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Accurate Power Spectrum Estimation of a Damped Sinusoidal Signal
in Low SNR Cases Based on a Newly Defined Transfer Function
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Summary

This paper is concerned with a method to estimate the power spectrum of a periodic damped sinusoidal signal
contaminated by high-level noise components when there are fluctuations in the period. A correlation between two
spectral components exists at and around the resonant frequency of a damped sinusoidal signal. By using this property,
the authors introduce a new transfer function defined from the resonant frequency component to every other component
around the resonant frequency to estimate the power spectrum of the damped sinusoidal signal. Since it can be assumed
that there is no correlation between these two different frequencies for the noise components, the noise components
in the cross spectrum at the two different frequencies decrease with the averaging operation. Consequently, the power
spectrum of the damped sinusoidal signal is accurately estimated from the observed signals, even if the signal-to-noise
ratio (SNR) is very low. The proposed method developed here is satisfactorily confirmed by simulation experiments.
This method is further applied to the estimation of the power spectra of the vibration signals radiated from normal and

defective automobile engines.

PACS no. 43.35.Bf

1. Introduction

Resonant vibration induced by a defect in a mechanical sys-
tem such as an automobile engine is modelled by the follow-
ing damped sinusoidal wave, z(n):

z(n) = e~*"T5 cos(wonTs), (n=0,1,..) (1)
where T's is the sampling period, « is the damping factor,
and wy is the resonant angular frequency of the resultant
vibration as shown in Figures 1(a) and 1(b).

In a defective automobile system, the defect-induced sig-
nal z(n) is almost always periodically generated with an
interval Ty = NyT's as shown in Figure 1(d). Thus, the re-
sultant observed signal y(n) is described by the sum of the
iteratively generated signal z(n) and an additive noise signal
w(n) as follows:

y(n) = z(n) x y_d(n—mNo — ) +w(n),  (2)

where * denotes a convolution, rn is an integer describing the
ignition number, §(n ) is the impulse due to the ignition, 7, X
T is the time delay associated with the mth impulse §(n —
mNy) in Figure 1(c), that is, the period from the mth ignition
timing of Figure 1(c) to the defect-induced-vibration being
radiated during each explosion period in Figure 1(d), and
w(n) is the noise component which is caused even when the
automobile system is normal. In this paper, w(n) is assumed
to be Gaussian white noise, which is uncorrelated with z(n),
and the repetition interval Ty = Ny x Ts is much longer
than the duration period of the damped sinusoidal signal
x(n) as shown in Figure 1(d). Though the impulse train due
to ignition pulses is given by > d(n — mNy), which is
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just periodic as shown in Figure 1(c), the term 3, d(n —
mNy = Tm) in equation (2) shows the impulse train, the
repetition interval of which is almost T due to the ignition
signal but which contains fluctuations.

Let us re-define the resonant vibration signal z(n;m) and
noise signal w(n; m), respectively, in the mth block just after
the mth ignition timing by

z(n;m) = z(n + mNp)
=z(n)*dn—1m) (n=0,..,Ny), (3)
w(n;m) = w(n + mNy) (n=0,..,N). (4)

The observed signal y(n; m) in the mth block is given by

y(n;m) = z(n;m) +w(n;m) (n=0,..,Np). (9)

There are two standard methods to estimate the resonant
vibration component z(n) or its power spectrum | X (k)|?
from the observed signal y(n) by reducing the noise com-
ponent w(n): first, by averaging operation in the time do-
main, the observed signal y(n) is divided into block signals
{y(n;m)} in equation (5) by referring to the ignition timing,
which is completely periodic, and then the resultant periodic
signals {y(n;m)} are summed up at the same timing. The
resultant averaged signal is given by

E[y(n;m)]

E[z(n;m)] + E[w(n;m)]
z(n) * E[6(n — mm)] + E[w(n;m)],(6)

where E[-] represents the average operation. If the noise
component w(n;m) in the mth block is uncorrelated with
w(n;l) in the Ith block (I # m), the noise component of
the second term in equation (6) decreases in proportion to
1/v/M, where M is the number of samples averaged. That
is, the averaging operation in the time domain is effective
in reducing the noise component w(n) when the term 7,
is kept unchanged. In actual automobile systems, however,
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Figure 1. The aperiodic damped sinusoidal signal x(n) and the
model of the measured signal y(n).

