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Accurate  Autoregressive  Spectrum  Estimation  at Low 
Signal-to-Noise  Ratio  Using  a  Phase  Matching 

Technique 

Abstract-This  paper  describes  a new method of accurately  estimat- 
ing  the  parameters of an  autoregressive (AR) process  contaminated by 
high-level  white  noise.  Based  on  the  phase  matching  technique,  it  min- 
imizes  the  difference  between  the  phase of the  all-zero  model  and  the 
phase of the  maximum  phase  signal  reconstructed  from  the  power 
spectrum of the  observed  signal.  The  parameters of the AR model are 
obtained  from  the  finite  length  sequence of the  estimated  all-zero  model. 
The  proposed  method  works  only  when  the  order of the A R  model is 
known  a priori at  present.  However,  since  the  phase  matching  tech- 
nique  satisfies  the  conditions  needed  to  apply  the  least  mean-square 
method,  the AR parameters  are  estimated  accurately  even  at  a low 
signal-to-noise  ratio.  With  the  iterative or noniterative  methods  as  dis- 
cussed  in  the  recent  literature,  it  is  not  possible  to  reconstruct  the  all- 
zero  model  from  the  power  spectrum  when  there are dips  and  peaks 
having no correlation  with  the  poles of original AR signal  in  the  power 
spectrum.  The  method  proposed  in  this  paper  allows  one  to  accurately 
reconstruct  the  phase  from  the  power  spectrum  in  such  cases.  Finally, 
it is confirmed  with  computer  simulations  and  experiments  that  the 
proposed  method is useful  for  accurate  estimation of the AR parame- 
ters. 

T 
I. INTRODUCTION 

HIS paper  concerns  a  method  for  describing  the  reso- 
nant vibration  system  using  the  parameters of an AR 

model.  When  noise is added  to  a  signal  under  analysis, 
the  signal  is not described by the AR process,  even if the 
signal is the  response  of  an AR system  because of the 
introduction  of  the  spectral  zeros by the additive  noise. A 
number  of  methods  for  estimating AR parameters  of  such 
AR-plus-noise  models  have  been  proposed  recently  in  the 
literature [1]-[5]. However,,  accurate AR parameters of 
the  model are not  obtained by such  methods as described 
in Section 11. 

Therefore,  we  have  developed  a  new  method  of  esti- 
mating AR parameters  accurately,  even when the  signal 
is contaminated by white  noise.  The  proposed  method  is 
based  on a significant  extension  of  signal  reconstruction 
techniques  using  the  phase  estimated  from  the  observed 
signal.  Since  the  error in the  estimated  phase is distributed 
according to  the  normal  distribution  with  constant mean 
and  variance for all  frequencies as described in Section 
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111, accurate AR parameters  are  obtained by a  least  square 
fit with  the  phase  error  even in the  case of low signal-to- 
noise  ratio  (SNR). The proposed  method  involves  nonlin- 
ear  optimization.  However,  its  computational  require- 
ments  are  quite  modest  as  shown by the  simulation  ex- 
periments  in  Section V .  Finally,  in  Section VI, other 
advantages  of  the  proposed  method are  also  shown by ex- 
periments  involving  resonant  vibration  generated in a me- 
chanical  system. 

11. DISADVANTAGES OF RECENT METHODS FOR 

ESTIMATING AR PARAMETERS 
If  a  signal x ( n )  is  contaminated by white  noise w( n ), 

the  observed  signal y ( n )  is described as follows: 

y ( n )  = x(.) + W(.)' (1 )  

If x (  n )  is the  output  signal of a  pth-order AR model  ex- 
cited by white  noise e ( n ) ,  

P 
x(.) = - C ai x ( n  - i )  + e(.) (2) 

where e ( n )  is the  white  noise  uncorrelated  with w ( n )  and 
i =  1 

var ( e ( n ) }  = 2 

var { w ( n ) }  = ow. 2 

Each z transform of (1) and (2) is represented  as follows: 

Y ( z )  = X ( z )  + w(z)  (1 ')  
and 

where A ( z )  = 1 + a,z- '  + - - - + U , Z - ~ ,  and Y ( z ) ,  
X ( z ) ,  W ( z > ,  and E ( z )  denote  the z transforms of y ( n ) ,  
x ( n )  , w ( n ) ,  and e ( n  ), respectively.  The  power  spectrum 
P), ( z )  of the  observed  signal y ( n )  is expressed as follows: 

0: + 02, * A ( z )  * A*( 1 / z * )  
A ( z )  * A*(l/z*) 

- - ( 3 )  

where z* denotes  the  complex  conjugate of z .  Let  the nu- 
merator of the  last  equation  be .," - B ( z )  * B*( l / z * )  
where B (  z )  = 1 + ET=, bj z P i ;  then y (  n )  may be  mod- 
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eled  as  the  ARMA( p ,  p ) model B ( z  ) / A  ( z  ) driven by the 
white  noise u ( n )  of  the  power ai. The z transform of the 
output  signal y (  n )  is  expressed as  follows: 

where U ( z )  is  the z transform  of u ( n ) .  Thus,  the  obser- 
vation  noise  introduces  spectral zeros, which  are  located 
between  the  true AR poles  and  the  origin in the z plane. 
The  zeros  move  toward  the  true AR poles as  the  SNR 
decreases  [3]. 

