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Abstract 
 

Pathological changes in arterial walls significantly 
influence their mechanical properties. We have 
developed a correlation-based method, the phased 
tracking method, for measurement of the regional 
elasticity of the arterial wall. Using this method, 
elasticity distributions of lipids, blood clots, fibrous 
tissue, and calcified tissue were measured by in vitro 
experiments of excised arteries (mean ± SD: lipid 89 ± 
47 kPa, blood clot 131 ± 56 kPa, fibrous tissue 1022 ± 
1040 kPa, calcified tissue 2267 ± 1228 kPa). It was 
found that arterial tissues can be classified into soft 
tissues (lipids and blood clots) and hard tissues (fibrous 
tissue and calcified tissue) on the basis of their 
elasticity. However, there are large overlaps between 
elasticity distributions of lipids and blood clots and 
those of fibrous tissue and calcified tissue. Thus, it was 
difficult to differentiate lipids from blood clots and 
fibrous tissue from calcified tissue by setting a 
threshold for a single elasticity value. Therefore, we 
previously proposed a tissue classification method 
using the elasticity distribution in each small region. In 
this method, the elasticity distribution of each small 
region of interest (ROI) (not a single pixel) in an 
elasticity image is used to classify lipids, blood clots, 
fibrous tissue, and calcified tissue by calculating the 
likelihood function for each tissue. In the present study, 
the optimum size of the ROI and threshold To for the 
likelihood function were investigated to improve the 
tissue classification. The ratio of correctly classified 
pixels to the total number of classified pixels was 
29.8% when the size of a small region was 75 μm × 
300 μm (a single pixel). The ratio of correctly 
classified pixels became 54.2% when the size of a 
small region was 1,500 μm × 1,500 μm (100 pixels). 
Moreover, a region with an extremely low likelihood 
with respect to all tissue components was defined as an 
unclassified region by setting threshold To for the 
likelihood function to 0.16. The tissue classification of 
the arterial wall was improved using the elasticity 
distribution of a small region whose size was larger 
than the spatial resolution (800 μm × 600 μm) of 
ultrasound. 
 
 
 
 

1. Introduction 
 

Noninvasive measurement of mechanical properties 
of the arterial wall, such as elasticity, is useful for 
diagnosing atherosclerosis because there are significant 
differences between the elastic moduli of normal 
arterial walls and those affected by atherosclerosis 
[1][2][3]. In particular, mechanical properties of plaque 
are important because the rupture of plaque may cause 
acute myocardial infarction and cerebral infarction 
[4][5][6]. Magnetic resonance imaging (MRI) and 
intravascular ultrasound (IVUS) are promising 
technologies for directly imaging plaque morphology 
[7][8]. On the other hand, the dynamic change of artery 
diameter due to the pulsation of the heart can be 
measured noninvasively by the previous method with 
ultrasound [9][10][11][12][13]. Some parameters 
related to artery-wall elasticity can be obtained by the 
measured change in diameter of the artery [14][15][16]. 
However, in the derivation of these parameters, the 
artery is assumed to be a cylindrical shell with an 
uniform wall thickness and, thus, the elasticity of 
atherosclerotic plaque cannot be evaluated. 

For measurement of the mechanical properties of the 
arterial wall, including the case with atherosclerotic 
plaque, we previously developed a method, namely, the 
phased tracking method, for measuring small 
vibrations in the heart wall or arterial wall with 
transcutaneous ultrasound [17][18]. For some years, we 
have been measuring the displacement and small 
change in thickness of the arterial wall caused by the 
heartbeat using this method [19][20][21][22]. In our 
phased tracking method, a set of two points is assigned 
along an ultrasonic beam, and the change in thickness 
of the layer between these two points is estimated. 
Furthermore, by sliding the position of the layer along 
the ultrasonic beam by intervals of the sampled points, 
the spatial distribution of changes in thickness along 
the ultrasonic beam can be obtained. 