(a) The power spectrum | X (k)|? of the resonant vibration z(n).
(b) The phase characteristic £ X (k) of z(n).

(c) The periodic impulse train ) | §(n — mNo).

(d) The aperiodic damped smusmdal signal z(n) * Z d(n —
MmNy — Trm), which can be divided into block signals.

(e) The model of the measured signal y(n), (S/N=-5.0 dB), which
is also divided into block signals y(n; m).

there are large fluctuations in the measured values {7, } of
the lag term as shown in Figure 2. When the SNR is low,
it is difficult to detect accurately the start of each timing,
Tm + MmNy, of the defect-induced signal z(n;m) in the mth
block from the observed noisy signal y(n;m). Thus, in us-
ing the average operation in the time domain, the resonant
vibration component to be estimated in the first term of equa-
tion (6) also decreases in proportion to 1 / \/W . Therefore,
this method cannot be applied to an automobile system to
estimate the resonant vibration signal.

Secondly, in the standard fast Fourier transform (FFT)-
based method [1], y(n) is also divided into block sig-
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< +1 - - . R |Y (k;m)|? of y(n;m) are averaged. Since the effect due to
‘ the fluctuation in the lag values {7,,} is almost negligible
or . in each power spectrum |Y (k; m)|?, the resultant averaged
y(nim) wer spectrum P, (k) of y(n) is given b
-1t g mth block (e) R (k) of y(n) s given by

Py(k) = E[|Y (k;m)[?]
= E[|X (k;m)[?] + E[|W (k;m)[*]
= |X (k)] + E[|W (k;m)[], (7)

where X (k), X (k;m), and W (k;m) are the spectra ob-
tained by applying the Ny-point FFT to the signals z(n),
z(n;m), and w(n;m), respectively. However, the noise
component E “W’ (k; m)["’] cannot be reduced even though
the average number M of equation (7) is increased to infinity.
Thus, the resultant power spectrum which estimates P, (k)
includes a significantly large noise component, especially
when the SNR is low.

For the problem of reducing the noise component in the
observed aperiodic signal, therefore, using time-domain av-
eraging, both the noise component and the signal component
decrease. Using power spectrum averaging, the fluctuations
in the phase of the signal become unimportant but the noise
component cannot be reduced.

There is correlation between two frequency components
at and around the resonant frequency of the damped sinu-
soidal signal x(n). In order to detect the correlation be-
tween these two different frequency components of z(n),
the newly-defined squared coherence function between these
two different frequency components is proposed in [2]. Using
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this coherence function, it is confirmed that there is corre-
lation between two different frequency components of the
resonant vibration by experiments. By utilizing the existance
of a correlation between different frequency components of
the resonant vibration z(n), we define a new transfer func-
tion from the spectrum component at the resonant frequency
to those around the resonant frequency. Using this transfer
function, we propose a new method accurately to estimate
the power spectrum |.X (k)|? of z(n) in equation (2) from
the observed signal y(n) even when the SNR is very low. By
this method, the power spectrum of the noise component is
decreased in proportionto 1/ v/M , which cannot be achieved
by the standard FFT-based method of equation (7).

2. Principle

As is shown in the spectrum X (k) of the resonant vibration
z(n) in Figures 1(a) and 1(b), there is a correlation between
two different angular frequency components at w, and wy
near the resonant angular frequency wq of z(n). That is,
the relation between the spectral components X (w,; m) and
X (wp;m) of the mth block signal z(n;m) is always kept
constant for every block, even if there are fluctuations in
the lag values {7, }. Thus, this paper newly introduces a
transfer function Hyp(k) from one frequency component
X(w,) at w, to another X (ws) at wp in the signal z(n).
From this transfer function, the complex ratio of X (w;) to
X(w,) is determined. By averaging the transfer function,
the power spectrum | X (k)|? of the damped sinusoidal signal
z(n) is estimated even when it is contaminated by high-
level noise components w(n) because the complex ratio of
the spectra W(wp) at wp to Wiw,) at w, for the noise
components varies randomly. In order to obtain the transfer
function H,s(k) defined between these different frequency
components w, and wp, (W, # ws), both the X (w,) and
X (ws) components should be transformed in the first step of
the proposed procedure so that they share the same frequency
band as described below.

