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It is important to evaluate the viscoelasticity of muscle for assessment of its condition. However, quantitative and noninvasive diagnostic methods
have not yet been established. In our previous study, we developed a method, which used ultrasonic acoustic radiation forces irradiated from two
opposite horizontal directions, for measurement of the viscoelasticity. Using two continuous wave ultrasounds, an object can be actuated with an
ultrasonic intensity, which is far lower (0.9W/cm2) than that in the case of the conventional acoustic radiation force impulse (ARFI) method. In the
present study, in vitro experiments using phantoms made of polyurethane rubber and porcine muscle tissue embedded in a gelatin block were
conducted. We actuated phantoms by ultrasonic radiation force and measured the propagation velocity of the generated shear wave inside the
phantoms using a diagnostic ultrasound system. The viscoelasticities of phantoms were estimated by fitting a viscoelastic model, i.e., the Voigt
model, to the frequency characteristic of the measured shear wave propagation speed. In the mechanical tensile test, a softer polyurethane
phantom exhibited a lower elasticity and a higher viscosity than a polyurethane phantom with a higher elasticity and a lower viscosity. The
viscoelasticity measured by ultrasound showed the same tendency as that in the tensile test. Furthermore, the viscoelasticity of the phantom with
porcine muscular tissue was measured in vitro, and the estimated viscoelasticity agreed well with that reported in the literature. These results show
the possibility of the proposed method for noninvasive and quantitative assessment of the viscoelasticity of biological soft tissue.

© 2014 The Japan Society of Applied Physics

1. Introduction

Viscoelastic properties of muscle tissue are closely related to
the pathological state. For example, owing to pyramidal
tract disorders or peripheral neuropathy, the elastic modulus
of muscle decreases. In amyloidosis, atrophy and elevation
of the hardness of muscle occur. Also, polymyositis and
myoglobinuria lead to muscle weakness (decrease in muscle
elasticity).1,2) Therefore, it would be valuable to measure the
viscoelasticity of muscle for early detection and quantitative
diagnosis of muscle disorder.

Over the past decade, some remote actuation methods
based on acoustic radiation forces have been reported. Fatemi
and coworkers proposed an imaging modality that uses the
acoustic responses of an object, which are closely related to
the mechanical properties of the medium. By measuring the
acoustic emission with a hydrophone, hard inclusions, such
as calcified tissues in soft materials, were detected exper-
imentally.3,4) However, the spatial resolution was limited by
the size of the intersectional area of ultrasound beams at two
slightly different frequencies.

Nightingale and coworkers proposed an alternative imag-
ing method (acoustic radiation force impulse: ARFI), in
which focused ultrasound is employed to apply a radiation
force to soft tissue for a short duration (less than 1ms). The
viscoelastic properties of the tissue were investigated from
the magnitude of the transient response, which was measured
with ultrasound as the displacement of tissue.5–7) However,
in order to generate a measurable displacement by several
ultrasonic pulses, high-intensity pulsed ultrasound at 1,000
W/cm2 was required. According to safety guidelines for the
use of diagnostic ultrasound, it is recommended that the
intensity be below 240mW/cm2 (ISPTA) for pulsed waves
and 1W/cm2 for continuous waves.8) The intensity of the
pulsed ultrasound employed by Nightingale and coworkers
was therefore far greater than that indicated by the safety
guidelines. Later many groups studied methods for actuation

using high-intensity pulsed ultrasound and the measurement
of viscoelastic properties of tissue.9,10)

To decrease the ultrasonic intensity for actuation of soft
tissue, we chose continuous-wave ultrasound, as in the work
carried out by Fatemi and coworkers. The maximum intensity
of 1W/cm2 for continuous waves given by the safety
guidelines generates an acoustic radiation force of 6.67 Pa,
which is very small. Therefore, to generate a measurable
displacement by acoustic actuation, a method for effective
application of acoustic radiation forces should be developed.
However, a single acoustic radiation force does not generate
deformation in an object effectively because it primarily
produces a change in object’s position. In our previous
study, we developed a method, in which two cyclical
radiation forces were simultaneously applied to a phantom
from two opposite horizontal directions to cyclically com-
press the object in the horizontal direction. Furthermore, the
resultant regional displacement and strain in the tissue were
measured using a different ultrasonic probe. This method
enables the effective generation of deformation by acoustic
actuation.11,12)

There is another study using two sources of shear
waves,13) in which a method for evaluating the mechanical
properties of an object by making two shear waves interfere
with each other is presented. However, this method requires
that two shear wave sources are perfectly opposite, and that
shear waves are insonified from the skin surface by an
external vibrator. On the other hand, our method does not
have these requirements. Also, the shear wave sources
(corresponding to focal spots of two ultrasonic transducers)
can be placed inside an object and can be localized using
focused transducers.

