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We observe some phase singularities in traveling excited waves noninvasively measured by a novel ultrasonic
method, on a human cardiac interventricular septum (IVS) for a healthy young male. We present a possible physical
model explaining a part of one-dimensional cardiac dynamics of the observed phase defects on the IVS. We show that
at least one of the observed phase singularities in the excited waves on the IVS can be explained by the Bekki–Nozaki
hole solution in the complex Ginzburg–Landau equation, although the creation and annihilation of phase singularities
on the IVS give birth to a variety of complex patterns.
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The effects of external electric fields on cardiac tissue of
rabbits and the propagation of excited waves by producing
standing waves of membrane depolarization have been
studied both experimentally and numerically.1,2) Using a
method of identifying phase singularities, Gray et al.
elucidated the mechanisms for the formation and termination
of these phase singularities.3)

Also, a variety of complex patterns which include spiral
waves4) and the spontaneous response of the myocardium
to electrical excitation have been observed in human heart
by developing an ultrasonic noninvasive novel imaging
modality with high temporal and spatial resolutions.5)

Visualizing the propagation of the myocardial response of
the electric excitation in human hearts during systole, as is
shown in Fig. 1, Kanai6) observed the velocity components
toward the ultrasonic probe as waveforms and their
instantaneous phases of 40Hz components. A velocity
component corresponding to the contraction was generated
on the septum at a time of T-wave of ECG (end-systole), and
propagated slowly (40mm/ms) in clockwise direction along
the left ventricle circumferential direction. Thus, the behav-
ior of phase singularities in a human healthy heart is one of
the most interesting subjects in physics and biophysics. In
order to explain its behavior in a human healthy heart, a
certain model of explanation is therefore needed on the basis
of the direct observation of phase defects. We present here
a possible physical model explaining a part of cardiac
dynamics of these phase singularities on the interventricular
septum (IVS).

In this Letter, we show that at least one of the phase
singularities in the excited waves on a human cardiac IVS
can be explained by the Bekki–Nozaki (BN) hole solution7)

in the complex Ginzburg–Landau equation (CGLE).
The CGLE8–15) is well known for one of the simplest

models that account for the behaviors of nonlinear waves
and the spontaneously formed complicated patterns in the
spatially extended non-equilibrium systems: the ionization
waves in the glow discharge,16) the chemical oscillations
and turbulence,17) the hydrothermal nonlinear waves in a
laterally heated layer,18) and so on. A wide class of nonlinear

waves for such strong dispersive systems can be described
by the one-dimensional (1D) nonlinear partial differential
equation which is called CGLE,

i
@

@t
¼ þ p
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where ¼ is a complex function of scaled time t and space x,
and with the two complex coefficients (p ¼ pr þ ipi,
q ¼ qr þ iqi) and a real positive constant �. It is noted that
CGLE is represented by the full coefficients without
rescaling in order to make a direct comparison between
the observed data and the exact solutions of CGLE.

One of the exact solutions of CGLE connects two
different patterns specified by the asymptotic wavenumbers

Fig. 1. (Color online) A snapshot of two-dimensional spatial pattern of

phase�ðx; y; tÞ in the excited waves on the IVS for a healthy young male, by

using the novel ultrasonic measurement technique for myocardial motions

in vivo found by Kanai. A typical phase singularity of excited waves on IVS

is shown by a large circle. The cross-sectional image of the color-coded

phase values just before the time of aortic-valve closure at end-systole is

shown here. A phase value at a local point on IVS, for example, changes

from cyan (+180�) near a certain phase-defect, through green (+90�), and
to red (0�) at the different point and time. The left inset shows the scanning

range of the ultrasonic beams in this measurement: LV, left ventricle; LA,

left atrium; RV, right ventricle; RA, right atrium; US prove, ultrasonic

prove; IVS, interventricular septum; Ao, aorta; ECG, electrocardiogram;

PCG, phonocardiogram (heart sound).
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and a phase-jump between two patterns, which is called the
BN hole.7) However, very few experimental investigations
of BN hole have been reported up to now.18,19) The
estimation of the rescaled coefficients of CGLE from the
experimental data has been a difficult task, because some
localized amplitude holes have been observed in the
hydrothermal nonlinear waves, and not adequately compared
with BN hole solution in CGLE.18)