Lety;(n;m), (i = a,b, ...) be the signal in the mth block
of the narrow-band signal which is obtained by applying the
band-pass-filter, whose discrete central frequency is k; and
whose discrete frequency band is [k; — Ak, k; + Ak] as
shown in Figure 3(a-1), to the observed signal y(n). The
two different narrow-band signals y,(n;m) and ys(n;m)
do not share the same frequency band at this stage if a #
b. Thus, by the standard transfer function, the ratio of the
spectrum Y (k;m) of yy(n;m) to the spectrum Y, (k:m)
of yq(n;m) is not determined. Using the square operation
for each narrow-band signal y;(n; m), (i = a, b) in the time
domain, the resultant squared signal z;(n; m) = |y;(n; m)|?
has the same frequency band around the d.c. component as
shown in Figures 3(b-1) and 3(b-2). These derivations are
described as follows: Since the squaring operation in the
time domain coincides with the convolution in the frequency
domain [4, p. 95], the spectrum Z;(k;m) of the squared

Xa(k;m)

Xp(k;m)

(a-1)

ks FREQUENCY

FREQUENCY

(b-1)
FREQUENCY

(b-2)
FREQUENCY

Figure 3. An illustration explaining the principle of the proposed
method.

signal z;(n;m) of y;(n;m) in the mth block is given by

N-1

Zi(k;m) = Flo- S Vil m)Y; (1 = k;m)
=0

1 ki+Ak
= S Ym)Y7(-km),  (8)
I=k; —Ak

where ¢ = a,b and * denotes the complex conjugate, and
Ny is the number of points in the FFT. Thus, as shown in
Figures 3(b-1) and 3(b-2), the spectra Z,(k; m) of z,(n; m)
and Zy(k; m) of zp(n; m) have components in the same low
frequency band around the d.c. component no matter what
discrete frequency band [k; — Ak, k; + Ak] the original
narrow-band signal y;(n; m), (i = a,b), has.

Next, let us consider the physical meaning of the spectrum
Zi(k;m) of the squared signal z;(n;m) = |yi(n;m)|? in
equation (8). As shown in the spectrum X (k) of the res-
onant vibration 2(n) of Figures 1(a) and 1(b), when the
duration time of the defect-induced vibration z(n) is very
short, the spectrum X (k) of z(n) has an almost constant
magnitude, | X (k;)|, and smooth phase characteristics of
8(k) = 2m(k — ko) 7o around the resonant angular frequency
wo. where kg = Npwyp /27 denotes the discrete centre fre-
quency of the resonant vibration and Ty is the gradient of the
phase around kg. Thus, if the band-pass-filter employed has
sufficiently narrow-band characteristics, the spectral compo-
nent .X;(k) of the narrow-band signal ;(n) with the discrete
frequency band [k; — Ak, k; + Ak] can be approximated by
the complex value | X (k;)| exp(j 2w (k — ko)7o), that is,

Xi(k;m) = | X (k;)| ed 27 (k—ko)7o, (9)
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Thus, the spectrum X;(k; m) of the mth block narrow-band
signal z;(n;m) = x;(n)*d(n— 7. ) is approximately given
by the constant values X (k;; m) of equation (9) multiplied
by the term exp(—j 27k7,,) due to the time delay from the
mth ignition timing as

Xi(k;m) 2 | X (k;)|ed 27k —ko)mo
x e~ 27kTm (10)
= G| X (g}t *=tre—rml, (11)

where Cy = exp(—j 2wka7o). By adding the noise term to
the above equation,

Yi(k;m) = Co|X (k;)|ed 2™k(7e=m) + W;(k;m)

(for k; — Ak < k < k; + Ak), (12)

where W;(k; m) is the spectrum of the mth narrow-band sig-
nal w; (n; m) with the discrete frequency band [k; — Ak, k; +
Ak). Using this approximation, the spectrum Z;(k;m) of
the squared signal 2;(n; m) in equation (8) is approximately
given by

1 I=k;+Ak

Zikim) = & 3 {xi(:;m)xs'a—k; m)
N0 ki —Ak
+ X;(m)Wr(l - k;m)