A number  of  methods for estimating AR parameters  in 
such  cases  have  been  proposed  in  the  recent  literature [ 11- 
[5] and  can  be  divided  into  the  following  five  classes [l], 

1) The  larger  order AR spectral  estimation  in  which  the 

2) The  method  using  modified  Yule-Walker  equations. 
3) The noise  compensation  method for  the  correlation 

function  in  which  the  estimated  additive  noise  power is 
subtracted  from  the  main  diagonal  of  the  autocorrelation 
matrix [4]. 
4) The direct  power  spectrum  matching  technique 

which  minimizes  the  average  squared  difference  between 
the  nonparametric  power  spectrum ( = periodogram ) es- 
timated  from  the  observed  signal  and  the  parametric  power 
spectrum of the  model [5]. 

5 )  The method  using  the  overdetermined  modified 
Yule-Walker  equations [2]. 

All of  these  five  methods  estimate  the AR parameters 
using  the  autocorrelation  function  estimate R (  7) or its 
equivalent,  the  power  spectrum  estimate Py ( w ), which is 
equal  to  the  periodogram  in  the  fourth  method 4) where 
boldface  is  used  throughout  the  paper  to  distinguish  esti- 
mates  from  the  true  values.  However,  accurate AR pa- 
rameters  cannot be obtained by those  methods as  de- 
scribed  below.  Each  of  the  real  and  imaginary  parts  of  the 
spectrum Y ( w ) , estimated  from  the  AR-plus-noise  signal 
y ( n ) of (4), is  distributed  independently  according  to  the 
normal  distribution N [ O ,  u:(w)] where  the  variance  is 
.:(a) = J B ( w ) / A ( w ) ( ~  * .$ = P y ( w )  and P y ( w )  de- 
notes  the  true  power  spectrum of y ( n  ). Therefore,  the  pe- 
riodogram  estimate Py ( w )  of y ( n  ) is  distributed  accord- 
ing  to  the  chi-squared  distribution  with 2 degrees  of  free- 
dom  where  the  mean  and the variance are .', ( w ) = Py ( w ) 
and a ; ( w )  = P ; ( w ) ,  respectively [6, ch. 11.31. Thus, 
the periodogram Py ( w )  has  a  large  variance,  especially  in 
the  frequency band where  the  signal-to-noise  ratio  is  high. 
Therefore,  accurate AR parameters are not  obtained by 
the  methods  described  above,  even if the (generalized) 
least  square  fitting  technique  is  applied  to  the  minimiza- 
tion of the average  squared  errors  involved  in  the  esti- 
mated  power  spectrum or  the estimated  autocorrelation. 

111. PHASE  MATCHING  BASED METHOD FOR ESTIMATING 
AR PARAMETERS 

121. 

model is approximated  to  a  larger  order AR model  [3]. 

Here, we propose  a  new  method for estimating  the AR 
parameters. The following  discussion  is  based on  the  as- 

Fig. 1 .  Illustration  showing the procedure of the  proposed  method for es- 
timation of the  parameters of the AR process in white  noise. 

sumption  that  the  real  signal y ( n )  has  a  rational z trans- 
form of the  AR-plus-noise  signal. The five  processes  of 
the  method  are  explained  below  using  the  simple  example 
of a  first-order AR model  which  has  a  pole za and  the 
introduced  spectral  zero zb, ( I zb  1 < 1 za I < 1 ) in  the z 
plane. By using  the  same  example,  the  right-hand  side  of 
Fig. 1 shows  schematically the processes  of the  method, 
and  the  left-hand  side  of  Fig. 1 illustrates the processes 
by applying  them to the  second-order AR model  used  in 
Section V. 

1) The power  spectrum  estimate Py ( w  ), which is  the 
averaged  periodogram,  is  obtained  using  FFT of the  ob- 
served  signal y ( n )  [see  Fig. 1 ,  part ( l ) ] .  Since P,,( w )  has 
the  pole z,, the  zero zb, and  their  complex  conjugate  re- 
ciprocal  pairs 1 / z $  and 1 / z $ ,  the  power  spectrum p,, ( z  ) 
is  expressed as follows: 

2 B ( z )  B*(l /z*)  
A ( z )  - A*( 1 / z * )  P y ( z )  = uu * 

2 )  Based  on the noniterative  minimum  phase  recon- 
struction  algorithm [7], [8], the  minimum  phase  signal 
Xmin(z) is reconstructed  from the periodogram Py ( w )  
using FFT  two  times.  Since this  operation is equivalent 
to mapping  maximum  phase  poles  and  zeros to  their  con- 
jugate symmetric  counterparts  with  the  unit  circle  of  the 
z plane, Xmin(z)  is  obtained as follows: 

where C, = a [see  Fig. 1 ,  part (2)]. This  equation 
shows  that  the  minimum  phase  reconstructed  signal 
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Xmin(z) is  the output of the ARMA( p ,  p )  model 
B (z ) / A  ( z )  excited by the  impulse Co * 6 (12). 