Let us first demonstrate a typical observation related to the
phase singularities in the excited waves on the IVS for a
healthy young male, as is shown in Figs. 1–3, by developing
an ultrasonic noninvasive novel imaging modality with high
temporal and spatial resolutions5) which shows that the
propagation of the mechanical wave-front occurs at the end
of the cardiac systole by simultaneous measurement of the
vibrations at many points (10,000 points) set in the IVS. We
obtained 2D patterns of phase and amplitude of the excited
waves on the IVS: �ðx; y; tÞ and Aðx; y; tÞ ¼ j ~�ðx; y; tÞj,
where x-axis denotes the line (beam) direction and y-axis
does the circumferential (depth) direction. Indeed, the
observed data of phases and amplitudes demonstrate a
variety of complex patterns, which include a zigzag pattern
and the target waves on the IVS.20) Our interest is, however,
focussed on 1D cardiac dynamics of phase singularities on
the IVS, which may be viewed as a 1D generalization of
a core of 2D target patterns.6,20) For the fixed y (depth
direction for long-axis view), therefore, let us define 1D data
of measurements of excited waves as follows:

~�ðx; tÞ ¼ Aðx; tÞ exp½i�ðx; tÞ�; ð2Þ
where t (ms) denotes an observable time of phase
singularities (T1 < t < T2).

As is shown in Fig. 2, we can obtain a pair of asymptotic
local wavenumbers ~kj ( j ¼ 1; 2) defined by

~kj ¼ 1

T2 � T1

Z T2

T1

�ðx2; tÞ ��ðx1; tÞ
x2 � x1

dt; ð3Þ

where ~k1 for x1 < x2 < xh and ~k2 for xh < x1 < x2 during
T1 < t < T2, respectively. A position of phase singularity
(hole) is denoted by xh, and a life-time of hole in our case is

about 10ms for a very slow speed of hole. We also define a
phase-jump ~�ob,

~�ob ¼ lim
�!þ0

sup
x2R

j�ðx� xh � �; tÞ ��ðx� xh þ �; tÞj; ð4Þ

where the phase �ðx; tÞ is linearly extrapolated at a fixed
time. Figure 2 shows a typical one-dimensional phase �ðx; tÞ
(deg) at a certain small region (3:19 < x < 16:95mm and
1415:7 < t < 1424:7ms). From Fig. 2 and eq. (4), we can
observe a phase-jump ~�ob ¼ 2:9 rad.

Next, let us define a position x0 of minimum amplitude at
time t1 and a position x00 of minimum amplitude at time t2,
then, in a uniform linear motion of phase singularities, we
have its velocity ~ch (mm/ms) defined by

~ch ¼ x00 � x0

t2 � t1
: ð5Þ

As is shown in Fig. 3, we can observe a propagation of the
phase singularity on the IVS and we have ~ch ¼ �0:08
mm/ms from eq. (5).

Finally, from eqs. (3) and (4), as is shown in Fig. 4, we
have obtained the following fundamental physical quantities
related to BN hole: (i) a pair of asymptotic local
wavenumbers ~k1 ¼ 0:13� 0:01mm�1 and ~k2 ¼ �0:05�
0:005mm�1, (ii) the phase-jump ~�ob ¼ 2:9� 0:1 rad, and
the curvature defined by eq. (11) near the hole j~�j ¼
0:39� 0:02mm�1. Here the curvature does not mean the
reciprocal of its radius. On the other hand, from eq. (5),
(iii) we have also obtained the velocity of phase singularity
~ch ¼ �0:08� 0:01mm/ms for 1415:7 < t < 1424:7ms, as
is shown in Fig. 3. A set of observations obtained from the
data (2) is represented by

~Kob ¼ f ~k1; ~k2; ~ch; ~�ob; j~�jg 2 R
5: ð6Þ

Similarly, we have observed another traveling amplitude
holes at many points in y-axis (circumferential direction) as
well as in x-axis (beam direction) and two-dimensional
target waves on the IVS.20)

Solving the reality condition in the bilinear form of
CGLE,7,12) we have an important parameter � mentioned
previously,

Fig. 3. (Color online) Observed amplitude profile Aðx; tÞ near the phase-

jump at xh ¼ 10:5mm in the line direction for 1415:7 < t < 1424:7ms and

3:19 < x < 16:95mm. We can clearly observe an amplitude-hole with

phase singularity and obtain the velocity of the amplitude-hole [see eq. (5)]:

~ch ¼ �0:08mm/ms.

