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SUMMARY We present a new method for estimation of
spectrum transition of nonstationary signals in cases of low
signal-to-noise ratio (SNR). Instead of the basic functions em-
ployed in the previously proposed time-varying autoregressive
(AR) modeling, we introduce a spectrum transition constraint
into the cost function described by the partial correlation (PAR-
CORR) coefficients so that the method is applicable to noisy
nonstationary signals of which spectrum transition patterns are
complex. By applying this method to the analysis of vibration
signals on the interventricular septum (IVS) of the heart, nonin-
vasively measured by the novel method developed in our labora-
tory using ultrasonics, the spectrum transition pattern is clearly
obtained during one cardiac cycle for normal subjects and a pa-
tient with cardiomyopathy.
key words: time-dependent spectrum estimation, AR modeling,
noninvasive diagnosis

1. Introduction

Much work has been done on parametric spectrum
estimation using the autoregressive (AR) model. A
strong restriction of methods based on this model lies
in the necessary assumption that the signals may be
considered to be stationary during the observation pe-
riod. Time-varying parametric approaches of model-
ing have been proposed to overcome this limitation
and to take the effects of nonstationary signals into
account explicitly. To estimate the parameters using
a linear algorithm, the unknown time-varying param-
eters are approximated by linearly weighted combi-
nations of a small number of known functions. The
choice of the basic functions is an important part of
such a modeling process. A convenient way is to re-
place the time-varying coefficients with their second-
order expansion [1] or an arbitrary order expansion [2],
[3]. Legendre [4], [5], Fourier [6], prolate spheroidal [7],
and B-spline [8] are the basic functions usually chosen.
Since the number of unknown parameters is large, effi-
cient equivalent representations for the modeling, such
as lattice filters, have also been proposed [2], [7], [9].

However, if the spectrum transition pattern is com-
plex and/or there are large differences in the transition
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patterns among the individual nonstationary signals, it
is difficult to estimate the transition pattern stably by
choosing a set of basic functions a priori.

We have proposed a method for analyzing the spec-
trum transition of the multi-frame signals of the fourth
heart sounds detected during the stress test [10]. In this
method, however, the signals which can be analyzed are
limited to multiple short length signals; the spectrum
transition patterns between these signals are obtained.
In this paper, by modifying this method, we propose
a new approach of modeling to estimate the spectrum
transition of a nonstationary signal by using a linear
algorithm without any basic functions.

In this paper, moreover, we describe the spectrum
transition constraint not by the linear predictive coef-
ficients of the AR model but by the partial correlation
(PARCORR) coefficients. In the method developed in
[10], the cost function of the multi-frame signals is de-
fined by the sum of the residual powers in the AR mod-
eling and the spectrum transition between the multi-
frame signals. The latter component of the spectrum
transition is defined by the sum of the differences of
the linear predictive coefficients {ai} between the suc-
cessive frames. In general, however, the values of the
coefficients {ai} are large at low order and small at high
order. Thus, it is significant to determine the weight
of each order of the coefficients {ai} in the summation
process.

For this problem, in this paper, the PARCORR
coefficients {ki} instead of the linear predictive coeffi-
cients {ai} are introduced into the definition of the cost
function. Since the range of the PARCORR coefficients
{ki} is from −1 to +1 even in low and high orders, it is
not necessary to consider the weights in the definition
of the spectrum transition of the cost function.

To noninvasively diagnose the acoustic character-
istics of the heart muscle, it is necessary to measure the
small vibration signals on the heart wall from the chest
surface with enough accuracy to permit analysis in the
frequency range up to at least 100Hz and analysis of
the resultant nonstationary signal continuously during
one cardiac cycle.

For the problem of the noninvasive measurement
described above, we have already developed a novel
method for accurate ultrasonic-based measurement of
small velocity signals on and in the heart wall in the
frequency range up to several hundred Hertz [11]–[13].
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If non-stationary spectrum analysis is applied to
the resultant velocity signals, more detailed informa-
tion on the heart function can be obtained. To solve
the problem of the spectrum analysis, we apply the
novel time-varying modeling developed in this paper
to the nonstationary small vibration signals on the in-
terventricular septum (IVS) to diagnose the acoustic
characteristics of the heart muscle. These characteris-
tics and the transition patterns show the potential of
the proposed method for the noninvasive diagnosis of
heart diseases.