+ Wi(l;m) X7 (1 - k;m)
+ Wi(l;m)Wi (1 - k;m)}

R

iX(kiHZej 27[’k(T[]—Tm)ABAr

1 I=k;+Ak
>
A‘O I=k;—Ak
X W’?(l - k;m)ej 2xl(To—7m)
+ Cy | X (ki) |Will; m)ei 27 (—k)(7a=7m)

[COIX(k.-)I

FWil;m)Wr(l - k; m)] (13)

where ABy = 2Ak+1and |Cp|? = 1. Since the spectrum
W;(k;m) of the narrow-band noise component w;(n;m)
has random phase characteristics, the second and third terms
are sufficiently smaller than the first term, and the fourth term
is also sufficiently smaller than the first term if £ 7# 0. Let us
denote the sum of these three terms by ABy - Ziy (ki;m),
then the spectrum Z;(k; m) in equation (13) is given by

Z,(k,m)’” AI\BN |X' k)[2 —j2mk(To— Tm)+Z (khm)
(—2Ak < k < 2Ak, k # 0). (14)

Though the effect on the phase characteristics due to the
fluctuation in the lag values {7, } is large at the frequencies
k around the resonant frequency kg, the effect is small for
frequencies around the d.c. component (—2Ak < k < 2Ak,
k # 0). Thus the phase shift due to the fluctuation in the lag
term Ty, is reduced by the squaring operation.

As is shown in equation (14), the spectrum Z;(k;m),
(i = a,b) of the squared signal z;(n;m) consists of the
following two components: one is the spectrum Z;, (k; m) of
the band-limited damped sinusoidal signal x;(n; m) around
the k;-th frequency component, and the other is the spectrum
Ziw(k; m) of the remaining components, including the band-
limited noise w;(n; m) as follows:

ABy

Zi(k;m) = No

{Ziz(k;m) + Zi(k;m)}, (15)

where i = a, b, and
Zia(k;m) = |X (ko) Pei2500=mm) (16)

By using the spectrum Z;(k;m) of the squared signal
zi(n;m) = |yi(n;m)|%. let us define the magnitude of the
transfer function Hgp(k) from the k,-th frequency compo-
nent to the kj-th one as follows:

_ | E[Zz(k;m) 2o (k; m)]
~ |E[Z;(k;m)Za(k;m)] |

| Ha (k)| (17)

By substituting equation (15) into equation (17), the cross
spectrum between the two squared signals z,(n;m) and
zp(n;m) in the numerator of equation (17) is given by

E[Z;(k; m)Zy(k; m)]

= A}f? [{ 2(ksm) + Z3, (k;m)}
X {Zb-_.;(k; m) + wa(k;m)}jl
AB%

= { (22, (k;m) Zyz (k;m)

)]
+ E[Z;,(k;m) Zyw (k; m)]
+ E[Z;,(k;m) Zy, (k;m))

+ E[Z},(k;im) Zyu( k,m)]} (18)

During the averaging operation, the second and third terms
of equation (18) approach zero since it can be assumed that
the noise component Z;,,(k; m) has no correlation with any
other frequency components of the resonant vibration com-
ponent Z;; (k; m). The fourth term also approaches zero ex-
cept for the d.c. component (k=0). That is, the cross spectrum
E[Z;(k;m)Zb(k;m)] in equation (18) is approximately
given by

[Z‘(k'm)Zg.(k;m)] (19)
2
= SREZ(m) Zu(km)], (k£0)

if the number M of the averaging operation is sufficient large.
Therefore, the noise component, which cannot be decreased
in equation (7), is reduced by the averaging operation in
equation (18).



ACUSTICA - acta acustica
Vol. 83 (1997)

Kanai et al.: Power spectrum estimation of a damped sinusoidal signal 301

In the same manner, the auto-spectrum component
| Za(k;m)|* of z,4(n;m) in the denominator of equation
(17) is approximately given by

E[Z' k:m)Za(k;m)]

~ AB}
\v)

{E[Zzz(k:mwu(k;m)] (20)

E[Z;w(k;m)zaw(k;m)}} (k #0).

Thus, the magnitude of the transfer function in equation (17)
is given by
B[22 (k1) Zoo (s m) |

|Has ()| = £ [ Zaz(k;m)[?] + E[| Zaw(k; m)[2]”

(21)

(k # 0), when the number M of the averaging operation
is sufficiently large. By substituting equation (16), the cross
spectrum of the numerator of equation (21) is approximately
given by

E(Zz,(ksm) Zoo (ks m)] | 21X (k) P X(B)2. (22)

On the other hand, the auto-term in the denominator of
equation (21) can be approximately described as follows:
When the discrete frequency k, almost coincides with the
resonant frequency kg of the defect-induced vibration, the
spectral component Y, (k;m) of y,(n;m) is dominant in
the spectrum. If frequency k, is near the resonant frequency
kg, it can be assumed that the SNR around the frequency
ko is very high and the spectral component W, (k;m) of
the narrow-band noise w,(n;m) is negligibly small com-
pared with the spectrum X,(k;m) of the defect-induced
narrow-band signal z,(n;m). For this situation, the auto-
power spectrum | Z, (k; m)|? in the denominator of equation
(19) is approximately represented by

AB%

E[|Z.(k)]*] = *"'E[|Za,(k)|2]

ABg

X E[| Zaw(k)[?]