Fig. 2. (Color online) Observed local phase profile �ðx; tÞ (deg) on the

IVS with a phase-jump at xh ¼ 10:5mm in the line direction for

1415:7 < t < 1424:7ms and 3:19 < x < 16:95mm. We can clearly

observe a profile of traveling phase-jump.
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: ð7Þ

A set of all the coefficients in CGLE is written by

C ¼ fpr; pi; qr; qi; �g 2 R
5; ð8Þ

where pi < 0 and qi > 0. Algebraic condition in CGLE
uniquely determines k1, k2, ch, argðb2=b1Þ and jb2=b1j after
algebraic manipulations.

The velocity of propagating BN hole is given by

ch ¼ prqi � piqr
qi

ðk1 þ k2Þ: ð9Þ

We have a phase-jump (0 � � � 2�)

� � arg
b2
b1

� �

¼ arctan

2
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qi

�
ðprqi � piqrÞ þ 1

�
ðprqr þ piqiÞ

�
�þ��

�
pi

qi

�2

jqj2�2þ �
�
1þ 1

�2

�
jpj2�2�

8>>>><
>>>>:

9>>>>=
>>>>;
;

ð10Þ
where �� ¼ k1 � k2. It is noted that this phase-jump

connects discontinuously two different patterns specified
by wavenumbers k1 and k2.

The curvature near the hole is given by

� ¼ � ��
2�

: ð11Þ

We also obtain analytically the ratio

b2
b1

����
���� ¼ ðs1 þ s2Þ2 þ ðt1 � t2Þ2

ðs1 � s2Þ2 þ ðt1 þ t2Þ2
� �1=2

; ð12Þ

where

s1 ¼ pi�þ; s2 ¼ pr
�
� pi

� 	
��;

t1 ¼ pi
qr
qi

�þ; t2 ¼ pr þ pi
�

� 	
��:

Asymptotic wavenumbers k1 and k2 satisfy

ð�þÞ2
a21

þ ð��Þ2
a22

¼ 1; ð13Þ

a21 ¼
4K2

m

1þ 3�pijqj2
ð1þ �2Þqiðprqi � piqrÞ

;
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Fig. 5. (a) Asymptotic wavenumbers k1 and k2 versus the velocity (ch) of BN hole [�0:5 < k1 ðor k2Þ < 0:5 and �0:8 < ch < 0:8]. From the analytic form

of BN hole solution, we obtain k1 ¼ 0:133, k2 ¼ �0:051, and ch ¼ �0:0793, respectively. We have �þ ð¼ k1 þ k2Þ ¼ 0 in case of ch ¼ 0. (b) Phase-jump

(�) versus the velocity (ch) of BN-hole (0 5 � 5 2� and �0:8 < ch < 0:8). From eqs. (7) to (13) with the coefficients Ch, we can obtain the value of the

phase-jump � ¼ 2:983 rad for ch ¼ �0:0793. We have � ¼ � in case of ch ¼ 0.
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Fig. 4. (a) A snapshot of observed phase-jump near the local point xh ¼ 10:5mm at a fixed time t ¼ 1421:1. Circle denotes the phase of excited waves

�ðx; tÞ (deg). We obtain the asymptotic wave-numbers ~k1 ¼ 0:13mm�1, ~k2 ¼ �0:05mm�1, and the phase-jump ~�ob ¼ 2:9 rad. (b) A snapshot of observed

amplitude hole and the BN hole with the coefficients Ch. Triangle denotes the amplitude hole Aðx; tÞ for the fixed time t ¼ 1421:1. The curvature near the

observed hole defined by eq. (11) is j~�j ¼ 0:39mm�1 and the curvature near BN hole is j�j ¼ 0:4031.
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a22 ¼
4K2

m

1þ 3qijpj2
�piðprqi � piqrÞ

;

where a21 and a22 are positive constants on account of the real
condition and Km ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�=ð�pi
p Þ (pi < 0).

