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We observe traveling waves, measured by the ultrasonic noninvasive imaging method, in a longitudinal beam
direction from the apex to the base side on the interventricular septum (IVS) during the period from the end-diastole to
the beginning of systole for a healthy human heart wall. We present a possible phenomenological model to explain part
of one-dimensional cardiac behaviors for the observed traveling waves around the time of R-wave of echocardiography
(ECG) in the human heart. Although the observed two-dimensional patterns of traveling waves are extremely complex
and no one knows yet the exact solutions for the traveling homoclinic plane wave in the one-dimensional complex
Ginzburg–Landau equation (CGLE), we numerically find that part of the one-dimensional homoclinic dynamics of the
phase and amplitude patterns in the observed traveling waves is similar to that of the numerical homoclinic plane-wave
solutions in the CGLE with periodic boundary condition in a certain parameter space. It is suggested that part of the
cardiac dynamics of the traveling waves on the IVS can be qualitatively described by the CGLE model as a paradigm for
understanding biophysical nonlinear phenomena.

1. Introduction

It is important to measure the rapid motions of the
myocardium in the human heart wall during systole and
diastole since information on them are useful for the
diagnosis of regional myocardial motility.1) The propagation
speed of mechanically excited traveling waves around the
aortic-valve closure (AVC) is higher than that of electrically
excited waves along the cardiac muscle and the Purkinje
fiber around the beginning of the ejection period in the
human heart wall.2) Therefore, a study of the measured
nonlinear waves due to rapid motions in the cardiac muscle
during systole by the ultrasonic imaging method is one
of the most interesting subjects in physics and biophysics
because there are very few experimental investigations
related to biophysical nonlinear phenomena in cardiac
systems.3,4)

A phase tracking method with high temporal and spatial
resolutions has been developed to measure the rapid velocity
in the heart wall by accurately tracking the movement of a
point in the heart wall by the constraint least-squares method
applied to both the phase and amplitude of quadrature-
demodulated signals.5) This method that enables the precise
measurement of a target velocity for the myocardium plays
an important role in characterizing myocardial tissue in terms
of systolic properties in vivo, which cannot be obtained by
conventional echocardiography (ECG), tissue Doppler imag-
ing, computer tomography, or magnetic resonance imaging.2)

The velocity components toward the ultrasonic probe as
waveforms and their instantaneous phases were observed by
visualizing the propagation of the myocardial response of
electric excitation in the human heart wall during systole,
which may be modeled by the asymmetric zero-order mode
of the Lamb wave.2) These components corresponding to the
contraction were generated on the interventricular septum
(IVS) at the time of the T-wave of ECG (end-systole), and
propagated slowly in the clockwise direction along the left
ventricle circumferential direction (x-axis) and beam direc-
tion (y-axis) of the ultrasonic probe.

Since small-amplitude pulsive waves on the IVS can be
approximated by the Lamb-wave as guided waves6) with
nonstress-free surfaces, taking into account the effect that the
wave energy leaks into the surrounding blood, the Lamb-
wave model for traveling pulsive waves on the IVS excited
by the AVC at end-systole has been investigated.2) It has
been shown that the fundamental properties of small-
amplitude traveling waves during systole can be explained
by the simple dispersion equation based on the Lamb-wave
model, and that the viscoelastic constant of the myocardium
in the human heart wall has been estimated by the simple
dispersion equation7) without using the nonlinear optimiza-
tion method.2)

In the case of large-amplitude pulsive waves on the IVS by
the AVC at end-systole, they are nonlinearly modulated in
amplitude and phase, and locally generate a phase defect in
the IVS of the human heart wall. Strongly modulated pulsive
waves with the amplitude dip are created by the generated
phase jump, which heteroclinically connects two different
patterns back and forth specified by two asymptotic wave-
numbers in the longitudinal direction of the IVS from the
base to the apex.