In the estimation of the change in thickness using a 
correlation estimator, the thickness of an assigned layer 
is larger than the interval of the sampled points, and the 
layer is slid by the intervals of the sampled points. 
Therefore, several layers with respective correlation 
estimators overlap at each depth. Therefore, correlation 
estimators of layers, which overlap at a certain depth, 
are compounded to obtain the change in thickness at 
that depth [23]. Although the angle of the ultrasonic 
beam was not changed in the present study, the concept 
of spatial compounding has been applied in previous 



studies to magnitudes of echoes, which are obtained by 
scanning each point in the ROI with ultrasonic beams 
having different beam angles, to improve B-mode 
images [24]. 

Elasticity images of the human carotid artery have 
been obtained by the measured displacement 
distribution, and the potential for transcutaneous tissue 
characterization has been shown by classifying the 
elasticity images using the elasticity reference data 
obtained by in vitro experiments [25][22][26]. 

We have already measured the elasticity 
distributions for lipids, blood clots, fibrous tissue 
(mixture of the smooth muscle and collagen), and 
calcified tissue. In these previous studies, it was found 
that arterial tissues can be classified into soft tissues 
(lipids, blood clots) and hard tissues (fibrous tissue, 
calcified tissue) on the basis of their elasticity. 
However, it was difficult to differentiate lipids from 
blood clots and fibrous tissue from calcified tissue. 
Therefore, we proposed a tissue classification method 
using the elasticity distribution in a small region [27]. 
In this method, the elasticity distribution of each small 
ROI (not a single pixel) in an elasticity image was used 
in classification of lipids, blood clots, fibrous tissue, 
and calcified tissue. Precision of tissue classification 
was improved using the elasticity distribution in each 
small region. 

However, the accuracy of this method in relation to 
the size of an ROI has not yet been thoroughly 
investigated, and the method has not been applied to 
the differentiation of fibrous tissue from calcified tissue. 
In the present study, to determine the optimum size of 
an ROI, the accuracy of tissue classification (including 
calcified tissue) was quantitatively investigated in 
relation to the size of the ROI by evaluating the ratio of 
the number of correctly classified pixels to the total 
number of classified pixels. In addition, in the 
proposed classification method, the likelihood function 
of each small ROI is obtained for each tissue 
component (lipids, blood clots, fibrous tissue, and 
calcified tissue), and the region is classified into a 
tissue component that shows the maximum likelihood. 
However, an ROI is classified into one of the four 
tissue components even when the maximum likelihood 
is low. In the present study, such a region is defined as 
an unclassified region by setting a threshold for the 
likelihood. From these investigations, tissue 
classification was much improved in comparison with 
that in the previous study [28]. 
 
2. Materials and Methods 
2.1. Experimental setup and specimens 
 

Figure 1 shows a schematic diagram of the 
measurement system. The change in pressure inside the 
artery was realized by circulating a fluid using a flow 
pump. The fluid inside the artery and that circulating in 
the flow pump were separated by a rubber membrane 
to prevent the flow pump from being contaminated, 
and only the change in internal pressure propagated to 
the inside of the artery. The change in internal pressure 

was measured by a pressure transducer (Model 110-4, 
Camino, San Diego, CA, USA). 

In ultrasonic measurement, excised arteries were 
measured with a conventional 7.5 MHz linear-type 
ultrasonic probe (SSH-140A, Toshiba, Japan). The 
quadrature demodulated signals of RF echoes were 
acquired at 10 MHz at a frame rate of 200 Hz. In this 
study, the elasticity of the arterial wall is defined as the 
tissue strain calibrated by the average stress of the 
entire wall thickness, namely, circumferential elastic 
modulus hEθ  [23] (See appendix.). The strain 
distribution is obtained by applying the phased 
tracking method to the measured demodulated signals 
[21][23] (See appendix.). 
 

 
 

Fig.1. Schematic diagram of the measurement system. 
 

In this study, eight iliac and ten femoral arteries 
which had been surgically excised from eighteen 
patients with arteriosclerosis obliterans were measured 
in vitro. These arteries had been excised at the time of 
bypass grafting surgery. During the ultrasonic 
measurement, a needle was attached to the external 
surface of the artery for identification of the measured 
section so that a pathological image of the same section 
could be obtained after the ultrasonic measurement. 
This study was approved by the Ethics Committee on 
Clinical Investigation, Graduate School of Engineering, 
Tohoku University, and was performed in accordance 
with the policy of the Declaration of Helsinki; all 
subjects gave informed consent. 
 