2. Principle of Spectrum Estimation Using
PARCORR Coefficients

Let us divide an original nonstationary signal x(n) into
successive F short signals {xj(n)}, n = 0, 1, . . . , N −1,
j = 0, 1, . . . , F − 1, each called a frame, where F is
the number of frames. Let us assume that each frame
signal xj(n) is an AR signal of order M , represented
by the forward and backward recursions. The order M
of the AR model coincides with double the number of
the poles in the frequency range up to the Nyquist fre-
quency. The number of poles is physically determined
by the eigen-vibration systems. During the whole ana-
lyzed period of the original nonstationary signal x(n),
let us assume that the eigen-vibration systems do not
vary and that only their eigen-frequencies vary. In this
paper, therefore, we assume that the all of the frame
signals are of the same order M .

The forward predictive error ef
M,j(n) and the back-

ward predictive error eb
M,j(n) of M -order prediction are

respectively given by

ef
M,j(n) =

M∑
i=0

aMi,j · xj(n − i), (1)

eb
M,j(n − M − 1) =

M∑
i=0

bMi,j · xj(n − i − 1), (2)

where {aMi,j} and {bMi,j} are ith order forward and
backward predictive coefficients, respectively, of jth
frame data, aM0,j = 1 and bMM,j = 1. When the pre-
dictive order is equal to M , the average power αM,j of
the predictive error for the data in the period [M, N−1]
of jth frame data is given by

αM,j =
1

N − M

N−1∑
n=M

|ef
M,j(n)|2

=
M∑
i=0

M∑
	=0

aMi,jaM	,jCi	,j , (3)

where Ci	,j is the covariance matrix of data xj(n) de-
fined by

Ci	,j =
1

N − M

N−1∑
n=M

xj(n − i) · xj(n − �). (4)

By minimizing αM,j with respect to the forward predic-
tive coefficients {aMi,j}, the resultant normal equation
is given by

1
2

∂αM,j

∂aMi,j
=

M∑
	=0

aM	,j · Ci	,j = 0 (5)

(i = 1, 2, . . . , M)

Equation (5) is rewritten as follows:

M∑
	=1

Ci	,j · aM	,j = −Ci0,j . (i = 1, 2, . . . , M) (6)

For the backward prediction, on the other hand, it
is well-known [14], [15] that the backward predictive er-
ror signal eb

M−1,j(n−M) in the (M−1)th order predic-
tion should be orthogonal to the (M −1)th order back-
ward predictor, x̂b

M−1,j(n−M ) =
∑M−2

i=0 bM−1,i,jxj(n−
1− i), of the jth frame signal, that is,

1
N − M

N−1∑
n=M

[
eb

M−1,j(n − M)

×
(

M−2∑
i=0

bM−1,i,jxj(n − 1− i)

)]
= 0. (7)

From this equation, for the cases of p > q, the error
series eb

p−1,j(n− p) is orthogonal to each of the compo-
nents xj(n − p + 1), xj(n − p+ 2), . . . , xj(n − 1) of the
backward predictor x̂b

p−1,j(n − p). Thus,

1
N − M

N−1∑
n=M

eb
p−1,j(n − p) · eb

q−1,j(n − q) = 0.

(p > q) (8)

For the case of p = q, however, by defining a non-
negative constant δp,j , the following relation is ob-
tained:

δp,j =
1

N − M

N−1∑
n=M

∣∣eb
p−1,j(n − p)

∣∣2
=

p−1∑
i=0

p−1∑
	=0

bp−1,i,jbp−1,	,jCi+1,	+1,j . (9)

Moreover, it is well-known [14], [15] that the for-
ward predictive coefficient aMi,j is recursively derived
from the results estimated up to the (M − 1)th order
as follows:

aMi,j = aM−1,i,j + kM,jbM−1,i−1,j ,

(i = 1, 2, . . . , M − 1) (10)

where the term kM,j is the PARCORR coefficient for
jth frame data. From this recursion,

aMi,j = (aM−2,i,j + kM−1,jbM−2,i−1,,j)
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+ kM,jbM−1,i−1,j