3 )  The phase Omin( w )  of the  minimum phase signal 
Xmin(z) is calculated. By changing the  sign of e m i n ( @ ) ,  
the new phase  function 8 ( w )  is obtained.  Since  a) by 
mapping  the  poles  and  the  zeros to  their conjugate  sym- 
metric  counterparts  with  the unit circle of the z plane,  the 
sign of the  phase  function is changed, and b) the  pole 
1 / z $  or the zero 1 / z $  makes the same  contribution to  the 
phase  as the zero 2, or the  pole zb, respectively, the fol- 
lowing four models  have  the  same  phases as 8 (a): 

and 

xzero(z) = c, . (1 - zuz- ' ) ( l  - z $ z ) .  (7) 

4) By restricting the signal reconstructed from the phase 
8(  w )  to being  finite  length,  only  the  all-zero  model 
X,,,,( z), having the  same  phase  as 8 ( w  ), is obtained  [see 
Fig. 1,  part (4)J. A method of obtaining  the  signal  from 
its phase  is  described in Section IV. 

5 )  As the method ordinarily used in the  linear  predic- 
tion of speech  to determine the poles of the AR model [9, 
p. 291, the poles of the AR model are determined  from 
the roots of the  polynomial: 

P 

Xzero(z) = xzero(n) . z = 0. ( 8 )  - n  

n =  - p  

Since x,,,( - p )  is  not zero, by dividing (8) by x,,,,,( - p )  
- ZP, the  following  polynomial is obtained: 

2p f I c x:,m(n) . z = 0 (9) -n 

n =.o 

where x&( n ) = x,,,( n - p ) /x,,,,( - p  ) . The roots of 
the  polynomial  contain the pole z ,  ( 1 z, 1 < 1 ) and the 
zero  1 / z t  ( I 1 / z g  I > 1 ) in ( 5 ) .  If  the roots whose mag- 
nitudes are  less than one  are  selected, only  the poles of 
the  original AR model are obtained [see  Fig. 1, part (5j]. 

As described in Section 11, almost all the methods in 
the literature  have  estimated AR parameters using the  es- 
timated power  spectrum ( = periodogram j or its equiva- 
lent, the estimated autocorrelation function.  However, the 
variance of the errors in the  periodogram estimate is equal 
to P : ( w )  and is large,  especially in the frequency band 
where the poles make  peaks.  However,  the  variance of 
the error A 8 ( w )  of the  phase 0 ( w )  estimated in the third 
process of  the proposed method is constant for all the fre- 
quencies as described  in the  following. 

Since  the  observed  signal  is the finite length,  there  are 
many peaks and  dips  having no correlation with the poles 

Fig. 2. Illustration showing  the phase emor A@ ( w  ) in the  minimum  phase 
model X,,,,, ( w )  which  is reconstructed from the power  spectrum of the 
observed  signal y(n). 

of the  original AR model  in the estimated  power  spectrum 
Py ( w ) . Thus,  in a practical case,  the minimum  phase  sig- 
nal Xmin( z )  of (6) calculated  from Py ( w )  is expressed as 
the sum of  two components: 

where A U ( z )  denotes  approximately the z transform of 
Gauss random noise A u ( a ) .  Then, the  spectrum Xmin( w ) 
of the  estimated  minimum phase model  is  expressed as 
follows: 

X m i n ( w >  = Xrnin(w) + A x ( w )  (11) 
where Xmin( w )  and AX( w )  denote  the spectrum of the true 
minimum  phase  model  and the spectrum error, respec- 
tively,  as  shown  in  Fig. 2. Using (lo),  Xmin(w) and 
A X ( o )  are expressed as follows: 

and 

= Xmin (0) * A U ( w ) .  (12b) 

Thus, the estimated  phase Omin( w )  of the  minimum  phase 
signal Xmin(z) is expressed as the sum of the true phase 
emin( w )  and  the  phase error A 9 (a): 

Ornin(w) = O,~,(U) + A ~ ( u ) .  (13 )  

The left-hand side of Fig. 1, part ( 3 )  shows  that  true phase 
B ( w )  = - 8 m i n ( w )  and its estimate O ( o j  = - -emin(w) .  
When 1 A 9  ( w )  1 is significantly less  than 1 .O, A 8 ( w )  is 
approximated by tan A 0 ( a ) .  Then, A 8 ( w )  is expressed 
as follows: 

A O ( w )  = tan AO(w) 

= tan { a m i n ( 0 )  - e m i n ( w > }  

- tan ernin( w )  - tan Omin( w )  

I + tan Omin( w )  . tan Om,,( w )  . 
- (14) 