However, there are very few nonlinear theoretical models
for large-amplitude pulsive waves excited by the rapid
motions of the cardiac muscle in the human heart wall.
Therefore, to explain the nonlinear behaviors of large-
amplitude pulsive waves at the time of the T-wave of ECG
(end-systole) in the human heart wall, the one-dimensional
complex Ginzburg–Landau equation (CGLE) model has been
applied to large-amplitude pulsive waves measured by the
ultrasonic noninvasive imaging method.8,9)

The behaviors of modulated propagating pulsive waves at
the time of the T-wave of ECG have been observed by the
ultrasonic imaging method.10–13) One of the observed phase
jumps for one-dimensional traveling waves specified by
�ðx; tÞ with a fixed y can be described by the Bekki–Nozaki
(BN) hole solutions8,9,14,15) with moving sources in the
CGLE,16–26) which is written as
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@

@t
� ¼ �� þ ð�pi þ iprÞr2� � ðqi � iqrÞj�j2�; ð1Þ

where �ðx; y; tÞ denotes a complex scalar function of two-
dimensional space ðx; yÞ and time t, and the Laplacian r2 �
@2=@x2 þ @2=@y2, pi < 0, and � > 0 are assumed.

By analyzing the data of traveling pulsive waves on the
IVS at end-systole in the lateral direction specified by the x-
axis (from the left ventricle to the right ventricle) for a fixed
y-axis, it is found that the BN hole solutions15) in the (1-D)
CGLE heteroclinically connect two different patterns speci-
fied by the asymptotic wavenumbers ( ~q1 ≠ ~q2 ≠ 0) near the
phase jump of excited waves. A homoclinic hole,24) on the
other hand, is defined in the narrow sense as ~q1 ¼ ~q2 � 0.

Traveling pulsive waves on the IVS have been measured
by the ultrasonic imaging modality with high spatial and
temporal resolutions for healthy young males.10–12) However,
the one-dimensional dynamics of large-amplitude traveling
waves at the time of the R-wave of ECG (end-diastole) has
not been investigated yet. To understand part of the one-
dimensional behaviors of the traveling waves in the human
heart wall, therefore, a phenomenological model of explan-
ation is at least needed on the basis of the direct measurement
of traveling waves at end-diastole by the ultrasonic imaging
method.

We show that the behaviors of large-amplitude waves in
the longitudinal beam direction (y-axis) at the time of the
R-wave of ECG (end-diastole) are different from those of
pulsive waves based on the data that were measured in the
lateral beam direction of the ultrasonic probe at the time of
the T-wave of ECG (end-systole),2,8) and that part of the
cardiac dynamics of traveling waves on the IVS at end-
diastole can be qualitatively explained by the CGLE model
as a paradigm for understanding biophysical nonlinear
phenomena.

We present here the one-dimensional CGLE model in the
one-dimensional cardiac dynamics for the above waves,
which were measured by the ultrasonic imaging method in
the longitudinal beam direction (y-axis) from the apex to
the base around the time of the R-wave of ECG (end-
diastole) on the IVS in the human heart wall, as shown in
Fig. 1.

2. Observation of Traveling Waves in Human Heart
Wall

By the ultrasonic measurement technique for rapid
myocardial motions in vivo, we observed nonlinearly excited
waves specified by �ðx; y; tÞ on the IVS around the time of
the R-wave of ECG for a healthy young male. We obtained
two-dimensional patterns of phase �ðx; y; tÞ and amplitude
j�ðx; y; tÞj of excited waves on the IVS, and their observation
time corresponded to �99:2 � t � 99:2ms during the period
from the T-wave to the R-wave of ECG, for at most 0.2 (s).
Figure 1 shows a typical snapshot of two-dimensional spatial
patterns of phase �ðx; yÞ with t ¼ 93:25ms from the T-wave
of ECG in the beam direction from the apex to the base
defined by the y-axis set 1,869 points on the IVS and a lateral
(scanning) direction to the beam by the x-axis set about 10
points. We can observe a number of phase defects in the two-
dimensional spatial phase patterns �ðx; yÞ with a fixed time
t ¼ 93:25ms.

Figure 2 shows a series of snapshots (a)–(f ) of two-
dimensional spatial patterns of phase �ðx; y; tÞ for excited
waves on the IVS; (a) t ¼ �5:95ms, (b) t ¼ 13:89ms, (c) t ¼
33:73ms, (d) t ¼ 53:71ms, (e) t ¼ 73:41ms, and (f ) t ¼
93:25ms, from the T-wave of ECG. Many phase defects (yh)
are also observed along the beam line.

