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Abstract 
 

Pathological changes in arterial walls significantly 
influence their mechanical properties. We have 
developed a correlation-based method, the phased 
tracking method, for measurement of the regional 
elasticity of the arterial wall. Using this method, 
elasticity distributions of lipids, blood clots, fibrous 
tissue, and calcified tissue were measured by in vitro 
experiments of excised arteries (mean ± SD: lipid 89 ± 
47 kPa, blood clot 131 ± 56 kPa, fibrous tissue 1022 ± 
1040 kPa, calcified tissue 2267 ± 1228 kPa). It was 
found that arterial tissues can be classified into soft 
tissues (lipids and blood clots) and hard tissues (fibrous 
tissue and calcified tissue) on the basis of their 
elasticity. However, there are large overlaps between 
elasticity distributions of lipids and blood clots and 
those of fibrous tissue and calcified tissue. Thus, it was 
difficult to differentiate lipids from blood clots and 
fibrous tissue from calcified tissue by setting a 
threshold for a single elasticity value. Therefore, we 
previously proposed a tissue classification method 
using the elasticity distribution in each small region. In 
this method, the elasticity distribution of each small 
region of interest (ROI) (not a single pixel) in an 
elasticity image is used to classify lipids, blood clots, 
fibrous tissue, and calcified tissue by calculating the 
likelihood function for each tissue. In the present study, 
the optimum size of the ROI and threshold To for the 
likelihood function were investigated to improve the 
tissue classification. The ratio of correctly classified 
pixels to the total number of classified pixels was 
29.8% when the size of a small region was 75 μm × 
300 μm (a single pixel). The ratio of correctly 
classified pixels became 54.2% when the size of a 
small region was 1,500 μm × 1,500 μm (100 pixels). In 
this classification, a region with an extremely low 
likelihood with respect to all tissue components was 
defined as an unclassified region by setting threshold 
To for the likelihood function. The optimal threshold 
was determined from the standard deviation in the 
measurements of radial strains evaluated by basic 
experiments using a phantom. The tissue classification 
of the arterial wall was improved using the elasticity 
distribution of a small region whose size was larger 
than the spatial resolution (800 μm × 600 μm) of 
ultrasound. 
 

1. Introduction 
 

Noninvasive measurement of mechanical properties 
of the arterial wall, such as elasticity, is useful for 
diagnosing atherosclerosis because there are significant 
differences between the elastic moduli of normal 
arterial walls and those affected by atherosclerosis 
[1][2][3]. In particular, mechanical properties of plaque 
are important because the rupture of plaque may cause 
acute myocardial infarction and cerebral infarction 
[4][5][6]. Magnetic resonance imaging (MRI) and 
intravascular ultrasound (IVUS) are promising 
technologies for directly imaging plaque morphology 
[7][8]. On the other hand, the dynamic change of artery 
diameter due to the pulsation of the heart can be 
measured noninvasively by the previous method with 
ultrasound [9][10][11][12][13]. Some parameters 
related to artery-wall elasticity can be obtained by the 
measured change in diameter of the artery [14][15][16]. 
However, in the derivation of these parameters, the 
artery is assumed to be a cylindrical shell with an 
uniform wall thickness and, thus, the elasticity of 
atherosclerotic plaque cannot be evaluated. 

For measurement of the mechanical properties of the 
arterial wall, including the case with atherosclerotic 
plaque, we previously developed a method, namely, the 
phased tracking method, for measuring small 
vibrations in the heart wall or arterial wall with 
transcutaneous ultrasound [17][18]. For some years, we 
have been measuring the displacement and small 
change in thickness of the arterial wall caused by the 
heartbeat using this method [19][20][21][22]. In our 
phased tracking method, a set of two points is assigned 
along an ultrasonic beam, and the change in thickness 
of the layer between these two points is estimated. 
Furthermore, by sliding the position of the layer along 
the ultrasonic beam by intervals of the sampled points, 
the spatial distribution of changes in thickness along 
the ultrasonic beam can be obtained. 

In the estimation of the change in thickness using a 
correlation estimator, the thickness of an assigned layer 
is larger than the interval of the sampled points, and the 
layer is slid by the intervals of the sampled points. 
Therefore, several layers with respective correlation 
estimators overlap at each depth. Therefore, correlation 
estimators of layers, which overlap at a certain depth, 
are compounded to obtain the change in thickness at 
that depth [23]. Although the angle of the ultrasonic 
beam was not changed in the present study, the concept 
of spatial compounding has been applied in previous 



studies to magnitudes of echoes, which are obtained by 
scanning each point in the ROI with ultrasonic beams 
having different beam angles, to improve B-mode 
images [24]. 