Each  spectrum of (1 I )  is  decomposed  into real and imag- 
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inary  parts as  follows:  Therefore, 

Xmin(w) = Rmin(w) + jlmin(0) 3 ( 1 5 4  xzero( +a) ~ X P  { - j ~ ( w ) }  

A X ( w )  = AR(w) + jAZ(w), (15b) = xzero(-U) exp { +je(w)}. (19) 

and Using the definition  of  the  Fourier  transform,  the  imagi- 
nary part of the  equation is expressed  as  follows: 

xmin(w) = [Rmin(w) + A R ( ~ ) ]  
P 

+ j[Zmin(w) + AI(w)].  (1%) x,,,,(n) * sin { n u  + 0 ( w ) }  = 0 (for all w ) .  
n =  - p  

Using  these  spectra,  the  phase error (14) is expressed  as 
follows: 

(20 1 

I f IAR(w)l  << l R m i n ( U ) l  and IAI(w))  << l I m i n ( W ) I ,  
the  phase  error  is  approximated by the  following  equa- 
tion: 

A 0 ( w )  A l ( w )  Rmin(w) - AR(w) Imin(W) 
Rmin(w)2 + I m i n ( w >  

2 

- - Im [AX(w)  * x$in(w)] 
2 

IXmin(@) I 
= ~m [AX( w) / x m i n (  w) ] 
= Im [AU(w)].  (17) 

That  is,  the  phase  error  is  equal  to  the  imaginary  part of 
the spectrum A U ( w )  of the  Gauss  random  noise in (10). 
Thus,  the  phase  errors { A  0 ( w )  1 shown in Fig.  1, part 
(4) are  distributed  according  to  the  normal  distribution 
N [ O ,  02] where  the  variance is constant  for  all  the  fre- 
quencies.  Therefore,  more  accurate AR parameters  are 
obtained by the least  mean-square fit of the  phase  of  the 
all-zero  model Xzero(z )  to  the  phase 0 (0) = -Omin( 0 )  

estimated  from the  observed  signal. A phase  matching 
method is proposed in Section  IV-C. 

IV. RECONSTRUCTION OF AN ALL-ZERO MODEL FROM 

ITS PHASE 

In the  literature,  there  are  two  methods  for  reconstruct- 
ing  a finite duration  mixed  phase  signal  from  its  phase.  In 
this  section,  the difficulties in  reconstructing the signal 
from the noisy phase 0 ( w )  using  these  methods are  ex- 
plained,  and  then  an  alternative new reconstruction 
method is proposed. 

A .  Noniterative  Method (71, [lO]-[I 11 
This  method  reconstructs  a finite length ( = 2p + 1 ) 

signal x,,,( n ) ,  ( -p I n 5 + p )  of  the  all-zero  model 
Xzero(z )  from  the  phase  estimate @(a). Since  the  signal 
xzer0(n) of  the  all-zero  model  is  real,  the  following  rela- 
tion holds  well for  the  discrete  Fourier transform X,,,( w ): 

Since 0 ( w )  is selected  from ( 2 p  + 1 ) distinct  values  of 
w, (2p + 1 ) linear  homogeneous  equations  are  obtained 
from (20). 

When 0(  w )  expresses  the  true  phase of the  all-zero 
model, x,,,,( n )  can  be  determined  from  the  linear  equa- 
tions.  However,  there is a  phase  error of A 0 ( w )  in phase 
0 (a) calculated  from  the  estimated  power  spectrum as 
shown in Fig.  1,  part (3), and  this  method does not com- 
pensate for  the  phase  error  at  all.  Therefore,  an  accurate 
all-zero  model  and AR parameters  cannot  be  obtained 
using this  method. 

B. Iterative  Method (71, [lO]-[l  I ]  

Let x,,,( n : i ) be  the  estimate  of  the  all-zero  model  at 
the  ith  iteration. In the  frequency  domain,  the  phase of 
x,,,( n : i ) is replaced by the  estimated  phase 0 ( w  ), and 
in the  time  domain,  the  finite  duration  constraint is im- 
posed.  Then,  the ( i  + 1)th estimate  is  obtained,  and  the 
unknown  spectrum  magnitude  is  retrieved  gradually in 
successive  iterations. 

When 0 ( w  ) can  accurately  express  the  phase of the  all- 
zero  model,  it  is  known  that  the  iteration  procedure  al- 
ways  converges  to  a  unique  limit  of A . xZem( n )  where A 
is a  positive  constant [lo]-[ll].  However,  as shown in 
Fig.  1, part (3), there is a  difference of { A 0  ( w )  } be- 
tween the  obtained  phase @ ( w ) and  the  true  phase 0 ( w ) 
of the  all-zero  model  as  follows: 