AB}’V
2

R

E[|Zoz(k;m)[?],  (23)

if k, = kq. By substituting equation (16) into equation (23),

AB;\,

0

E[|Za(k)]?] = X(ka)|*, if ko = ko (24)

Substituting equations (22) and (24) into the numerator and
the denominator of equations (17) or (21),

X (k) PX (ko)
Hyp(k)| =
el S X o
_ X (k)P
X (k)P

(25)

From equation (25), the power spectrum estimate |.i;(kb)|'3
for a frequency kj is obtained as follows:

X (ks)* = |X (ko) || Has (k)|
E[Z;(k;m)Zy(k;m)]
E[Z;(k:;m)Za(k;m)l

(k #0,ka = ko). (26)

= E[|Y (ka;m)[]

Thus, the magnitude of the power spectrum X (kp)|? is esti-
mated by the product of the average magnitude of the dom-
inant component, E [|}"(ka;m)|2]. in the power spectrum
of y(n) multiplied by the estimated magnitude |H,y(k)| of
the transfer function H,(k) from the k,-th frequency com-
ponent to the kp-th frequency component as defined for the
squared signals z,(n) and z3(n) in equation (17). By this
estimation, the noise component due to the noise power in
the second term of equation (7) is successfully decreased by
the averaging operation even if the SNR is very low.

In this paper, it has been assumed that only one resonant vi-
bration z(n) is driven by the defect as shown in Figure 3(a-1).
However, also in the case where more than one resonant vi-
bration, z; (n) and z2(n), is driven simultaneously as shown
in Figure 3(a-2), the transfer function H,(k) from the k,-th
component of z;(n) to the ky-th component of z2(n) can
be estimated by the same procedure as is described above.

3. Simulation experiments

In the computer simulation experiments, white noise w(n)
is added to the almost periodic damped sinusoidal signal
z(n) in Figure 1(d). There are fluctuations in the lag terms
{Tm} in equation (2). The ratio of the standard deviations
of the actual lag terms {7, x T} to the inverse of the
centre of the resonant frequency fo = wp/2 is 2, which is
sufficiently large. For this condition, both components of the
resonant vibration and noise in equation (6) decrease with
the averaging operation.

_Figures 4(a), (b), and (c) show the power spectral estimates
| X (k3)|? in equation (26) obtained by the proposed method
for various SNR cases. The SNR are 0 dB, -5 dB, and -
10 dB, respectively, the discrete band width 2Ak of each
band-limited signal y;(n) is = 0.01Ts, where T is the
sampling frequency, and the average number M is 500 in
each case. The proposed method accurately estimates the
power spectrum of the damped sinusoidal signal, which is
closer to the true power spectrum | X (k)|? than the FFT-
based power spectrum P, (k) estimated in equation (7).

Figures 5(a), (b), and (c) show the power spectra | X (kp)|?
estimated by the proposed method when the average numbers
M are 500, 100, and 10, respectively. The SNR is -10 dB in
these three cases. From these figures, by increasing the aver-
age number M, both the variance and the noise component
are reduced according to 20 log,,(1/v/M) [dB].
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Figure 4. The estimated power spectra | X (k)|? of equation (26) for
the aperiodic damped sinusoidal signal z(n) in Figure 1(a) contam-
inated by high level white noise w(n). The average number M is
500. Each block length Ny is 512 points. (a)S/N=0 dB, (b)S/N=-5
dB, and (c)S/N=-10 dB

| X (k)|?: The true power spectrum of z(n).

| X (ks)|?: The power spectrum estimated from y(n) by the pro-
posed method in equation (26).

Py (k): The power spectrum estimated from y(n) by the standard
FFT-based method in equation (7).

4. Application Experiments

In the computer simulation experiments, the dominant fre-
quency component was given a priori. However, for actual
automobile systems, the dominant frequency components are
unknown. Thus, it is necessary to determine the discrete res-
onant frequency kg of the defect-induced signal.