= · · ·
= (a1i,j + k2,jb1,i−1,,j) + k3,jb2,i−1,,j + · · ·
+ kM,jbM−1,i−1,,j

= k1,j +
M∑

	=2

k	,jb	−1,i−1,j , (11)

where the relation a1i,j = k1,j is employed.
Let us respectively define M -dimension vectors aj ,

kj , cj , an (N − M)-dimension vector xj , an M × M
upper triangle matrix Bj , an M × M diagonal matrix
∆j, and an M × M covariance matrix Cj , which is
positive definite, by

aj = [aM1,j , aM2,j , · · · , aMM,j ]T , (12)

kj = [kM1,j , kM2,j , · · · , kMM,j ]T , (13)

cj = [C10,j , C20,j , · · · , CM0,j ]T , (14)

xj =
1√

N − M
[xj(M), · · · , xj(N − 1)]T , (15)

Bj =



1 b10,j b20,j . . . bM−1,0,j

0 1 b21,j . . . bM−1,1,j

0 0 1
. . .

...
...

. . . . . . . . . bM−1,M−2,j

0 . . . . . . 0 1

, (16)

∆j =


δ1j 0 . . . 0
0 δ2j . . . 0
... 0

. . .
...

0 . . . 0 δM,j

, (17)

Cj = [Ci	,j ]. (18)

Using these vectors and matrices, Eqs. (6), (11), and
(8), Eq. (9) are respectively simplified as

Cj · aj = −cj , (19)
aj = Bj · kj , (20)

BT
j ·Cj ·Bj =∆j. (21)

Thus, the total power αM,j of the Mth-order forward
predictive error in Eq. (3) is given by using the PAR-
CORR coefficients as follows:

αM,j = aT
j Cjaj + 2cTj aj + xT

j xj

= kT
j B

T
j CjBjkj + 2cTj Bjkj + xT

j xj

= kT
j ∆jkj + 2(BT

j cj)
Tkj + xT

j xj . (22)

3. Principle of Estimation of Spectrum Tran-
sition

When each frame of the multi-frame nonstationary sig-
nal {xj} (j = 0, 1, . . . , F − 1) is described by the AR
model, based on Eq. (22), let us define the logarithmic
likelihood function �, which shows the probability of

{xj} for unknown PARCORR coefficients {kj}, by

� = −
F−1∑
j=0

{
kT

j ∆jkj + 2(BT
j cj)

Tkj + xT
j xj

|xj |2

+ λj |kj+1 − kj |2
}

, (23)

where {λj} are F Lagrange multipliers. In Eq. (23),
we assume that the frame data are cyclic and then 0th
frame data exactly coincide with the F th frame data,
that is, x0(n) = xF (n) and k0 = kF . The second
term in the right-hand side of Eq. (23) shows the con-
straint for the spectrum transition between the succes-
sive frames. The denominator |xj |2 of the first term in
the right-hand side normalizes the signal power of jth
frame data.

In this logarithmic likelihood function �, if {λj} are
set to be large, the second term of Eq. (23) is dominant
and then the maximization of � corresponds to the solu-
tion so as to be |kj+1 − kj |2 = 0, for j = 0, 1, . . . , F −1.
However, this procedure does not at all take into con-
sideration the spectrum estimation which is achieved
by the minimization of αM,j in Eq. (22).

On the other hand, if the values of {λj} are set to
be very small, the second term of Eq. (23) is negligible
and then only its first term is dominant. Thus, it is
important to select appropriate values of {λj}. In this
paper, the values are set uniformly for the subjects in in
vivo experiments so that the resultant spectrum transi-
tion patterns become reasonable from the cardiological
side and the differences between the healthy subjects
and the patient are clear.

Let us determine the PARCORR coefficients {kj}
which maximize the logarithmic likelihood function �
as follows. Let us assume that F Lagrange multipliers
{λj} are the same value of λ. By taking the partial
derivative of � with respect to {kj} and setting the
results to be zero, the following simultaneous equations
are obtained.