A 0 ( w )  = @(LO)  - 0 ( ~ )  (21) 

where A 0 ( w )  of this  equation is equal  to -A 0 ( w )  of 
(13). Thus,  the  satisfying  all-zero  model is not  recon- 
structed.  This  may  be  explained  as  follows.  Let x,, ,(n) 
and x,,,(n) be  the  signals  of  all-zero  models recon- 
structed  from  the  true  phase 0 ( w )  and  its  estimate @ ( w ) ,  
respectively.  Substituting 0 ( w ) of  (21)  into (19),  the 
spectrum X,,,( w) of x,,,( n )  is expressed  as  follows: 

~ X P  [ - j {  ~ ( 0 )  - ~e(w) ) ]  xzero(w> 

= ~ X P  [j{@(W, - ~ e ( w ) } ]  Xzero(-w). (22) 
Comparing  (22)  to  (19),  the  spectrum X,,,( w ) of x,,,,( n ) 
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is  expressed by [lo, sect. VI] 

where X is  the constant  ensuring  that x,,,( 0) = 1 ; assum- 
ing  that I A 8 (  w )  I << 1, X,,,( w )  of (23) is  approxi- 
mated by 

Thus, x,,,(n) is  described by 

where e ( n  ) is  the real odd  signal of the inverse Fourier 
transform of  the imaginary odd sequence j A  0 (0 ) .  Since 
the phase errors { A 8 ( w )  ] are distributed  randomly  ac- 
cording to  the normal  distribution as described  in  Section 
111, e ( n )  has an infinite duration,  and consequently, the 
duration of the  reconstructed  signal xzero(n) is  also infi- 
nite.  However, the finite duration  constraint is imposed 
in each  iteration.  Therefore,  an  accurate  all-zero  model 
cannot be obtained by this  method. 

C. A Proposed Reconstruction Method Using the Least 
Square Method Which Fits the Phase Error 

Substitution of 8 ( w  ) of (21)  into (20)  results in 
P 

xZem(n) * sin { n u  + O ( w )  - A 8 ( w ) }  = 0 
n =  -p 

(for all a). ( 2 6 )  

Using the formula sin ( Q l  - Q,) = sin Q ,  cos f12 - cos 
Q l  - sin Q,, and  assuming that 1 A 8 ( w )  1 << 1, this  equa- 
tion  is  approximated by 

P 

* cos { n u  + O ( w ) } ]  = 0 (for all a). (27) 

Then,  the  phase  error A 8 ( w )  is expressed as follows: 
P 
C xzero(n) * sin (no + ~ ( w ) }  

A 8 ( w )  = 
n = - p  

c xzem(n) . cos {no + O ( w ) }  
n =  - p  

(for all w )  (28a 

where xzero( 0 )  = 1. When 0 ( w  ) is selected  from equally 
distributed  distinct M values  with  intervals of 2a /M,  the 
discrete  phase error  is expressed as follows: 

P 
C xZero(n) . sin { 2 a ( n k / ~ )  + ~ ( k ) )  

n =  - p  A 8 ( k )  = 

C xzem(n)  . cos { 2 x ( n k / M )  + O ( k ) )  
n =  -p 

~m [Xzero(-k)  * ~ X P  { j ~ ( k ) } ]  

Re [Xzeco( - k )  * exp { j @ ( k )  ) ]  
- - 

( fork = 0, 1, 2, . * * , M - 1 ) .  (28b) 

The finite duration  signal xZero(n) is obtained  from  the 
given  phase 0 ( k )  by minimizing the following  sum CY: 

M- 1 

CY = 1 A 8 ( k ) 1 2  + MIN. (29) 
k = O  

This  nonlinear  minimization  is  performed  using a stan- 
dard optimization  technique such as the  Marquardt method 
[12]. Since the spectral  zeros  introduced by the  observed 
noise are  close to the poles of the AR model in the z plane, 
the z transform of the initial estimate xzero(n: 0 )  of the 
iteration is selected as follows: 

P 

X,,(Z : O )  = II ( 1  - z ~ z - ' ) (  1 - z ~ z ) ,  ( 3 0 )  
i =  1 

where { zi } are the poles  obtained by the method using 
the  overdetermined modified Yule-Walker equations. 

If the  denominator of  the right-hand side in (28) is equal 
to  zero, Ae ( w )  is  evaluated as being  unstable. Thus, the 
( i  + 1 )th  estimate x,,,( n : i + 1 ) is determined  from the 
ith estimate xZero(n: i ) under  the  condition that the de- 
nominator of the right-hand side in (28) can only  be pos- 
itive. 

When  the SNR is low, 1 A 8  ( w  ) 1 is  less  than a / 2  for 
all w .  Thus,  the initial estimate of the  all-zero model 
Xzero(z) satisfies the condition  because every zero in- 
volved in X,,,( z : 0) of (30) has its complex reciprocal 
pair,  and then the  phase of X,,,,( z : 0 ) is  zero for all w .  
The optimal  estimate of the all-zero  model also satisfies 
the condition because the phase of the denominator of (28) 
is described by { phase of X,,,,( -w ) } + 0 ( w ) = 
A e ( w ) ,  and 1 Ae(o) 1 is  less than a / 2  for all w .  