The Bekki–Nozaki hole solution7) is given by

¼ðx; tÞ ¼ b1 expð�	Þ þ b2 expð��	Þ
expð�	Þ þ expð��	Þ

	 exp
i

2

Z 	

ð�þ þ �� tanh �xÞ dx� i�t

� �
; ð14Þ

where 	 ¼ x� cht and � ¼ prK
2
m � chðk1k2 þK2

mÞ=
ðk1 þ k2Þ. Equations (9) and (13) give the algebraic relation
between the velocity (ch) and the asymptotic wavenumbers
of BN hole solution with C. It is noted that the family of BN
hole solution can be parametrized by the velocity of BN
hole, as is shown in Fig. 5.

Also, eq. (14) gives the following inequality

jb1j2
4

sech2ð�	Þ expð�	Þ � b2
b1

����
���� expð��	Þ

� �2

5 j¼j2

5 jb1j2
4

sech2ð�	Þ expð�	Þ þ b2
b1

����
���� expð��	Þ

� �2
: ð15Þ

We have observed two different patterns specified
wavenumbers ~k1 and ~k2 near the phase defect, and the
phase-jump between two patterns. The phase-jump occurs at
xh ¼ 10:5mm, as is shown in Figs. 2 and 3, the amplitude
Aðx; tÞ ¼ j¼ðx; tÞj of excited waves decreases and forms a
dip shaped like a hole. In order to make a direct comparison
between the observed data and the exact solutions of CGLE,
we must find a set of all the coefficients in CGLE, taking
into account the Benjamin–Feir instability.14) Finally, we
find all the coefficients in CGLE after much trial and error7)

Ch ¼ f�1:8;�2:0; 0:5; 1:2; 0:8g: ð16Þ
Let us show numerically that a set of data of BN hole

solution (KBN) is almost equivalent to that of ~Kob. From
eqs. (7) and (15), we have � ¼ 0:228. Since a pair of
wavenumbers k1 and k2 is chosen so that eq. (13) is satisfied,
as is shown in Fig. 5(a), we can obtain k1 ¼ 0:133 and
k2 ¼ �0:051. Therefore, from eq. (9), we obtain the velocity
of BN hole ch ¼ �0:0793. It is noted that the selection of
wavenumber occurs so that the phase-jump turns into BN
hole. From eq. (11), we have the curvature near BN hole
j�j ¼ 0:4031, as is shown in Fig. 4(b). Substituting these
parameters obtained above into eq. (10), we obtain � ¼
2:983 rad, as is shown in Fig. 5(b). From eq. (12), we have
also jb2=b1j ¼ 1:02. As is shown in Fig. 5, we can obtain
consistently KBN:

KBN ¼ ~Kob: ð17Þ
Since the observation of max j ~chj ¼ 1mm/ms for several

faster holes is corresponding to eq. (13), as is shown in
Fig. 5, the model of BN hole solution is consistent to the
observed data (2). This suggests that BN hole solution plays
an important role in understanding of one-dimensional
cardiac dynamics of phase singularities as a criterion of a
healthy heart.

Although it is difficult to estimate all the coefficients in
CGLE from the observed data, we found all the correspond-
ing coefficients in our case. Substitution of these coefficients
into eq. (15) gives an amplitude profile of BN hole as in
Fig. 4(b). Different boundary condition of observed holes
from BN hole explains the large deviation from BN hole for
j�	j 
 1 since we can observe BN holes only in local finite
small regions on the IVS. Thus, we have shown that at least
one of the observed phase singularities in the excited waves
on the IVS can be explained by BN hole solution of CGLE
with the coefficients Ch.

A variety of complex patterns of phase-defects on the IVS
except for observations of amplitude holes will be published
elsewhere.20)
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