−1
2

∂�

∂kj

=
1

|xj |2
(
∆jkj +BT

j cj
)
+ λ (2kj −kj−1−kj+1)

= 0. (24)

By solving Eq. (24), the PARCORR coefficients {kj}
of all frame data are estimated under the constraint for
the spectrum transition between the frame data.

From Eq. (24),(
∆j

|xj |2 +2λI
)
kj−λkj−1−λkj+1=−B

T
j cj

|xj |2 , (25)

where I is the M × M identity matrix. Let us denote
(∆j/|xj |2 + 2λI) by an M × M diagonal matrix Dj

and let us define an FM × FM matrix G and FM -
dimension vectors g and k as follows:
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G =



D0 −λI 0 · · · 0 −λI
−λI D1 −λI 0 · · · 0

0 −λI D2
. . . . . .

...
... 0

. . . . . . . . . 0

0
...

. . . . . . . . . −λI
−λI 0 . . . 0 −λI DF−1


,

(26)

g =

(BT
0 c0

|xj |2
)T

, · · · ,
(
BT

F−1cF−1

|xF−1|2
)T
T

, (27)

k =
[
kT

0 ,kT
1 , . . . ,kT

F−1

]T
. (28)

Using these matrix and vectors, optimum estimation of
the spectrum transition of a nonstationary signal un-
der the constraint for the spectrum transition between
frame data is simultaneously achieved by solving the
following linear simultaneous equations:

Gk = −g, (29)

where the term −λI in the top right and bottom left
of the matrix G is introduced by assuming x0(n) =
xF (n). Therefore, the PARCORR coefficients of the
multi-frame data are simultaneously estimated by

k̂ = −G−1g, (30)

where G−1 is the inverse matrix of G. Using the esti-

mates k̂ =
[
k̂T

0 , k̂T
1 , . . . , k̂T

F−1

]T
, estimates of the vec-

tors aj of linear predictive coefficients in the jth frame
data are obtained by

âj = Bjk̂j . (j = 0, 1, . . . , F − 1) (31)

4. In vivo Experiments for Estimation of the
Spectrum Transition of the Vibrations on
the Heart Wall

We applied this method to the analysis of the velocity
signals measured in our laboratory using a noninvasive
measurement method [12] on the interventricular sep-
tum (IVS) in the heart wall of two healthy male sub-
jects and a patient with acute lymphoblastic leukemia
and serious doxorubicin-cardiomyopathy, who had been
treated with an anti-cancer drug (antracenadiones).

Figure 1 shows a standard brightness (B)-mode
short-axis image of the cross-sectional area around the
detected points preset in the IVS of a presumedly
healthy 26-year-old male volunteer. The ultrasonic
beam passing through the two points of R and L is
almost perpendicular to the IVS during the measure-
ments.

Fig. 1 A standard B-mode short-axis image showing the cross-
sectional area around the detected points preset in the interven-
tricular septum (IVS) in an in vivo experiment for the detection
of their instantaneous positions and the velocity signals of a pre-
sumedly healthy 26-year-old male volunteer. Points (R) and (L)
are on the RV surface and the LV surface of the IVS, respectively.

4.1 Waveforms for Spectrum Analysis

Figures 2 (1-a) and (1-b) show the electrocardiogram
(ECG) and the heart sound (PCG), respectively, of the
26-year-old healthy male subject in Fig. 1. Figure 2 (1-
c) shows the velocity signals {vi(t)} (i = 0, 1, . . . , 13)
measured for the 14 points preset from the right ven-
tricular (RV) surface (the point R in Fig. 1) to the left
ventricular (LV) surface (the point L in Fig. 1) of the
IVS. The 14 velocity signals are overlaid.

From the signals in Fig. 2 (1-c), the time-
differential waveforms {v′

i(t)} of the velocity signals
{vi(t)}, which are the acceleration signals, are obtained
to emphasize higher frequency components as shown in
Fig. 2 (1-d). The original sampling frequency is 4.5 kHz.
The signals {v′

i(t)} are re-sampled at a frequency of
200Hz so that they are analyzed in the frequency range
up to 100Hz. Figure 2 (2) shows the waveforms for the
32-year-old male patient.