However, when the  SNR is high, 1 8 ( w )  I is  not always 
less  than n/2.  In such cases, the  positive  constant P is 
added to the power  spectrum  estimate P,, ( z )  in (3) or ( 5 )  
so that the  absolute  value of 0 (0)  calculated  from  the 
modified power  spectrum P;,( 0 )  = P ,  (z) + p is less than 
z / 2  for all w .  By adding 0, the initial estimate satisfies 
the  above  condition,  and each Marquardt  iteration  deter- 
mines the  successive  estimate of the all-zero model under 
the above  condition;  the  optimum  estimate also satisfies 
the  above  condition.  Since the variance of the  phase  errors 
A e ( w )  does not increase by the addition of /3, and the 
positions of all the poles involved in Pi (z) are equal to 
those of the poles in P,(z); the AR parameters 
are  obtained  after convergence in the Marquardt  method. 

Since  the  phase  reconstruction is nonlinear, the positive 
constant /3 is  obtained in the following way.  The calcu- 
lation is  in two stages, the first of which determines the 
minimum  value PO of the real part of Xmln(w) recon- 
structed  from P,(w) for all w .  If Po is positive, j @ ( @ )  I 
= I - Omin( w )  I is less  than n / 2  for  all w and  both  the  all- 
zero model and AR parameters are estimated by minimiz- 
ing CY of (29) using 8 ( 0 )  without adding PO to P y (  0 ) .  If 
Po is not positive, in the second stage, Xmin( w )  is recon- 
structed from Pl.(w) = P , ( o )  + P where = &, 2P0, 

which the real part of Xmin( w ) reconstructed  from Pi.( w ) 
= PJ,( w ) + Ph is positive for  all w .  It then follows that 

4/30, 8/30, . . . ,-&, where $6 is the first of  these values at 
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(b-2) 
Fig. 3.  The  characteristics of the AR model (for the first example).  (a)  The 

fourth-order AR model of (31). (b-1) AR model  buried in the  white  noise 
(SNR = - 5  dB). (b-2)  The  poles of the AR model  and  the  spectral  zeros 
introduced by the  additive  noise. 

the  all-zero  model  and AR parameters  can be estimated 
using 0 ( w  ) obtained  from Xmin( w ). 

V. SIMULATION RESULTS 
In  order  to  illustrate  the  characteristics of the  proposed 

method  and  to  compare  the  proposed  method to the  over- 
determined  modified  Yule-Walker  (OMYM)  approach  [2, 
eq.  (2.27)],  we  choose  the most  popular  two  examples 
used  in  the  literature  [4], [ 131. 

First Example: Consider  the  following  four-order AR 
process: 

4 

~ ( z )  = C ai - z ( 3 1 4  
- i  

i = O  

where 

a. = 1, al = -2.7607, a2 = 3.8106, 

a3 = -2.6535, and a4 = 0.9238 ( 3 W  

Fig.  3(a)  and  (b)  shows  the  characteristics  of  the AR 
model  and the AR-plus-noise  model ( SNR = - 5 dB), 
respectively.  This  AR  process  has four poles at both 0.98 
exp ( *jO.69)  and 0.98  exp ( kjO.88) ,  which  are  close to 
each  other  as  shown  in  Fig.  3(b-2).  The  two  methods  are 
implemented  on  a MELCOM-COSMO 700 (1 word = 32 
bit)  computer  using  single  precision  arithmetic. The total 
length of the  synthesized  AR-plus-noise  signal  is  8192 
points. The nonparametric  power  spectrum  used  in  the 
proposed  method  is  estimated by summation  of 16 perio- 
dograms,  each of which is computed  using  a  Hanning 
window  with  a  length of 512  points.  In  the  OMYW 
method, by using  the  same  AR-plus-noise  process of 
8191-point  length,  the  extended  Yule-Walker  equations 

.\ I 

- 
.\ 

VI ', OVER-DETERMINED MODIFIED 
5 - 3 0  

'\ YULE-WALKER METHOD 

. '  

I , I 
-5 0 ' +5 
SIGNAL TO NOISE RAT10 (SNR) ( d B )  

Fig. 4. The  comparison of the AR parameters  estimated by the  two  meth- 
ods  for various SNR (for the first example). 

[2, eq.  (2.23)]  are  evaluated  for  20  distinct  values of 7 

satisfying 7 > 4. Estimated  AR  parameters { ai } obtained 
by the  methods  are  evaluated by.the following  normalized 
mean-square  error  (NMSE)  [14] as 