2.2. Tissue classification using the likelihood 
function 
 

In this study, each pixel in an elasticity image is 
classified into one of 5 categories of lipids, blood clots, 
fibrous tissue, calcified tissue, and unknown using the 
likelihood function {Li} (i=1: lipid, 2: blood clot, 3: 
fibrous tissue, 4: calcified tissue) of the elasticity 
distribution in the small region around the pixel. To 
obtain the likelihood function {Li}, the elasticity 
distribution of the i-th tissue is translated into the 
normal distribution to describe the probability 
distribution by the mean and the standard deviation as 
described below [27]. 

From in vitro experiments, the elasticity distribution 
of each tissue i is obtained as illustrated in Fig. 2(a). 
The elasticity distribution of the i-th tissue consists of 
Ji data points with the respective elastic moduli. Using 
all data of Ji points (J1: 228, J2: 179, J3: 19,121, J4: 
1,101) with the respective elastic moduli, the ascending 
sequence is constructed for tissue i as shown in Fig. 
2(b). In this sequence, the j-th datum (j=1, 2, . . ., Ji) 



has the corresponding elastic modulus Ej (Ej≤Ej+1), 
where j is termed the elasticity number. The probability 
distribution of each tissue was obtained by allocating 
all the data of Ji points of each tissue i to boxes of the 
normal distribution. The box numbers, {Bi}, of the 
normal distribution are determined so that the number 
of data in the box at each end is only one. As shown in 
Fig. 2(c), the number of data, Di,h (h=1, 2, . . ., Bi), 
included in box Bi is determined so as to follow the 
profile of the normal distribution. Thus, the (Ji/2)-th 
datum is included in the box with the highest 
probability. By allocating all the data of Ji points of 
each tissue to boxes of the corresponding normal 
distribution, the mean elasticity Ēi,h of the data included 
in each box is obtained. 
 

 
 
Fig.2. (a) Original elasticity distribution of the tissue. 
(b) Ascending sequence of elastic modulus in an 
elasticity distribution. (c) Normal distribution whose 
number of boxes depends on the number of data points 
of (a). 
 

As shown in Fig. 3, an ROI was assigned to an 
elasticity image which was obtained by ultrasonic 
measurement. The likelihood function Li(m,n) is 
defined as a joint probability that all the elasticity 
values in ROI Rm,n (center of ROI: n-th sampled point 
along m-th beam) simultaneously belong in the i-th 
category as follows: 
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where pi(Ek,l) is the probability density which shows 
the probability that elasticity value Ek,l in the k-th row 
and l-th column in the ROI belongs to the i-th tissue 
category, and N0 denotes the number of pixels in an 
ROI Rm,n. The multiplier 1/N0 shows the geometric 
mean for compensation of the effect of the size of an 

ROI. The pixel at the center of an ROI is classified into 
the class which has the maximum likelihood. 

In this classification, there may be a region which 
has an extremely small value for the maximum 
likelihood. Such regions are classified into the 
unclassified region by setting threshold To to the 
maximum likelihood. Thus, the category C(Rm,n), to 
which an ROI Rm,n belongs, is expressed as follows: 
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Fig.3. Illustration of region of interest (ROI). 
 

Figure 4 shows examples of tissue classification 
images which were manually estimated by referring to 
the pathological images of iliac arteries (A) and (B). 
By comparing the pathology-based classification 
images shown in Fig. 4 with the tissue classification 
images obtained by the proposed method, the 
recognition rate Rr(SROI) for all tissues in the arterial 
wall was defined by the ratio of the number of 
correctly classified pixels to the number N of all pixels 
in the image as follows: 

 [ ],%100)( ×= ∑
N

N
SR i i

r ROI
                        (2.3) 

where Ni is the number of correctly classified pixels of 
tissue i and SROI is the size of an ROI. Recognition rate 
Rr(SROI) was used to determine the optimum size of an 
ROI. 