Elasticity images of the human carotid artery have 
been obtained by the measured displacement 
distribution, and the potential for transcutaneous tissue 
characterization has been shown by classifying the 
elasticity images using the elasticity reference data 
obtained by in vitro experiments [22][25][26]. 

We have already measured the elasticity 
distributions for lipids, blood clots, fibrous tissue 
(mixture of the smooth muscle and collagen), and 
calcified tissue. In these previous studies, it was found 
that arterial tissues can be classified into soft tissues 
(lipids, blood clots) and hard tissues (fibrous tissue, 
calcified tissue) on the basis of their elasticity. 
However, it was difficult to differentiate lipids from 
blood clots and fibrous tissue from calcified tissue. 
Therefore, we proposed a tissue classification method 
using the elasticity distribution in a small region [27]. 
In this method, the elasticity distribution of each small 
ROI (not a single pixel) in an elasticity image was used 
in classification of lipids, blood clots, fibrous tissue, 
and calcified tissue. Precision of tissue classification 
was improved using the elasticity distribution in each 
small region. 

However, the accuracy of this method in relation to 
the size of an ROI has not yet been thoroughly 
investigated, and the method has not been applied to 
the differentiation of fibrous tissue from calcified tissue. 
In the present study, to determine the optimum size of 
an ROI, the accuracy of tissue classification (including 
calcified tissue) was quantitatively investigated in 
relation to the size of the ROI by evaluating the ratio of 
the number of correctly classified pixels to the total 
number of classified pixels. In addition, in the 
proposed classification method, the likelihood function 
of each small ROI is obtained for each tissue 
component (lipids, blood clots, fibrous tissue, and 
calcified tissue), and the region is classified into a 
tissue component that shows the maximum likelihood. 
However, an ROI is classified into one of the four 
tissue components even when the maximum likelihood 
is low. In the present study, such a region is defined as 
an unclassified region by setting a threshold for the 
likelihood. From these investigations, tissue 
classification was much improved in comparison with 
that in the previous study [28][29]. 
 
2. Materials and Methods 
2.1. Experimental setup and specimens 
 

Figure 1 shows a schematic diagram of the 
measurement system. The change in pressure inside the 
artery was realized by circulating a fluid using a flow 
pump. The fluid inside the artery and that circulating in 
the flow pump were separated by a rubber membrane 
to prevent the flow pump from being contaminated, 
and only the change in internal pressure propagated to 
the inside of the artery. The change in internal pressure 

was measured by a pressure transducer (Model 110-4, 
Camino, San Diego, CA, USA). 

In ultrasonic measurement, excised arteries were 
measured with a conventional 7.5 MHz linear-type 
ultrasonic probe (SSH-140A, Toshiba, Japan). The 
quadrature demodulated signals of RF echoes were 
acquired at 10 MHz at a frame rate of 200 Hz. In this 
study, the elasticity of the arterial wall is defined as the 
tissue strain calibrated by the average stress of the 
entire wall thickness, namely, circumferential elastic 
modulus hEθ  [25]. The strain distribution is obtained by 
applying the phased tracking method to the measured 
demodulated signals [21][23]. 
 

 
 

Fig. 1. Schematic diagram of the measurement system. 
 

In this study, eight iliac and ten femoral arteries 
which had been surgically excised from eighteen 
patients with arteriosclerosis obliterans were measured 
in vitro. These arteries had been excised at the time of 
bypass grafting surgery. During the ultrasonic 
measurement, a needle was attached to the external 
surface of the artery for identification of the measured 
section so that a pathological image of the same section 
could be obtained after the ultrasonic measurement. 
This study was approved by the Ethics Committee on 
Clinical Investigation, Graduate School of Engineering, 
Tohoku University, and was performed in accordance 
with the policy of the Declaration of Helsinki; all 
subjects gave informed consent. 
 
2.2. Tissue classification using the likelihood 
function 
 

In this study, each pixel in an elasticity image is 
classified into one of 5 categories of lipids, blood clots, 
fibrous tissue, calcified tissue, and unknown using the 
likelihood function {Li} (i = 1: lipid, 2: blood clot, 3: 
fibrous tissue, 4: calcified tissue) of the elasticity 
distribution in the small region around the pixel. To 
obtain the likelihood function {Li}, the elasticity 
distribution of the i-th tissue is translated into the 
normal distribution to describe the probability 
distribution by the mean and the standard deviation as 
described below [27]. 