Figure 3 shows typical amplitude patterns j�ðy; tÞj with a
fixed x on the IVS in the region of 69 � y � 95mm and
29:8 � t � 93:25ms; Region A, which is shown by a
rectangle: 90 � y � 95mm, 29:8 ðT1Þ � t � 45:7ms ðT2Þ;
Region B: 70 � y � 80mm, t ¼ 53:71ms; Region C: 89 �
y � 95mm, t ¼ 83:4ms. From these patterns, we can clearly
observe traveling amplitude holes in Regions A, B, and C.
Since the resolution in the x-axis is lower than that in the
y-axis, thereafter, the x-axis (beam number) is fixed. For a
fixed x, let us define the measured data of one-dimensional
traveling waves around the time of the R-wave of ECG as
follows:

�ðy; tÞ ¼ j�ðy; tÞj exp½i�ðy; tÞ�; ð2Þ
where y (mm) is directed to the longitudinal axis from the
apex to the base on the IVS and the observed time t (T1 <
t < T2, T2 � T1 ¼ 15:9ms).

The position of a phase defect is specified by y ¼ yh. By
using two different patterns specified by the wavenumbers ~q1
and ~q2 near yh, a heteroclinic phase pattern is defined as
~q1 ≠ ~q2 ≠ 0 at y ¼ yh. For a heteroclinic phase pattern, a
pair of asymptotic wavenumbers ~qj ( j ¼ 1; 2) at y ≠ yh is
given by

~qj ¼
1

T2 � T1

Z T2

T1

�ðy2; tÞ � �ðy1; tÞ
y2 � y1

dt; ð3Þ

Fig. 1. (Color online) Snapshot of two-dimensional spatial pattern of the
phase �ðx; yÞ with a fixed time (t ¼ 93:25ms from the T-wave of ECG) in
the 40Hz component of excited waves on the IVS for a healthy young male,
using the ultrasonic measurement technique for myocardial motions in vivo.
Point O denotes the origin of the measured 2-D phase plane transformed
from the polar coordinate system to the Cartesian coordinate system ðx; yÞ.
This spatial pattern is cross-sectional image of the color-coded phase values
just after the time of the first heart sound. A phase value at a local point on
IVS, for example, changes from cyan (+180°) near a certain phase defect, to
green (+90°), and to red (0°) at a different point and a different time. The left
inset shows the scanning range of the ultrasonic beams in this measurement:
LV, left ventricle; LA, left atrium; RV, right ventricle; RA, right atrium; US
probe, ultrasonic probe; IVS, interventricular septum; Ao, aorta; ECG,
electrocardiogram; PCG, phonocardiogram (heart sound).
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where ~q1 is wavenumber for y1 < y2 < yh and ~q2 is
wavenumber for yh < y1 < y2 during T1 < t < T2. We also
define the phase jump

~�ob ¼ lim
�!þ0

sup
y2R

j�ðy � yh � �; tÞ � �ðy � yh þ �; tÞj; ð4Þ
where the phase �ðy; tÞ is linearly extrapolated for a fixed
time.

Let us also define the position y0 of minimum amplitude at
the time t0 and the position y00 of minimum amplitude at the
time t00; then, in a uniform linear motion of phase defects, we
have its average velocity ~ch (mm=ms) defined by

~ch ¼ y00 � y0

t00 � t0
: ð5Þ

As shown in Fig. 3, from Eq. (5), we can obtain that the
average velocity of the amplitude hole is about ~ch � 0:04 �
0:01mm=ms.

For a non-heteroclinic phase pattern with a fixed time, on
the other hand, from Eq. (3), we obtain a local peak of
asymptotic wavenumber ~qh at y ¼ yh

~qh /
@�ðy; tÞ

@y
: ð6Þ

Using Eqs. (3)–(6) for the observed data, we obtained the
following characteristics: (i) a pair of asymptotic wave-
numbers ~q1 ¼ ~q2 � 0mm−1 at y ≠ yh, which is called a
homoclinic hole solution in the CGLE,24) (ii) a local peak
of wavenumber j ~qhj ≠ 0 at y ¼ yh from Eq. (6), (iii) a
finite velocity of moving phase defect j ~chj ≠ 0mm=ms,
and (iv) a phase jump of the homoclinic hole ~�ob (rad)
differs from that of the heteroclinic BN hole at y ¼ yh in
the CGLE.