For an ROI with a very low likelihood for all classes 
(i = 1, 2, 3, 4), the pixel which is located at the center 
of the ROI should be defined as an unclassified pixel 
by thresholding. For determination of the optimum 
threshold for the likelihood function, the false 
recognition rate Fr(SROI) for all tissues in the arterial 
wall was defined by the ratio of the number of 
misclassified pixels except for the pixels classified as 
unclassified pixels to the number N of all pixels as 
follows: 
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                         (2.4) 
where Fi is the number of misclassified pixels of tissue 
i except for the pixels classified as unclassified pixels. 
Although the unclassified pixels are included in the 
denominator of eqs. (2.3) and (2.4), that is, the number 
of all pixels N, they are not included in the number of 
correctly classified pixels Ni nor that of misclassified 
pixels Fi. Therefore, the sum of the recognition rate 



Rr(SROI) and the false recognition rate Fr(SROI) does not 
become 100%. 
 

 
 
Fig.4. Tissue classification images obtained by 
referring to pathological images. (a) Iliac artery (A). 
(b) Iliac artery (B). 
 
3. In Vitro Experimental Results 
3.1. Measurement of elasticity distribution of 
each tissue 
 

Figure 5(a) shows a B-mode image of one of the 
femoral arteries. The strong echoes from outside the 
posterior wall correspond to a needle. For the posterior 
wall, the images of the maximum change in thickness 
during the cardiac cycle were measured as shown in 
Fig. 5(b). 

Figure 6(a) shows the elasticity image of the femoral 
artery obtained from the maximum change in internal 
pressure and that in thickness obtained by the phased 
tracking method shown in Fig. 5(b). By referring to the 
pathological image of the same section shown in Fig. 
6(b), fibrous tissue in the intima-media region was 
identified. The corresponding region, namely, the 
region surrounded by the green line in Fig. 6(a), was 
then assigned to the elasticity image. Figure 6(c) shows 
the elasticity distribution of fibrous tissues extracted 
from the region surrounded by the green line in Fig. 
6(a). By applying the same procedure to the other 
arteries, the elasticity distribution of each tissue in the 
arterial wall was obtained. 

Figure 7 shows the elasticity distribution of each 
tissue, that is, the frequency of the elasticity values 
which belong to the range defined by the position and 
width of each vertical bar. The width of a vertical bar 
was set at 50 kPa. Means and standard deviations are 
89 ± 47 (lipids), 131 ± 56 (blood clots), 1,022 ± 1,040 
(fibrous tissue), and 2,267 ± 1,228 kPa (calcified 
tissue). Although similarities were found in the 
elasticity distributions of lipids and blood clots and in 
those of fibrous and calcified tissues, differences in the 
elasticity distributions of these tissues were found. 

 
 
Fig.5. (a) B-mode image of a femoral artery. (b) Image 
of the maximum change in thickness during the cardiac 
cycle. 
 

 
 
Fig.6. (a) Elasticity image of the arterial wall. (b) 
Pathological image of the corresponding section. (c) 
Elasticity distribution in the region between the two 
green lines in (a). 
 



 
 
Fig.7. Elasticity distribution of each tissue. (a) Lipids 
(N = 288). (b) Blood clots (N = 178). (c) Fibrous tissue 
(N = 19,120). (d) Calcified tissue (N = 1,101). 
 
3.2. Results of classification 
 

Figure 8 shows the probability density of each tissue 
obtained by the axis transformation of the elasticity 
distribution. As shown in these figures, the horizontal 
axis of the elastic modulus is nonlinear. Using these 
databases, each pixel in an elasticity image was 
classified as a certain tissue component. 
 

 
 
Fig.8. Probability density for each tissue. (a) Lipids. (b) 
Blood clots. (c) Fibrous tissue. (d) Calcified tissue. 
 