In the present study, the propagation of the shear wave
generated by our ultrasonic actuation method was measured
also by ultrasound to evaluate the viscoelastic properties of
an object.
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2. Materials and methods

2.1 Acoustic radiation pressure at frequency difference of
two continuous ultrasounds
When the ultrasound at a single frequency propagates in a
medium, a constant force is generated in the direction of
propagation. This force is called the acoustic radiation force.
The acoustic radiation pressure is defined as the acoustic
radiation force per unit area.14) When inserting an object
(density µ2, sound speed c2) in the medium (density µ1, sound
speed c1), the ultrasound wave, which is incident perpendic-
ularly on the surface of the object and progressing in the
object, is given by Euler’s fluid motion equation:15)
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where vðz; tÞ and pðz; tÞ are the particle velocity and the sound
pressure in an object, respectively. Equation (1) is modified
to
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acoustic radiation pressure and the kinetic energy of the
ultrasound, respectively. Therefore, the acoustic radiation
pressure is given by
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When two ultrasounds with the same sound pressure, p0,
at slightly different frequencies, f0 and ( f0 + ¦ f ), cross each
other, an acoustic radiation pressure which fluctuates at the
frequency difference, ¦ f, is generated in the intersectional
space. The sound pressure, psum(t), in the intersectional space
is given by
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where ¡ and k are the attenuation coefficient and the wave
number, respectively. The kinetic energy eðz; tÞ is expressed
as
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Therefore, the following equation is obtained from
Eqs. (3)–(5).
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Since the displacement of the object generated by the high-
frequency component is negligible because it is sufficiently
smaller than that generated by the low-frequency components
at DC and ¦ f, the acoustic radiation pressure PRðz; tÞ is
approximately given by

PRðz; tÞ � �p2
0

�2c22
e�2��zð1þ cos 2��ftÞ: ð7Þ

2.2 Estimation of shear modulus from propagation
velocity of shear wave using viscoelastic model of medium
When acoustic radiation pressures are applied to an object, a
shear wave is generated and propagates. The shear modulus
G is estimated from the measurement of the shear wave
propagation speed cs expressed as

G ¼ �c2s ; ð8Þ
where µ is the density in the object.

To determine the shear wave propagation speed cs,
displacements of the object produced by acoustic radiation
forces were measured also with ultrasound at multiple points
along the propagation path of the shear wave. From the
measured displacements, the shear wave propagation speed cs
is estimated as

cs ¼ 2��f�l

��
; ð9Þ

where ¦l and ¦ª are the interval of ultrasonic beams for
measurement and the phase difference between displace-
ments of the object measured in neighboring ultrasonic
beams, as illustrated in Fig. 1, respectively.

On the basis of Eq. (8), only the shear modulus can be
estimated from the shear wave propagation speed. In the
present study, the viscoelastic properties of an object were
estimated as described below: The propagation of the shear
wave is expressed by the wave equation as16)
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where U, k, and ½ are the temporal Fourier transform of
displacement, wave number, and angular frequency, respec-
tively. When the Voigt model is used as a viscoelastic model
of an object, the shear wave velocity is modeled as17)
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where µ, ®1, and ®2 are the density of an object, shear
elasticity, and shear viscosity, respectively.
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2.3 Experimental methods
Figure 2 shows a schematic diagram of the experimental
system. To measure the displacement distribution at a high
spatial resolution, we employed ultrasonic diagnostic equip-
ment (Hitachi-Aloka ProSound F75) with a 10MHz linear
probe (Hitachi-Aloka UST-5415). The frame rate and interval
between ultrasonic beams were set at 486Hz and 2.75mm,
respectively. The number of beams used in the measurement
was 13 (beam number: 0–12). As shown in Fig. 1, the 0-th
beam was located at the center of the two ultrasonic focal
points for actuation.

To improve the spatial resolution in the measurement of
the response of an object to the acoustic radiation force, an
ultrasound correlation-based method, the phased-tracking
method,18,19) was used to measure the distribution of minute
displacements. The accuracy of the displacement measure-
ment by the phased-tracking method has already been
evaluated to be 0.2 µm by basic experiments using a rubber
plate20) and, also, has already been applied to measurements
of vibrations and viscoelasticities of the arterial wall21,22) and
heart wall.23,24)

We used two phantoms made of two different polyurethane
rubbers that simulate soft biological tissues and another
phantom containing porcine muscle tissue to measure the

propagation of the shear wave and estimate the viscoelas-
ticity. The dimensions of the two polyurethane rubber
phantoms were 90mm in diameter and 20mm in height,
and their hardnesses were determined to be 0 and 5 using the
ASKER C-type durometer. The porcine muscle phantom
used in the present study is illustrated in Fig. 3. As illustrated
in Fig. 3, the phantom was obtained by embedding a porcine
muscle tissue in gelatin to prevent the deterioration of the
porcine muscle by immersing in water. The position of the
measured region is indicated by the blue dashed line.