One heartbeat signal v
′
i(t) on the LV side of the

IVS in Figs. 2 (1-d) and (2-d) is divided into multi-
ple frame signals {v′

i(n; j)}, (j = 0, 1, . . . , F − 1; n =
0, 1, . . . , N−1), each of which is N = 20 points (100ms)
in length, which roughly corresponds to the duration of
the first heart sound. Adjacent frame signals overlap
each other by a three-quarter length (75ms). For the
signals in Figs. 2 (1-d) and (2-d), the numbers (F ) of
the preset frames are 47 and 33, respectively, which are
determined by the length of one cardiac cycle.

4.2 Estimates of the Spectrum Transition

By applying the proposed method (M = 6) to the accel-
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Fig. 2 (a) ECG, (b) PCG, (c) velocity signals {vi(t)}, (d) ac-
celeration signals {v′

i(t)} of (c). (1) for the healthy male subject
in Fig. 1 and (2) for a 32-year-old male patient.

eration signals v
′
13(t) on the LV surface in Fig. 2 (1-d),

the resultant spectrum transition patterns are shown in
Fig. 3 (a). The center frequency of each estimated pole
is indicated by a circle. In these experiments, the value
of λ of Eq. (23) is set as 0.316.

Figure 3 (b) shows the results obtained by applying
the same procedure to the acceleration signal of a 22-
year-old healthy male subject.

On the other hand, Figs. 3 (c) and (d) show the
spectrum transition patterns of the acceleration signal
on the LV surface of the IVS for a 32-year-old male
patient. The data analyzed in Figs. 3 (c) and (d) (also in
Fig. 2 (2)) were measured five months and two months
before his death, respectively.

For the same acceleration signals in Figs. 3 (a) and
(c), the instantaneous spectrum patterns are estimated
without using the transition constraint, that is, λ = 0.
The results are shown in Figs. 4 (a) and (c), respec-

tively. These results correspond to those obtained by
independently applying the standard AR estimation
method to each frame signal. By comparing the es-
timates in Figs. 3 (a) and (c) with those in Figs. 4 (a)
and (c), the introduction of the constraint in Eq. (23)
is found to be effective.

4.3 Discussion

1. For the data in Figs. 3 (c) and (d) of the patient,
it is found that the duration of diastole becomes
shorter, while that of systole is still almost the
same as those of the normal subjects in Figs. 3 (a)
and (b).

2. Since clear components of the heart sound have
not been recognized for healthy subjects in the di-
astole from the end of the second heart sound (II)
to the beginning of the first heart sound (I), anal-
ysis of the heart sound in diastole has not been
reported in the literature. As shown by the ovals
in Figs. 3 (a)–(d), however, there are the remark-
able spectrum peaks between 10 Hz and 20 Hz for
both the normal subjects and the patient. More-
over, the dominant frequencies gradually become
lower from the beginning to the end of diastole,
which corresponds to the dilation of the LV.

3. By comparing the results in Figs. 3 (a) and (b) with
those in Figs. 3 (c) and (d), the power of the nor-
mal subjects is seen to be large in the frequency
range up to 100Hz around the radiation timing of
the second heart sound (II), which corresponds to
the period from the end-systole to the beginning
of diastole.

For the patient, however, the power decreased,
especially in the higher frequency band. These
phenomena correspond to the myocardial defect
which occurred due to the dose of the anti-cancer
drug [13].

4. In systole, since there is a large difference
among individual subjects, remarkable character-
istics have not yet been recognized. For the radi-
ation timing of the first heart sound (I), however,
the power of the patient in Figs. 3 (c) and (d) de-
creases, especially at higher frequencies.

5. In vivo Experiments for Estimation of the
Spatial-Transition of the Spectra of the Vi-
brations on the Heart Wall

Figures 5 (1) and (2) show the acceleration signals at
the 14 points preset at even intervals of 0.75mm from
the RV side to the LV side of the IVS for the normal
subject in Fig. 2 (1) and the patient in Fig. 2 (2), respec-
tively. The one cardiac signal is divided into several
periods, each of which is shown in these figures.