Figures 9(c) and 9(d) show the tissue classification 
results obtained by the proposed method for the iliac 
artery (A). The regions classified as lipids, blood clots, 
fibrous tissue, and calcified tissue were stained yellow, 
red, blue, and purple, respectively. Figure 9(c) 
graphically shows the tissue classification image 
obtained with an ROI size of 1 × 1 pixel. Although 
arterial tissues were roughly classified into soft tissues 
(lipids and blood clots) and hard tissues (fibrous tissue 
and calcified tissue), the classified tissue distributions 
are scattered, and the misclassified regions are 
outstanding. Alternatively, Fig. 9(d) shows the result of 
classification with an ROI size of 1,500 μm (=20 
pixels) in the radial direction and 1,500 μm (=5 pixels) 
in the longitudinal direction. Moreover, the region with 
low likelihood for all tissue components is colored gray. 
The threshold To for the maximum of the likelihood 

functions {Li} was set at 0.21. As shown in Fig. 9(d), 
the region with the maximum likelihood which is 
higher than threshold To is accurately classified as the 
corresponding tissue identified by referring to the 
pathological image. 
 

 
 
Fig.9. For the iliac artery (A). (a) Pathological image of 
an arterial wall subjected to elastica-Masson staining. 
(b) Elasticity image. (c) Tissue classification image 
(ROI size: 1 × 1 pixel). (d) Tissue classification image 
(ROI size: 5 × 20 pixels). 
 

For another specimen (iliac artery (B)), calcified 
tissue in the fibrous tissue was identified as shown in 
Fig. 10(e). As in Fig. 8, tissue classification was 
improved using the elasticity distribution of each ROI 
(not a single pixel). In the case of Fig. 10, there was no 
region with low likelihood for any of the tissue 
components. 

Figure 11 shows the relationship between the size 
SROI of an ROI and the recognition rate Rr(SROI). The 
ROI size SROI was changed with its shape being kept 
square, and in Fig. 11, the horizontal axis shows the 
width ROISW =  of an ROI in the longitudinal 
direction. An ROI consists of a single pixel when the 
width, W, in Fig. 11 is 0.3 mm. Only in this specific 
case, is an ROI not square (75 μm × 300 μm). Figure 



11(b) shows the relationship between width 
ROISW =  of an ROI in the longitudinal direction and 

the recognition rate Rr(SROI) in arteries which are 
composed of a single type of tissue, such as fibrous 
tissue. In such case, the recognition rate Rr(SROI) is 
monotonically improved by increasing the size of an 
ROI because an elasticity image is uniformly classified 
as the corresponding tissue using a large ROI, which 
results from the worsening spatial resolution in tissue 
classification. Figure 11(a) shows the relationship 
between width W of an ROI and the recognition rate 
Rr(SROI) in arteries composed of different types of 
tissues. For this case, tissue classification using some 
pixels in an ROI is superior to that using a single pixel. 
However, the improvement of tissue classification by 
the enlargement of an ROI is limited because the 
classification using a large ROI provides a uniform 
tissue classification image whereas the arterial wall is 
composed of different kinds of tissues. Therefore, there 
should be an optimum size of ROI. As shown in Fig. 
11(a), the recognition rates became maximum in most 
arteries when the size of an ROI was 1,500 μm × 1,500 
μm. 

Figures 12 and 13 show the relationships between 
the threshold To for the likelihood function and the 
recognition rate Rr(SROI) and between To and the false 
recognition rate Fr(SROI), respectively, for arteries 
composed of different types of tissues. As shown in 
Figs. 12 and 13, the false recognition rate Fr(SROI) 
begins to be reduced at a lower threshold in 
comparison with the recognition rate because the pixels 
with lower likelihood are more likely to be 
misclassified. However, the correctly classified pixels 
are also classified as unclassified pixels when the 
threshold To is too high. Therefore, threshold To should 
be determined by considering both Rr(SROI) and 
Fr(SROI). In this study, the ratio (CMR(To)) of the 
number of correctly classified pixels (the numerator of 
eq. (2.3)) to the number of misclassified pixels (the 
numerator of eq. (2.4)) for all arteries composed of 
different types of tissues was evaluated as follows: 
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                         (3.1) 
where Ni,all and Fi,all are the sum of correctly classified 
pixels of tissue i and that of misclassified pixels of 
tissue i, respectively, for all arteries composed of 
different types of tissues. Figure 14 shows the 
relationship between threshold To for likelihood 
function and CMR(To) averaged by all arteries 
composed of different types of tissues. As shown in Fig. 
14, the CMR(To) reached the maximum when the 
threshold To was 0.21. 
 