As shown in Fig. 4, we obtained a local phase profile
�ðy; tÞ (rad) near the local point yh ¼ 92:4mm in Region A:
(a) t1 ¼ 29:8ms, (b) t2 ¼ 33:7ms, (c) t3 ¼ 37:7ms, (d) t4 ¼
41:7ms, (e) t5 ¼ 45:7ms. The profile (f ) denoted by the
broken line is the derivative of the phase profile (e), which
corresponds to a local wavenumber obtained from Eq. (6) at
t5 ¼ 45:7ms. We also observed a growing phase defect near
yh in the longitudinal direction for 29:8 � t � 45:7ms and
the maximum phase jump ~�ob � 2:9 rad for the profile (e). It
is clear that two asymptotic wavenumbers ~q1 and ~q2 at y ≠ yh
are small in this region A, that is, ~q1 ¼ ~q2 � 0 at y ≠ yh, and
there exists a local peak of wavenumber ~qh ≠ 0 at y ¼ yh for
a homoclinic phase pattern, as shown in Fig. 4(f ). In fact,
as shown in Fig. 4(g), the phase profile of Fig. 4(e) (90 �
y � 95) at t5 ¼ 45:7ms can be approximated by

�ðy; t5Þ � 1:0 þ 1:4 tanh½ðy � yhÞ��: ð7Þ
The insertion of Eq. (7) into Eq. (6) yields the normalized
local wavenumber qh as

qhðyÞ � sech2½ðy � yhÞ��: ð8Þ
This local normalized wavenumber qhðyÞ coincides with the
curve shown in Fig. 4(f ) generated by the phase profile
shown in Fig. 4(e). Then, for a traveling plane-wave model in
the CGLE,24) we have

j�ðy; t5Þj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � qhðyÞ2

p
� 1: ð9Þ

Fig. 3. (Color online) Typical amplitude patterns j�ðy; tÞj with a fixed x
on the IVS measured by the ultrasonic imaging method in the region of
69 � y � 95mm and 29:8 � t � 93:3ms. Region A, which is shown by a
rectangle: 90 � y � 95mm, 29:8 � t � 45:7ms; Region B: 70 � y � 80

mm, t ¼ 53:7ms; Region C: 89 � y � 95mm, t ¼ 83:4ms.

Fig. 2. (Color online) Series of snapshots (a)–(f ) of two-dimensional spatial patterns of phase �ðx; y; tÞ for excited waves on the IVS; (a) t ¼ �5:95ms,
(b) t ¼ 13:89ms, (c) t ¼ 33:73ms, (d) t ¼ 53:71ms, (e) t ¼ 73:41ms, and (f ) t ¼ 93:25ms, from the T-wave of ECG. A number of phase-defects (yh) are
observed along the beam line. Figure 2(f) corresponds to Fig. 1.
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This suggests that the approximated phase profile (7) for
Fig. 4(e) qualitatively explains the creation of amplitude
holes, which are called homoclinic holes. These have been
known only as numerical solutions.24,27)

Since the characteristics of these phase profiles are quite
different from those of the heteroclinic BN hole solutions in
the CGLE, another phenomenological physical model is
therefore needed on the basis of the present measurement of
traveling waves on the IVS around the time of the R-wave
of ECG (end-diastole) for a healthy human heart. These
characteristics (i)–(iv) for measured waves on the IVS lead to
traveling homoclinic plane waves based on the numerical
solutions in the one-dimensional CGLE. Note that we do not
know yet the exact solutions for them in the CGLE.27)

3. CGLE Model for Traveling Homoclinic Plane Waves

In our case, the scaled one-dimensional
CGLE16,18,19,21–24,26) is given by

@

@t
�ðy; tÞ ¼ � þ ð1 þ ic1Þ @2

@y2
� � ð1 � ic3Þj�j2�: ð10Þ

Here, for simplicity, we put the coefficients in Eq. (1) as
follows: c1 ¼ pr, c3 ¼ qr, pi ¼ �1, qi ¼ 1, and � ¼ 1. A set
of two parameters, i.e., c1 and c3, in the CGLE (10)
determines complex spatiotemporal dynamics due to the
Benjamin–Feir instability.21)

We are interested in the coherent localized structures of
excited waves, which are measured noninvasively by the
ultrasonic noninvasive imaging method.2) We assume the
existence of uniformly propagating solutions of the form in
the variable � ¼ y � vt for the CGLE;

�ðy; tÞ ¼ �̂ðy � vtÞe�i!t;
�̂ð�Þ ¼ að�Þei�ð�Þ; ð11Þ

where að�Þ � j�̂ð�Þj, �ð�Þ, v, and ω denote the amplitude,
phase, velocity, and angular frequency, respectively.