3. Experimental results and discussion

3.1 Basic experiments using polyurethane rubber
phantoms
Figures 4(a) and 4(b) show the spatial distributions of
displacements in polyurethane rubber phantoms with ASKER
C hardnesses of 0 and 5, respectively, estimated at ¦ f = 5Hz
using the Fourier transform. Focal points of ultrasonic beams
for actuation were set at a depth of approximately 5mm. The
intensity of each ultrasound for actuation was 0.9W/cm2.
As can be seen in Fig. 4, the shear wave is attenuated in
accordance with its distance from the focal point.
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Figure 5 shows the displacement waveforms measured in
the respective polyurethane rubber phantoms located 5.5 to
22mm away from the focal point. The depths, where the
displacements were measured, were (a) 5.5 and (b) 5.1mm. It
can be seen that the phase lag occurs between the waveforms
in Fig. 5, which is caused by the wave propagation. For
example, the peak of the waveform at beam number 4
(distance from the focal point is 11mm) is formed slightly
before that at beam number 5 (distance from focal point is
13.75mm).

Figures 6(a) and 6(b) show spatial distributions of phases
of displacements measured in the phantoms with ASKER C
hardnesses of 0 and 5, respectively, estimated at ¦ f = 5Hz
using the Fourier transform. As shown in Fig. 6, it is
confirmed that the phase increases with the distance, which is
shown by the red arrow in the figure. Means and standard
deviations of phases at ¦ f evaluated for three measurements
are shown in Fig. 7. The depths, where the phases in
Figs. 6(a) and 6(b) were estimated, were 5.5 and 5.1mm,
respectively. The phases were obtained as the values relative
to the phase measured at beam number 4 (distance from focal
point: 11mm). From Fig. 7 and Eq. (9), it can be seen that
the shear wave propagates in the direction away from the
focal point. Shear wave velocities of polyurethane rubber
phantoms with hardnesses of 0 and 5 were estimated to be
1.2 and 1.7m/s, respectively, using Eq. (9) with the slopes
corresponding to ¦ª/¦l in Eq. (9) of the regression lines
(green lines in Fig. 7) determined by the least-squares
method. To discuss the accuracy of the estimated values,
we measured the shear wave velocity of the polyurethane
rubber phantom with an ASKER C hardness of 0 for three
times. The mean and standard deviation were 1.76 and
0.06m/s (at ¦ f of 5Hz), respectively. Therefore, in the
present paper, the number of digits after the decimal point
was set at one. There is a relatively large variation in the
estimated phase. The reason for the variation is not perfectly
clear, but the generated displacement is very small and might
be affected by an undesirable vibration from the environment.

We need to clarify the reason for the variance and to develop
a method for separating the displacement induced by acoustic
radiation force from the environmental vibration because we
aim to actuate an object within the maximal acoustic output
suggested by the safety guideline.

The propagation velocities of shear waves in the phantoms
with hardnesses of 0 and 5 are plotted as a function of ¦ f in
Fig. 8. The measured frequency characteristics of shear wave
propagation velocities fit well to those obtained using the
Voigt model shown by Eq. (12). The estimated elastic moduli
and viscosity constants of the phantoms with hardnesses
of 0 and 5 were (�0

1 ¼ 2:2 kPa, �0
2 ¼ 48:1Pa0s) and (�5
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5:1 kPa, �5
2 ¼ 18:8Pa0s), respectively. The root mean square

difference (RMSE) between the measured values and the
values estimated using the model shown in Fig. 8 was also
evaluated. RMSEs with respect to phantoms with hardnesses
of 0 and 5 were 7 and 13%, respectively.

Figure 9 shows the elastic moduli and viscosity constants
of the respective phantoms measured using a precision
universal tester (Shimadzu AG-X 10kN). In Fig. 9, plots and
vertical bars show means and standard deviations for 10
measurements, respectively.