 
 
 
 
 
 

 
 
Fig.10. For the iliac artery (B). (a) Pathological image 
of another arterial wall subjected to hematoxylin-eosin 
staining. (b) Pathological image of the arterial wall 
subjected to elastica-Masson staining. (c) Elasticity 
image. (d) Tissue classification image (ROI size: 1 × 1 
pixel). (e) Tissue classification image (ROI size: 5 × 
20 pixels). 
 
4. Discussion 
 

In Figs. 8 and 9, it can be seen that the tissue 
classification was improved using the elasticity 
distribution in each ROI (not a single pixel). When the 
size of an ROI is smaller than the spatial resolution ΔS 
of ultrasound (including the case of a single pixel), the 
elasticity distribution in the ROI becomes narrow as 
illustrated in Fig. 15(b) by the purple curve because the 
elasticity values within the space of the resolution of 
ultrasound ΔS have some degree of similarity. Under 
such a condition, even in the case that the ROI is 
perfectly composed of tissue A as shown in Fig. 15(a), 
there is a possibility that the ROI for tissue A and that 
for tissue B will become similar, as shown in Fig. 15(b), 
because the elasticity distribution in the ROI is narrow 
and the elasticity distributions of tissue A and tissue B 
overlap. By enlarging the size of an ROI so that it is 
larger than the space of the resolution of ultrasound ΔS, 
the number of independent elasticity values increases, 
and the elasticity distribution in the ROI tends to 



become similar to that of tissue A because the ROI is 
composed of tissue A. This is an advantage of the 
proposed method with an ROI whose size is larger than 
the resolution of ultrasound ΔS. Figure 13 shows an 
example of this case. Figures 16(a), 16(b), 16(c) and 
17(d) show a tissue classification image, an enlarged 
view of an ROI, and elasticity distributions of ROIs 
with sizes of 600 μm × 600 μm and 1,500 μm × 1,500 
μm, respectively. In Fig. 16(c), the elasticity 
distribution of the smaller ROI (purple line) is narrow 
and located in the overlapping region of the elasticity 
distributions of lipids and blood clots, the orange and 
red dashed lines showing the elasticity distributions of 
lipids and blood clots, respectively. Therefore, tissue 
classification is very difficult. On the other hand, in Fig. 
16(d), the elasticity distribution is broadened and 
becomes similar to that of a blood clot, and the ROI 
can be correctly classified as a blood clot. 
 

 
 
Fig.11. Relationship between width W of an ROI in the 
longitudinal direction and the recognition rate Rr(SROI). 
(a) Arteries composed of several types of tissues. (b) 
Arteries composed of a single tissue. Each line shows 
the recognition rate Rr(SROI) of the corresponding artery. 
 

 
 
Fig.12. Relationship between threshold To for 
likelihood function and the recognition rate Rr(SROI) in 
arteries composed of several types of tissues. 
 
 
 

 
 
Fig.13. Relationship between threshold To for 
likelihood function and the false recognition rate 
Fr(SROI) in arteries composed of several types of tissues. 
 

 
 
Fig.14. Relationship between threshold To for 
likelihood function and the ratio of the number of 
correctly classified pixels to the number of 
misclassified pixels in all arteries which are composed 
of several types of tissues. 
 

 
 
Fig.15. (a) ROI Rm,n (1,500 μm × 1,500 μm) and spatial 
resolution of ultrasound in only tissue A. (b) Elasticity 
distribution of ROI Rm,n when ROI size is smaller than 
the resolution of ultrasound. (c) Elasticity distribution 
of ROI Rm,n when ROI size is 1,500 μm × 1,500 μm. 
 