The insertion of Eq. (11) into Eq. (10) leads to the
following coupled first-order ordinary differential equations:

dað�Þ
d�

¼ �ð�Það�Þ;
d�ð�Þ
d�

¼ ��2 þ q2

þ ð1 � c1c3Þa2 � 1 � c1! � vð� þ c1qÞ
1 þ c21

; ð12Þ

dqð�Þ
d�

¼ �2�q

� ðc1 þ c3Þa2 � c1 þ ! � vðc1� � qÞ
1 þ c21

:

Here, we define �ð�Þ ¼ @�a=a and qð�Þ ¼ @��.22) A family of
traveling plane-wave solutions known as coherent structures
has been numerically studied using Eq. (12).22,24,27) A
homoclinic hole has been defined as an unstable homoclinic
orbit associated with a saddle-node bifurcation.24,27) Note that
homoclinic holes are not exact solutions of the CGLE (10)
and that their numerical solutions are extremely delicate in
stability for a parameter space ðc1; c3; !; vÞ.22,24,27)

Homoclinic holes are parameterized by the angular
frequency ω and the velocity v, and are numerically observed
from Eq. (12) in a certain parameter space.24,27) All the
amplitude patterns of the measured excited waves in Fig. 3,
however, cannot be explained by homoclinic holes based
on Eq. (12) at all. Since numerical solutions of the CGLE in
the case of c1c3 � 1 show chaotic patterns and modulated
amplitude waves instead of BN holes and homoclinic
holes,24,26,27) therefore, we carried out direct numerical
simulations of the CGLE (10) with the condition c1c3 < 1.

Figure 5 shows a typical snapshot of numerical solutions
in the CGLE with c1 ¼ 0:6 and c3 ¼ 1:4 at t ¼ 210 for the
local space 1 � y � 6:5 near the position of three phase
jumps yhk (yh1 ¼ 2:2, yh2 ¼ 4:2, yh3 ¼ 5:4), which may

Fig. 5. (Color online) Typical numerical solution of traveling plane wave
in the CGLE at t ¼ 210: j�ðyÞj is amplitude (square) and �ðyÞ (rad) the
phase (red dotted line) for a local space 1 � y � 6:5 (system length L ¼ 10)
near the position of phase-jumps yhk (yh1 ¼ 2:2, yh2 ¼ 4:2, yh3 ¼ 5:4). The
broken line corresponds to the phase gradient jq̂hkj Eq. (15) for the
homoclinic phase pattern. The thick solid line can be obtained using Eq. (16)
with �̂k ¼ 1:2.

Fig. 4. (Color online) Local phase profile �ðy; tÞ (rad) near the local point
yh ¼ 92:4mm in Region A: (a) t1 ¼ 29:8ms, (b) t2 ¼ 33:7ms, (c) t3 ¼
37:7ms, (d) t4 ¼ 41:7ms, and (e) t5 ¼ 45:7ms (circle). Profile (f ) is the
normalized derivative of the phase profile (e), which corresponds to a local
wavenumber at t5 ¼ 45:7ms. We can observe a growing phase defect near
yh in the longitudinal beam direction for 29:8 � t � 45:7ms and obtain the
maximum phase jump ~�ob � 2:9 rad from Eq. (4). Two asymptotic wave-
numbers ~q1 and ~q2 (broken line) at y ≠ yh are small in Region A: ~q1 ¼
~q2 � 0 [see (f )]. The curve (g) (solid line) is given by �ðy; t5Þ � 1:0 þ
1:4 tanh½ðy � yhÞ��. The phase profile of the measurements in the y-axis is
quite different from that of the heteroclinic BN hole solutions.
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create almost homoclinic amplitude holes for traveling plane
waves. The dotted line denotes the typical spatial phase
profile �ðyÞ at t ¼ 210. The broken line is the absolute value
of the phase gradient jq̂hkj given by Eq. (15), that is, a local
peak of wavenumber for the homoclinic phase pattern.24,27)

We can clearly observe three amplitude holes near yhk
(k ¼ 1; 2; 3) since each amplitude hole is governed by the
phase gradient near the phase jumps. It is suggested that the
homoclinic amplitude holes obtained numerically can be
approximated by the homoclinic plane-wave solutions.