Figures 6 (1) and (2) show the spectrum transition
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Fig. 3 Spectrum transition pattern of the acceleration signal on the heart wall for one
cardiac cycle (circle: the center frequency of each estimated pole). (a) the 26-year-old
healthy male subject, (b) a 22-year-old healthy male subject, (c) a 32-year-old male patient
(five months before death), (d) the same 32-year-old male patient (two months before
death). “I” and “II” show the radiated timing of the first and the second heart sounds.

Fig. 4 Spectrum transition pattern of the acceleration signal
estimated without using the transition constraint, that is, λ = 0.
(a) the 26-year-old healthy male subject in Fig. 3 (a), (c) the 32-
year-old male patient (five months before death) in Fig. 3 (c).

Fig. 5 The acceleration signals from the RV to the LV and their
analyzed periods from A to E or from A to D. Upper: for the
normal subject in Fig. 2 (1). Lower: for the patient in Fig. 2 (2).
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Fig. 6 The spatial transition pattern of the estimated spectra
from the RV to the LV for each period from A to E or from A
to D indicated in Fig. 5 (circles: the center frequency of each
estimated pole). Upper 5 figures: for the normal subject. Lower
4 figures: for the patient.

patterns obtained by applying the proposed method
(M = 6) to the sectional signals in each of the peri-
ods from A to E of Fig. 5 (1) and from A to D of 5 (2),
respectively.

For the 3 subjects, the average value ∆Pi of the
difference of the power spectrum Pi(f) of the ith layer
from the power spectrum PR(f) of the RV side in the
frequency range from d.c. to 100Hz is evaluated for the
periods of A and C as follows:

∆Pi =
1
101

100∑
f=0

(Pi(f)− PR(f)). (32)

The results are shown in Fig. 7.
From Figs. 6 and 7, for the normal subject, there

are large changes in power among the signals from the
RV side to the LV side, especially in period A (at the be-
ginning of the systole), period C (from the end-systole
to the beginning of the diastole), and period D (dias-
tole). That is, the power on the LV side is larger than
the power on the RV side. This increase in power shows
that there is a large change in thickness in the IVS dur-
ing each period for the normal subject.

Fig. 7 The average value ∆Pi of the difference of the power
spectrum Pi(f) of the ith layer from the power spectrum PR(f)
of the RV side in the frequency range from d.c. to 100Hz for four
subjects in Fig. 3. upper: for the period A around the R-wave.
lower: for the period C around the second heart sound (II).

For the patient, however, such remarkable phe-
nomena were not observed in any period, which cor-
responds to the decrease in thickness of the IVS in the
serious patient.

If the myocardium is a passive component, these
values of the change in thickness directly correspond
to the strain in the heart wall and its elasticity may
be evaluated using the blood pressure. However, since
the myocardium itself is not a passive component, but
rather an active component, it will be difficult to es-
timate the elasticity of the myocardium from the ob-
tained change in thickness in this paper.

6. Conclusions

We have presented a new method for estimation of the
spectrum transition of a nonstationary signal in low
SNR cases using a linear algorithm. Applying the pro-
posed method to heart wall vibrations, we found clear
spectrum transition patterns.

The small velocity signals accurately measured by



KANAI and KOIWA: SPECTRUM ESTIMATION OF HEART WALL VIBRATIONS
579

our method contain sufficient information to diagnose
the acoustic characteristics of the heart muscle during
one cardiac cycle. Thus, the measurement of the heart
wall vibrations and their analysis as proposed in this
paper are expected to lead to the development of a new
scientific field of noninvasive diagnosis of heart dysfunc-
tion.

In this paper, the order M of the AR model was
fixed to be 6 based on our previous analysis of the
fourth heart sound in [10], and λ = 0.316 was employed
as the value of the Lagrange multipliers based on in
vivo experiments using two healthy subjects and one
patient. It is, however, necessary to develop a method
for deciding the order M of the AR model and values
of the Lagrange multipliers. These problems are under
investigation.
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