As described above, the proposed method reduces 
the misclassification at the expense of the spatial 
resolution in tissue classification. As illustrated in Fig. 
17, in actual cases, an ROI is not composed of only one 
tissue component. When the content of tissue A in an 
ROI is much larger than that of tissue B, the ROI is 
classified as tissue A even if the pixel, which is in the 
center of the ROI, is composed of tissue B and the 
small clusters of tissue B in the ROI are not identified. 
When the contents of tissues A and B are similar, as 
illustrated in Fig. 18, the elasticity distribution of the 
ROI exists in the overlapping region even when the 



ROI is broadened. Figure 19 shows an example of this 
case, and tissue classification is found to be difficult 
even by the use of the proposed method because the 
elasticity distribution in the ROI is located in the 
overlapping region for each ROI size. 
 

 
 
Fig.16. (a) Tissue classification image obtained by 
referring to pathological images. (b) Close-up of ROI. 
(c) Elasticity distribution (ROI size: 600 μm × 600 μm). 
(d) Elasticity distribution (ROI size: 1,500 μm × 1,500 
μm). 
 

 
 
Fig.17. (a) ROI Rm,n (1,500 μm × 1,500 μm) and spatial 
resolution of ultrasound in tissue A and tissue B. 
Tissue B is distributed as small clusters. (b) Elasticity 
distribution of ROI Rm,n when ROI size is smaller than 
the resolution of ultrasound. (c) Elasticity distribution 
of ROI Rm,n when ROI size is 1,500 μm × 1,500 μm. 
 

In this study, each of 33,938 pixels of the elasticity 
images of the 18 arteries from which the elasticity 
distribution of each tissue was obtained was classified 
to show the possibility of using the proposed method 
for noninvasive classification of the tissue composition 
in the arterial wall based on ultrasound elasticity 
imaging. However, different arteries not used for 
constructing the elasticity databases should be 
classified in future work to thoroughly show the 
effectiveness of the proposed method. 
 
4. Conclusion 
 

In this study, tissue classification based on the 
likelihood function with the configured appropriate 
ROI size (not a single pixel) and a lower limit of 

likelihood were investigated. Using the elasticity 
distribution in an ROI, the differentiation of lipids from 
blood clots and that of fibrous tissue from calcified 
tissue were improved. 
 

 
 
Fig.18. (a) ROI Rm,n (1,500 μm × 1,500 μm) and spatial 
resolution of ultrasound in tissue A and tissue B (tissue 
A ≈  tissue B). (b) Elasticity distribution of ROI Rm,n 
when ROI size is smaller than the resolution of 
ultrasound. (c) Elasticity distribution of ROI Rm,n when 
ROI size is 1,500 μm × 1,500 μm. 
 

 
 
Fig.19. (a) Tissue classification image obtained by 
referring to pathological images. (b) Close-up of ROI. 
(c) Elasticity distribution (ROI size: 600 μm × 600 μm). 
(d) Elasticity distribution (ROI size: 1,500 μm × 1,500 
μm). 
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Appendix: Strain Estimation by the Phased 
Tracking Method with Correlation Estimator 
Compounding [17][23] 
 

By referring to a cross-sectional image of an artery, 
initial positions x1(1) and x’1(1) of two points are 
manually assigned in the first frame as shown in Fig. 
20 (x’1(1)-x1(1)=ML·Δx; Δx: spacing of sampled points 
in the depth direction). Instantaneous positions x1(n) 
and x’1(n) of these assigned points in the n-th frame are 
then tracked by the phased tracking method [17]. 