As shown in Fig. 9, viscoelastic properties of the poly-
urethane rubber phantoms estimated using the precision
universal tester were (�̂0

1 ¼ 5:92� 0:24 kPa, �̂0
2 ¼ 33:40�

5:68 kPa0s) and (�̂5
1 ¼ 23:32� 0:08 kPa, �̂5

2 ¼ 14:54�
1:58 kPa0s).

There were significant differences between the absolute
values obtained by ultrasound and those obtained using the
precision universal tester. In the measurement using the
universal tester, the actuation frequency was about 1Hz, and
the maximum strain in the object was about 20% due to
limitations of the specifications of the tester. In general, the
viscoelastic properties depend on the magnitude of strain, and
the different levels of deformation may be one of the reasons
for the differences in the absolute values of the viscoelastic
constants. However, as shown in Fig. 10, similar tendencies
of the viscoelastic constants (higher elastic modulus of the
phantom with the hardness of 5 and higher viscosity constant

of the phantom with the hardness of 0) were found in both
measurements with ultrasound and the universal tester.

3.2 In vitro experiment using porcine muscle tissue
In the present study, an in vitro experiment using a gelatin
phantom containing porcine abdominal muscle tissue was
conducted to investigate whether the proposed method could
generate and measure the presumed shear wave. Figure 11
shows the spatial distribution of amplitudes of displacements
at ¦ f = 5Hz estimated by applying the Fourier transform to
displacement waveforms measured by ultrasound. The focal
points of ultrasonic beams for actuation were set at a depth of
approximately 5.7mm.

Figure 12(a) shows the displacement waveforms measured
at a depth of 5.7mm in the porcine muscle at ¦ f = 5Hz. The
spatial distribution of phases of the measured displacement
waveforms is shown in Fig. 12(b), and the averaged phase at
¦ f of 5Hz is shown in Fig. 12(c), where plots and vertical
bars show means and standard deviations, respectively. In
Fig. 12(a), a frequency component of about 100Hz is clearly
seen. The amplitude of this component increases when the
acoustic radiation force increases (corresponding to the
downward displacement of the object). Therefore, this
component might be the high-frequency component of the
acoustic radiation force, which was neglected in the present
study. Although the high-frequency component of the
radiation force is nearly 2MHz, the sampling frequency of
the displacement waveform is 486Hz (corresponding to the
frame rate). Thus, an aliasing effect might be one of the
reasons that the component is seen as a 100Hz component.

As shown in Fig. 12(a), the displacement caused by
ultrasonic actuation is attenuated during propagation. Also, in
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Figs. 12(b) and 12(c), phase delays due to the propagation of
the shear wave are observed. The position of the analyzed
region is indicated by the green square in Fig. 3. By
determining the regression lines, as shown by the green line
in Fig. 12(c), the shear wave propagation speed at ¦ f of 5Hz
was estimated using the slope of the regression line.

In Fig. 13, the shear wave propagation speeds are plotted
as a function of the frequency difference ¦ f. By fitting the
frequency characteristic of the shear wave propagation speed
obtained using the Voigt model to the frequency character-
istic measured by ultrasound, the viscoelastic constants of the
porcine muscle tissue were estimated to be (�p

1 ¼ 1:6 kPa,
�p
2 ¼ 10:9Pa0s), which were similar to the viscoelastic

constants of cow muscle (®1 = 30–400 kPa, ®2 = 30–200
Pa0s),25) beef muscle (®1 = 20 kPa, ®2 = 23 Pa0s),26) and
human muscle (®1 = 2.5 kPa, ®2 = 15 Pa0s)27) reported in the
literature. From these results, the proposed method could
generate and measure the shear wave propagation and was
also applicable to the estimation of the viscoelasticity of
biological tissue.

4. Conclusions

In the present study, we actuated phantoms simulating soft
biological tissue using dual acoustic radiation pressure and
measured the propagation velocity of the generated shear
wave as a function of the actuation frequency ¦ f. In
polyurethane phantoms, the viscoelastic properties measured
by ultrasound tend to be similar to those measured using a
precision universal tester, though there were differences in
their absolute values. Furthermore, an in vitro experiment
using porcine abdominal muscle was conducted and the
viscoelastic properties were also estimated as in the measure-
ments of polyurethane phantoms. These results show the

possibility of the proposed method for the noninvasive and
quantitative assessment of the viscoelasticity of biological
soft tissue.
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Fig. 12. (Color online) (a) Displacement waveforms, (b) spatial
distribution of phases, and (c) average phases of displacements at ¦ f of 5Hz
obtained for porcine muscle phantom.
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Fig. 13. (Color online) Shear wave propagation speeds in porcine muscle
phantom plotted as a function of ¦ f. The solid line shows the frequency
characteristic obtained using the Voigt model.
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