To begin with, using the spectra { Z; (k; m)} of the squared
signals {z;(n;m)}, let us calculate the following squared
coherence function |vy,4(k)|? between the k,-th frequency
component and the kj-th frequency component:

|E[Z;(k;m) Zy(k; m)] |2
|Za(k; m)|?) E[| Zy(k; m)|?]

2
[7as (k)" = 3 . (27)
This equation corresponds to the squared coherence func-
tion of the transfer function defined in equation (21). The
squared coherence function |y, (k)|* between each pair of
two different frequency components is shown in Figures 6(a)
and 6(b) for a normal sample and for a defective sample,
respectively, in order to determine the frequency band of the
defect-induced signal x(n). Figure 6(a) shows that there is
a correlation only for the cases where two frequencies are

Figure 5. The estimated power spectra | X (k)|? of equation (26) for
the aperiodic damped sinusoidal signal z(n) in Figure 1(a) contam-
inated by high-level white noise w(n). The SNR is -10 dB. Each
block length Np is 512 points. The average number M is (a)500,
(b)100 and (c)10.

| X (k)|?: The true power spectrum of z(n).

| X (ks)|?: The power spectrum estimated from y(n) by the method
proposed in equation (26).

Py (k): The power spectrum estimated from y(n) by the standard
FFT-based method in equation (7).

identical, that is, k, = k3. For the results of the defect sam-
ple in Figure 6(b), however, there is a correlation between the
components from 2 kHz to 6 kHz. Thus, 4 kHz was chosen
as the discrete centre frequency ko /NoTs of the resonant
vibration in the following experiments.

Next, the transfer function H,;(k) of equation (17) from
the squared narrow-band component around k,/NoTs=4
kHz to other components with ky/NoTs is calculated to
estimate the power spectrum | X (k)|? in equation (26) of
the defect-induced signal z(n), where each block length N,
is 512 points and T's = 20 ps. Figures 7(a) and 7(b) show the
power spectral estimates | X (k;)|? obtained by the proposed
method in equation (26) and the power spectral estimates
Py (k) in the standard method of equation (17), for the sig-
nals radiated from a normal engine and from a defective
engine, when the average number M is 100. Each figure also
shows the squared coherence function [y45(k)|? in equation
(27) for k, /NoTs=4 kHz. For the |y, (k)|? of the normal
sample in Figure 7(a), all the frequency components except
kaq are reduced by the averaging operation since they do not
have a correlation with the k&, component. For the defective
sample in Figure 7(b), however, the frequency components
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Figure 6. The squared coherence function |v,5(k)|* between each
pair of different frequency components calculated from the squared
narrow-band signal of the observed signal y(n) radiated from an
automobile engine.

(a) The squared coherence function |43 (k)|? for a normal sample.

(b) The squared coherence function |yas(k)|® for a sample with
defective gears.

of |yas(k)[* from 2 kHz to 6 kHz remain through the av-
eraging operation. Thus, they are correlated with the 4 kHz
component.

From the simulation experiments, the spectrum of the
resonant vibration, which has wide-band characteristics and
correlates with different frequency bands around the reso-
nant frequency, is successfully estimated even in low SNR
cases. Though the actual spectra cannot be measured in the
application experiments, the power spectrum | X (k3)|? of the
defect-induced vibration is estimated as shown in Figure 7.

5. Conclusions

In this paper, we have proposed a method to estimate accu-
rately the power spectrum of a damped sinusoidal signal in
low SNR cases by calculating the transfer function between
two different frequency components of the observed signal.

Figure 7. The estimated power spectrum for the defect-induced sig-
nal. Each block length Ny is 512 points.

| X (ks)|*: The power spectrum estimated from y(n) by the method
proposed in equation (26).

Py (k): The power spectrum estimated from y(n) by the standard
FFT-based method in equation (7).

(a) for the normal sample in Figure 6.

(b) for the sample with defective gears in Figure 6.

From the computer simulations, the principle of the proposed
method was confirmed. The noise components were reduced
by applying an averaging operation to the cross spectrum
between the squared narrow-band signals. By applying the
proposed method to an actual automobile system, the fre-
quency band of the defect-induced signal was first identified
by the squared coherence function. Using the resultant res-
onant frequency, the power spectrum of the defect-induced
signal was estimated by the proposed method.
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