s sD - Dq3 4r

estimated by the proposed method at the systole and diastole
were plotted. It was confirmed that the slopes of the straight
lines reflecting the elastic moduli were closer to each other
than those by the conventional method shown in Fig. 8.
Figure 11(a) shows the relationship between the pushing

pressure p3 and the averages and standard deviations of the
elastic moduli E estimated by the proposed and conventional
methods. The elastic moduli estimated by the conventional
method were small and significantly decreased as p3 in-
creased. Figure 11(b) shows the relationship between the
pushing pressure p3 and the percentage deviations from the
averages of the estimated elastic moduli obtained by the
proposed and conventional methods. The estimates of E by

Fig. 8. (Color online) Relationships between the blood pressure and the
strain of the radial artery with different pushing pressures p3 of 59.3, 64.2,
and 81.1 mmHg. The dashed lines connect the most distant points in the
hysteresis loops.

(a-i) (a-ii)

(b-i) (b-ii)

(c-i) (c-ii)

Fig. 9. B-mode images of the radial artery (i) at diastole and (ii) at systole:
(a) =p 59.3 mmHg,3 (b) =p 64.2 mmHg,3 and (c) =p 81.1 mmHg.3

Ellipses drawn based on the obtained a and b were superimposed on the
vessel cross-section.

Table I. Measured results of each parameter for Figs. 9(a–i)–9(c–ii).

Data p1 [mmHg] p3 [mmHg] a [mm] b [mm]

9(a-i) 71.6 59.3 2.25 1.47
9(a-ii) 119.2 59.3 2.25 1.58
9(b-i) 72.1 64.2 2.25 1.25
9(b-ii) 120.0 64.2 2.25 1.13
9(c-i) 72.1 81.1 2.25 0.95
9(c-ii) 119.2 81.1 2.25 1.08

Fig. 10. (Color online) Relationships between the stress /( )s s-q3 4r and
strain eq for the proposed method for various values of p .3

(a)

(b)

Fig. 11. (Color online) Elastic modulus values estimated by the proposed
and conventional methods. (a) Absolute values and (b) percentage deviations
from the average elasticity.
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the conventional method changed by –36% to +25%
depending on p ,3 while those by the proposed method
changed by –7 to +3%. Therefore, the effect of the pushing
pressure on the resulting change in the shape of the vessel
was markedly reduced. In a previous study,26) the decrease in
elastic modulus during FMD was approximately 40%.
Therefore, as the elastic modulus in the present study is
considered to be accurate enough, the proposed method is
suitable for evaluating the decrease in the elastic modulus
during FMD.
Based on the known biomechanical attributes of the vessel

wall,37) it is expected that the measured elastic modulus
increases as the initial stresses on the vessel wall sr and sq
increase. However, in the present study, the elastic moduli
obtained by both the proposed and conventional methods
were estimated to decrease with increasing pushing pressure,
as shown in Fig. 11. The increase in pushing pressure caused
the vessel to collapse, an increase in the incremental stress at
the short axis of the vessel, as shown in Fig. 5, and an
increase in the incremental stress, as shown in Fig. 6. These
increased the change in the short vessel diameter by heartbeat
and increased the strain by heartbeat. Moreover, the conven-
tional method approximates the intravascular pressure as the
stress on the vessel wall. This approximation causes a large
dependence of the elastic modulus on the pushing pressure,
as shown in Fig. 11. In the proposed method, the pressure
dependence of the estimated elastic modulus was markedly
decreased by calculating the stress while considering the
changes in the vessel shape due to the pushing pressure
applied by the ultrasound probe. In the present study, the
shape of the vessel wall was assumed to be part of a circle in
the calculation of the strain. However, because the actual
shape of the vessel wall was an ellipse, as shown in Fig. 9,
depending on the pushing pressure, the calculation of the
strain might have affected the estimation of the elastic
modulus. To solve this problem, it is necessary to further
consider a strain calculation based on the actual shape of the
vessel or to estimate the elastic modulus using Eq. (8) to
measure the strain in the direction of the through-wall using
an ultrasonic probe with a higher resolution.
As shown in Fig. 11, the elastic moduli E estimated by the

proposed method are larger than those of the conventional
method. The circumferential incremental stress sD q increased
as the aspect ratio /a b increased, as shown in Fig. 6. The
increase in stress due to the change in the cross-sectional
shape of the vessel was not considered in the conventional
method. As a result, sD q was estimated to be smaller, as
shown in Fig. 11, and the elasticity by the conventional
method was estimated to be smaller than the true elasticity
obtained with Eq. (9). Therefore, the larger estimated values
obtained using the proposed method are more reasonable.

5. Conclusions

In the present study, to accurately measure the elastic modulus
of a deformed blood vessel, a series of equations were derived
to estimate the elastic modulus by considering the pushing
pressure applied by an ultrasound probe, which deforms the
blood vessel. The derived equations were confirmed by
changing the stresses through numerical simulations using
parameters applied from actual measurements. Moreover, we

compared the values estimated by the proposed method with
those estimated using the conventional method in in vivo
measurements for various pushing pressure values. The results
revealed that the proposed method reduces the pressure
dependence of the estimated elastic moduli. However, the
proposed method cannot completely eliminate pressure depen-
dence. Because the calculation of the strain is still insufficient,
it is necessary to introduce the shape of the vessel into a strain
calculation in future research. This method has the potential to
measure elasticity more accurately than other methods and can
be applied to the evaluation of endothelial function during the
FMD reaction.
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