The change in thickness between two reflectors at 
depths x1(n) and x1(n) is then obtained as follows: The 
phases θ1(n) and θ’1(n) of echoes from these two 
reflectors depend on x1(n) and x’1(n). Therefore, the 
phase difference θh(n)=θ’1(n)-θ1(n) depends on the 
distance h(n)=x’1(n)-x1(n) (thickness of the layer) 
between two reflectors as follows [20][23]: 
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where c0 and f0 are the speed of sound and center 
frequency of ultrasound, respectively. Thus, the rate 
vh(n) of the change in thickness of the layer between 
two reflectors is expressed as follows: 
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where Δθh(n) is the change in θh(n) during a frame 
interval T. Phase difference θh(n) can be expressed by 
phase ))(),(;( '

11 nxnxnβ∠  of product ))(),(;( '
11 nxnxnβ  

of complex demodulated signals z*(n; x1(n)) and z(n; 
x’1(n)) as follows: 
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In this study, correlation estimator γh(n; x) at depth x, 
whose phase );( xnhγ∠  corresponds to θh(n+1)-
θh(n)=Δθh(n), is obtained by simply calculating the 
correlation around the duration of the employed 
ultrasonic pulse as follows: 
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(i = 0, 1, 2, ...,ML)                        (A-5) 
where the estimate in the right-hand side of eq. (A-5) is 
used for correlation estimators γh(n; x) at all points 
between x1(1) and x’1(1). 

To obtain the spatial distribution along each 
ultrasonic beam, the correlation estimator, γh,m(n; x), 
for the combination of two points, xm(1) and x’m(1), at 
each depth is obtained by sliding the combination of 
two points along the ultrasonic beam while keeping the 
distance between the two points in the first frame 
constant (=ML·Δx) as follows: 

),)(,)(;(

))(,)(;1(

))1()1(;(ˆ

'*

2/

2/

'

,

xknxxknxn

xknxxknxn

xixn

mm

K

Kk
mm

mmh

Δ⋅+Δ⋅+×

Δ⋅+Δ⋅++=

Δ⋅−+

∑
−=

β

β

γ
         (A-6) 

.)1()1()1( 1 xmxxm Δ⋅−+=                                   (A-7) 
(m = 1, 2, ...,MT+1; i = 1, 2, ...,ML+1) 

 
As shown in Fig. 20, some of the MT assigned layers 

overlap each other. Therefore, there are multiple 
estimates of γh(n; x) at depth x. The compounded 
correlation estimator, );( xnhγ , at depth x is then 
obtained by simply averaging the overlapping 
correlation estimators as follows: 
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where Mo(x) is the number of overlapping layers at 
depth x. By compounding the correlation estimator 
shown by eq. (A-6), the contributions of echoes with 
low amplitudes (=low signal-to-noise ratio) to the 
estimation of the phase shift are suppressed. 

The compounded rate, );( xnvh , of the change in 
thickness at depth x is obtained based on eq. (A-2) as 
follows: 
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The compounded change in thickness, );( xnhΔ , is 
obtained as follows: 

Txnvxnhxnh mhmm ⋅+Δ=+Δ ))1(;())1(;())1(;1(    (A-10) 
The elastic modulus, h

mE ,θ , at xm(1) is obtained by 
the estimated change in thickness as follows [25]: 
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where rm and h0 are, respectively, the radius at xm(1) 
and the thickness of the entire wall in the first frame, 
and Δp and 

maxmhΔ  are, respectively, the pulse 
pressure and the maximum of the absolute value of the 
change in thickness at xm(1). 

The inner radius of the m-th layer rm and entire wall 
thickness h0 can be expressed as follows: 

,)1(0 xmrrm Δ−+=                                            (A-12) 

,0 xMh L Δ⋅=                                                     (A-13) 
where r0 is the inner radius of the innermost layer. By 
substituting eqs. (A-12) and (A-13) into eq. (A-11), eq. 
(A-11) is modified as follows: 
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where Δεm is the strain of the m-th layer. As shown by 
eq. (A-14), elastic modulus h

mE ,θ  is defined as the 
average stress (r0/h0+1)·Δp/2 of the entire wall 
thickness divided by the radial strain Δεm. 

 
Fig.20. Illustration of the method for estimation of the 
change in thickness of the arterial wall (MT: total 
number of assigned combinations, ML: the number of 
sampled points between two points of an assigned 
combination, T: frame interval, Δx: depths of scatterers 
in n-th frame, xm(n) and x’m(n): m-th combination of 
two points in n-th frame, h(n): distance between two 
scatterers in n-th frame). 