We have used the fourth-order Runge–Kutta scheme for
time and the central-difference scheme for space with
periodic boundary condition. The time and space resolutions
were �t ¼ 0:001 and �y ¼ 0:1, respectively, and the system
length L ¼ 10{500. The typical initial condition was given as

�ðy; 0Þ ¼ ie4�yi tanh½�ðy � y0Þ�;
where the constant � ¼ 0:08 and y0 ¼ L=4.

One-dimensional phase distribution for a fixed time may
be approximately decomposed into small intervals 2	k (> 0)
in y containing the position of the phase-defect yhk (1 �
k � n):

�ðyÞ ¼
[n
k¼1

�k; ð13Þ

�k ¼ �kH1H2 tanh½
kðy � yhkÞ� þ �ð0Þ
k ; ð14Þ

where H1 � Hðy � yhk þ 	kÞ and H2 � Hðyhk þ 	k � yÞ are
the Heviside step functions, and �k, 
k, and �ð0Þ

k are constant.
From Eq. (14), each normalized local peak of the wave-

number q̂hk near y ¼ yhk may be approximately given as

q̂hk ¼
@�k

@y
¼ ~�k sech2½
kðy � yhkÞ�; ð15Þ

where ~�k is a constant that depends on the nonlinear
interactions between phase defects. Then, from Eq. (15), we
can qualitatively estimate the homoclinic amplitude hole near
y ¼ yhk,

j�hðyÞj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � q̂hk

�̂k

� �2
s

; ð16Þ

where �̂k is a fitting constant. In fact, as shown in Fig. 5,
Eq. (16) can explain the creation of almost homoclinic
amplitude holes j�hðyÞj due to the phase jumps at yh1, yh2,
and yh3 when time is fixed, that is, the numerically obtained
amplitude j�ðyÞj (square symbol) of the CGLE coincides
with the homoclinic amplitude hole j�hðyÞj with �̂k ¼ 1:2
(thick solid line).

However, we cannot analytically obtain each magnitude of
strongly modulated amplitudes j�ðyÞj of excited waves since
we do not know yet the exact traveling plane-wave solutions
of the CGLE [see Fig. 6(f )]. We have shown that Eq. (16)
may qualitatively explain the creation of homoclinic plane-
wave amplitude holes for measured nonlinear excited waves
on the IVS in human heart wall during the period from
end-diastole to the beginning of systole by the ultrasonic
noninvasive imaging method.

4. Discussion

As shown in Fig. 4, we observed the growing phase defect
near yh ¼ 92:4mm in the longitudinal direction (y-axis) for
29:8 � t � 45:7ms. Then, we obtained the maximum phase

jump from Eq. (4): ~�ob � 2:9 rad for Fig. 4(e). The observed
two asymptotic wavenumbers ~q1 and ~q2 at y ≠ yh are small
in Region A (Fig. 3): ~q1 ¼ ~q2 � 0 [see Fig. 4(f )], which
is called a homoclinic hole24) of j�ðyÞj at t5 ¼ 45:7ms
[Fig. 6(e)]. Figure 6 shows typical amplitudes j�ðy; tÞj near
the local point of phase defect yh in Region A, which
correspond to Figs. 4(a), 4(b), 4(d), and 4(e). Figure 4(c) at
t3 ¼ 37:7ms was abbreviated to avoid confusion with a
similar curve. We can clearly observe homoclinic-type holes
near yh since the phase jump near yh creates the amplitude
hole j�hðy; tÞj, which decreases and forms a dip shaped like a
hole. Namely, the amplitude holes of the measured waves can
be qualitatively explained by Eq. (16) with the local wave-
number q̂hk. Note that the phase profile of measured excited
waves on the IVS in the y-axis is quite different from that of
heteroclinic BN hole solutions.