(ai  - k ai) 2 

NMSE = C a: 
I 

where k is  the  scaling  constant  chosen to  minimize  the 
NMSE.  Typically, by using the proposed  method,  about 
10-50 Marquardt  iterations  were  needed  to  achieve  con- 
vergence  in the  case  considered  here. Fig. 4 shows  the 
NMSE  as  a  function  of  the  SNR.  When  the  SNR  is  about 
+ 5 dB,  both  methods  estimate  the  AR  parameters  accu- 
rately. In this case,  the evaluation of the  phase  error 
A 0  ( w )  of  (28) is unstable  since 1 Omin( w )  1 of the  mini- 
mum phase  signal  obtained  from the power  spectrum 
Py ( w ) has  a  value  greater  than n / 2  for  the  frequencies 
around  the  central  frequencies of the  poles as shown Fig. 
5(a),  and  the  denominator  of  the  right-hand  side of (28) 
has  small  values for  the  frequencies.  Then,  as  described 
previously  in  Sectioh IV, by adding the  positive  constant 
P to the  power  spectrum PY.( w )  so that 1 €Imin( w )  1 calcu- 
lated  from P$( w )  = Py( w )  + f l  is  less  than  7r/2  for  all'w 
as shown  in Fig.  5(bj,  a satisfactory AR model is esti- 
mated by the  proposed  method as  shown in  Fig.  5(c). 

When  the  additive  noise  level  was  increased by 5  dB, 
the  error  in  estimated  parameters  obtained by the  OMYW 
method  increased by about  15  dB as  shown  in  Fig. 4. 
Nevertheless,  the  proposed  method  estimates  the AR pa- 
rameters  accurately,  even  in  the  lower  SNR  cases  when 
the  SNR - -5 dB as  shown  in  Fig. 6. 

Secorid Example: Consider  the  fourth-order AR pro- 
cess  with  parameters  which are given as follows: 

a. = 1, al = -1.352, a2 = +1.338, 

a3 = -0.662, and a4 = +0.240. (33 1 
Fig. 7 shows  the  characteristics of the AR process  and  the 
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(C) 
Fig. 5. In case of high SNR, by adding  the  positive  constant  to the power 

spectrum,  the  accurate AR parameters are estimated  from the pro'posed 
method (for the first example). (a)  In  case of SNR = + 5  dB, the  eval- 
uation of the phase error A 0  (a) of (28) is unstable  since I Om,, ( w  ) 1 of 
the minimum phase signal obtained from  the  power  spectrum  estimate 
Pj ( w  ) is  larger  than 7r/2 for the  frequencies  near  the  central  frequencies 
of the poles. (b) By adding  the  positive  constant 6 to  the  power  spectrum 
P, ( w ), the  absolute  value of Omin ( w )  calculated from P; ( w  ) = P, ( w ) 
+ p is less than 7r/2 for all w .  (c) A satisfactory AR model  is estimated 
by the proposed method. 

rn 1 

(a) (b) 
Fig. 6. The  estimated  power  spectrum and phase obtained by the two 

methods (for the first example) (SNR = -5 dB).  (a) OMYW method. 
(b)  The proposed  method. 

AR-plus-noise  process (SNR = +4 dB).  Fig. 8 shows 
the estimated  spectrum of the AR process  obtained by the 
above  two  methods. ' The  SNR  is about +4  dB.  The AR 
model  estimated by the OMYW method has a large  degree 
of en,or  as shown in Fig.  8(a).  However, by using the 
proposed method, a satisfactory  spectrum  is  obtained. 

VI. EXPERIMENT AND THE RESULTS 
We applied the proposed method to the estimation of 

characteristics of  the resonant  vibration  caused by many 
flaws on the rough race of a small-sized ball  bearing. 

ANGLiLAR FREQUENCY W 

(a) (b) 
Fig. 7. The  characteristics of the AR model (for  the second example).  (a) 

The  fourth-order AR model of (33) and the AR model buried in the  white 
noise (SNR = f 4  dB). (b)  The  poles of the AR model and  the spectrgl 
zeros introduced due  to  the  additive noise. 

(a) (b) 
Fig. 8. The  estimated  power  spectrum and  phase obtained by the two 

methods (for the second  example (SNR = +4 dB). (a) OMYW method. 
(b)  The proposed  method. 

The  resonant  vibration  signal  is  detected by the follow- 
ing procedure [ 151, [ 151. The  outer ring i s  fixed by im- 
posing an axial pressure, and  the  inner one revolves at a 
constant  speed o f  1800 RPM.  Under  such  conditions, a 
flaw on the race causes  radial  movement of the outer  ring, 
and  the resulting signal  from the movement  is  sensed by 
a vibration  pickup  attached to  the  outer ring in an Ander- 
son meter [ 151. The  signal is amplified and filtered through 
a high-pass filter to eliminate the primary  frequency  com- 
ponent ( = 30 Hz) corresponding to  the rotation of the 
inner  ring. The filtered signal  is A / D  converted with a 
12 bit A /D converter at a sampling  period of 30 ps. 

Since the  resonant  vibration  signal  detected  above  is 
buried in the.high level  noise, the detected  signal z (  n )  is 
approximately  expressed as  the AR-plus-noise  process in 
(1)  and ( 2 ) .  To estimate the characteristics of the resonant 
vibration x ( i t )  using z ( n  ), the following five processes 
are  cairied  out (see Fig. 9). 