We show, as in Fig. 7, a snapshot of four phase defects
and four non-heteroclinic amplitude holes in Region B (see
Fig. 3) near the local points yk (mm) from left to right (k ¼
1; 2; 3; 4); (y1 ¼ 71:4)mm, (y2 ¼ 74:9)mm, (y3 ¼ 76:9)
mm, and (y4 ¼ 79:3) mm. The red dotted line denotes the
phase �ðyÞ (rad), the black square symbol stands for the
amplitude, and the blue broken line stands for the normalized
wavenumber jq̂hkj of the homoclinic phase profile for
Region B with a fixed time t ¼ 53:71ms. Since the phase
defect at yk creates the local peak of the wavenumber from
Eq. (15) and decreases its amplitude according to Eq. (16),
we can find homoclinic-type amplitude holes at (y ¼ yk)mm.
Amplitude patterns in Region C can be similarly explained
by the same homoclinic plane wave as in Region A and
Region B. As shown in Figs. 5 and 7, we find that the phase
and amplitude patterns of the measured waves are similar to
those of the numerical solutions in the CGLE with periodic
boundary condition. This strongly suggests that the dynamics
of the measured waves in the longitudinal beam direction on
the IVS by the phase tracking method can be qualitatively
explained by homoclinic plane-wave numerical solutions in
the CGLE for a certain parameter space.

The statistical properties of local structures in defect
turbulence for the CGLE have been studied and revealed

Fig. 6. (Color online) Typical amplitudes j�ðy; tÞj near the local point
yh ¼ 92:4mm in Region A, which correspond to Figs. 4(a), 4(b), 4(d), and
4(e). Figure 4(c) at t3 ¼ 37:7ms was omitted to avoid confusion created by a
similar curve. A fitting curve for the amplitude profile (e) is shown in (f ). We
can clearly find homoclinic-type holes near the yh since the phase defect near
yh creates the amplitude holes [see Fig. 4(f )].
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to be sub-Poisson statistics in the context of birth–death
processes.28)

5. Conclusions

By the phase-tracking method10) in ultrasonic diagnostic
equipment, we have obtained significant data of excited
waves due to mechanical motions during the period from
end-diastole to the beginning of systole. We have observed
the following main properties of excited waves in the
longitudinal beam direction from the apex to the base: (i)
two asymptotic wavenumbers ~q1 ¼ ~q2 � 0mm−1 for locally
homoclinic phase patterns,24,27) (ii) a local wavenumber
satisfies the condition 0 < jq̂hkj < 1, (iii) the velocity of the
moving phase defect j ~chj ≠ 0mm=ms, and (iv) the phase
jump j~�obj ≠ 0 as in Fig. 4.

Let us list the principal results of the present investigation:
(1) We have observed the two-dimensional phase and

amplitude patterns of excited waves on the IVS in a
human heart wall.

(2) We have found that the dynamics of excited waves in
the longitudinal beam direction are quite different from
those of heteroclinic BN holes in the CGLE since the
asymptotic wavenumbers satisfy ~q1 ¼ ~q2 � 0 at y ≠ yh.

(3) We have carried out numerical simulations of traveling
plane-wave solutions in the CGLE with c1c3 < 1 under
the periodic boundary condition.

(4) We have shown that the observed cardiac dynamics of
the traveling waves in the longitudinal beam direction
on the IVS can be qualitatively explained by the
numerical homoclinic plane-wave solutions in the
CGLE.

(5) We expect that the CGLE model for measured traveling
waves in the human heart wall plays an important
role in understanding the phenomenon of sarcomeric
oscillations such as spontaneous oscillatory contraction
(SPOC)29) and hyperthermal sarcomeric oscillations
(HSOs)30) occurring in cardiac muscles at an inter-
mediate activation level.

(6) We hope that our fundamental study may be useful for
characterizing and quantifying normal and pathological
hearts (ischemia and infarction) in vivo, using myocar-
dial elastography, since the propagation speed of
contraction waves in a healthy heart is different from
that in a pathological one.31)
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Fig. 7. (Color online) Snapshot of measured four phase jumps and four
homoclinic amplitude holes near the local points yk (mm) from left to right
(k ¼ 1; 2; 3; 4); y1 ¼ 71:4, y2 ¼ 74:9, y3 ¼ 76:9, and y4 ¼ 79:3. The red
dotted line denotes the phase �ðy; tÞ (rad), the black square symbol stands for
the amplitude j�ðyÞj, and the blue broken line is the normalized phase
gradient jq̂hkj for Region B with a fixed time t ¼ 53:71ms. We can observe
four homoclinic-type amplitude holes at y ¼ yk since each phase jump at yk
creates its corresponding local peak of four wavenumbers.
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