1 )  After  multiplying each input sequence of 83 normal 
bearings  having  smooth  races by the Hanning  window, 
2048-point FFT's  are carried  out. The power  spectra are 
averaged for  the 32 successive  nonoverlapping  sections. 
Then, by summing  up the power  spectra of 83 normal 
bearings,  the  averaged  power  spectrum P,( w )  is  ob- 
tained. Fig. 9(a) shows the inverse of P, ( w  ). If the ad- 
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posed  method  is  set to  be  the unit  impulse  as  follows: 

h w v  
PKE-WHITENED 

ESTIMATED AR MODEL 

1 POWER SPECTRUM I 
/(e) I 

2.44k 6.6k 
FREQUENCY(Hz) 

Fig. 9.  The estimated AR spectrum of the resonant vibration of a ball bear- 
ing obtained by the proposed method. (a) The inverse spectrum P,( m)-’ 
of the average power spectrum of the vibration signals of the 83 normal 
ball bearings. (b) The  power  spectrum P , ( w )  of the vibration signal of 
a  defective ball bearing with rough races. (c) The prewhitened power 
spectrum P, (w)  obtained by multiplying the power spectrum P , ( w )  in 
(b) by P,(w)-’  of (a). (d) The power spectrum P; ( w )  obtained by se- 
lecting and splitting the important frequency band of the power spectrum 
P, (w)  of (c). (e) Estimated second-order AR model obtained using the 
proposed method from Pi( w )  of (d). 

ditive  noise is white, P, ( w  ) denotes  the  power  spectrum 
of the  transfer  function  of  the  signal  measurement  pro- 
cess. 
2)  After  multiplying the  sequence  of  a  defective  bearing 
having  a  rough  race by the Hanning  window,  2048-point 
FFT’s  are  carried  out.  The power  spectra  are  summed  up 
for  the  32  nonoverlapping  successive  sections. The re- 
sulting  averaged  power  spectrum P, ( o) denotes  the  prod- 
uct of P, ( w )  and  the  power  spectrum Py ( 0 )  of the AR- 
plus-noise  signal. 

3) By dividing  the  power  spectrum P, ( 0 )  by P, (a), 
prewhitened  power  spectrum P,( w )  is obtained as shown 
in Fig.  9(c). 

4)  We .selected  the  important  frequency  band  of Py ( w  ) 
and  clipped it from Py ( w ) ,  and  then  the  power  spectrum 
Pi ( w )  is obtained as  shown  in  Fig.  9(d).  The  number of 
points  of  the  power  spectrum Py (a) is 512. 

5) It  is difficult for  the proposed  method  to  estimate the 
AR parameters  when  the  order  of the AR model is not 
known a priori. However,  it  is  known  that  the  central  fre- 
quency of the resonant  vibration of the  outer  ring  in  ball 
bearing  is  about  4  kHz [ 151, [ 161. Thus,  we applied  our 
method to  estimate  the  poles of the real  vibration  under 
the  assumption  that  the  vibration is described  by  the  sec- 
ond-order AR model  in the frequency  band  around  4  kHz. 
Using  the  proposed  method, the AR parameters  of  the  vi- 
bration  signal are  obtained  from Pi  ( w ) .  Fig.  9(e) shows 
the  characteristics of the  estimated  resonant  vibration. The 
initial  value of the  Marquardt  interation  used in the  pro- 

Using the initial value,  the  denominator of the  right-hand 
side  in (28) is  always  positive  for  all  frequencies.  Then, 
as  described  in  Section IV-C, by confining the  denomi- 
nator  to  a  positive  value  in  each  iteration,  12  iterations 
were  needed to  achieve  convergence  for  this  example. 
Since  the  input of the proposed  method  is  the  power  spec- 
trum of the.observed  signal,  the prewhitening  process  is 
simple  as  described  above. 

VII. CONCLUDING REMARKS 
A new spectrum  estimate  method  which is  based  on 

phase  matching is proposed  for  the  accurate  estimation of 
the  parameters  of  the AR process  buried  in  high  level 
noise.  From  experiments  with  numerical  examples,  the 
AR parameters  of  the  AR-plus-noise  process at low SNR 
are  estimated  accurately  using  our new method. 

Two  issues remain for  future  research  as  follows. 
1)  The  poles  of  the AR model  should be derived by 

computing the roots of the  polynomial  obtained  from  the 
finite  length  all-zero  model  estimate as described  in  Sec- 
tion 11. 

2) In  the  experiments,  the  order  of  the AR model is 
already  known.  However,  for  an  unknown  signal, it is 
difficult to  choose  the  order  of  the AR model.  In  such  a 
case,  the  ordinary  spectrum  estimation  methods  use  com- 
putationally  efficient  order  recursive  techniques  to find AR 
parameters for  the  various  orders of the  model.  However, 
since  -the  method  proposed  in  this  paper  uses  nonlinear 
optimization for phase  matching, it is difficult to use  such 
recursive  techniques. 

These  important  issues are currently  under  investiga- 
tion. 
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