From in vitro experiments, the elasticity distribution 
of each tissue i is obtained as illustrated in Fig. 2(a). 
The elasticity distribution of the i-th tissue consists of 
Ji data points with the respective elastic moduli. Using 
all data of Ji points (J1: 228, J2: 179, J3: 19,121, J4: 
1,101) with the respective elastic moduli, the ascending 
sequence is constructed for tissue i as shown in Fig. 
2(b). In this sequence, the j-th datum ( j = 1, 2, . . ., Ji) 
has the corresponding elastic modulus Ej (Ej ≤ Ej+1), 



where j is termed the elasticity number. The probability 
distribution of each tissue was obtained by allocating 
all the data of Ji points of each tissue i to boxes of the 
normal distribution. The box numbers, {Bi}, of the 
normal distribution are determined so that the number 
of data in the box at each end is only one. As shown in 
Fig. 2(c), the number of data, Di,h (h = 1, 2, . . ., Bi), 
included in box Bi is determined so as to follow the 
profile of the normal distribution. Thus, the (Ji /2)-th 
datum is included in the box with the highest 
probability. By allocating all the data of Ji points of 
each tissue to boxes of the corresponding normal 
distribution, the mean elasticity Ēi,h of the data included 
in each box is obtained. 
 
 

 
 
Fig. 2. (a) Original elasticity distribution of the tissue. 
(b) Ascending sequence of elastic modulus in an 
elasticity distribution. (c) Normal distribution whose 
number of boxes depends on the number of data points 
of (a). 
 
 

As shown in Fig. 3, an ROI was assigned to an 
elasticity image which was obtained by ultrasonic 
measurement. The likelihood function Li (m,n) is 
defined as a joint probability that all the elasticity 
values in ROI Rm,n (center of ROI: n-th sampled point 
along m-th beam) simultaneously belong in the i-th 
category as follows: 
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where pi (Ek,l) is the probability density which shows 
the probability that elasticity value Ek,l in the k-th row 
and l-th column in the ROI belongs to the i-th tissue 
category, and N0 denotes the number of pixels in an 
ROI Rm,n. The multiplier 1/N0 shows the geometric 
mean for compensation of the effect of the size of an 
ROI. The pixel at the center of an ROI is classified into 
the class which has the maximum likelihood. 

In this classification, there may be a region which 
has an extremely small value for the maximum 
likelihood. Such regions are classified into the 
unclassified region by setting threshold To to the 
maximum likelihood. Thus, the category C(Rm,n), to 
which an ROI Rm,n belongs, is expressed as follows: 
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Fig. 3. Illustration of region of interest (ROI). 
 

Figure 4 shows examples of tissue classification 
images which were manually estimated by referring to 
the pathological images of iliac arteries (A) and (B). 
By comparing the pathology-based classification 
images shown in Fig. 4 with the tissue classification 
images obtained by the proposed method, the 
recognition rate Rr (SROI) for all tissues in the arterial 
wall was defined by the ratio of the number of 
correctly classified pixels to the number N of all pixels 
in the image as follows: 

 [ ],%100)( RO ×= ∑
N

N
SR i i

r I
                        (2.3) 

where Ni is the number of correctly classified pixels of 
tissue i and SROI is the size of an ROI. Recognition rate 
Rr (SROI) was used to determine the optimum size of an 
ROI. 
 
3. In Vitro Experiments for Construction of 
“Elasticity Library” 
 

Figure 5(a) shows a B-mode image of one of the 
femoral arteries. The strong echoes from outside the 
posterior wall correspond to a needle. For the posterior 
wall, the images of the maximum change in thickness 



during a cycle of the flow pump were measured as 
shown in Fig. 5(b). 

Figure 6(a) shows the elasticity image of the femoral 
artery obtained from the maximum change in internal 
pressure and that in thickness obtained by the phased 
tracking method shown in Fig. 5(b). By referring to the 
pathological image of the same section shown in Fig. 
6(b), fibrous tissue in the intima-media region was 
identified. The corresponding region, namely, the 
region surrounded by the green line in Fig. 6(a), was 
then assigned to the elasticity image. Figure 6(c) shows 
the elasticity distribution of fibrous tissues extracted 
from the region surrounded by the green line in Fig. 
6(a). By applying the same procedure to the other 
arteries, the elasticity distribution of each tissue in the 
arterial wall was obtained. 
 

 
 
Fig. 4. Tissue classification images obtained by 
referring to pathological images. (a) Iliac artery (A). 
(b) Iliac artery (B). 
 

Figure 7 shows the elasticity distribution of each 
tissue, that is, the frequency of the elasticity values 
which belong to the range defined by the position and 
width of each vertical bar. The width of a vertical bar 
was set at 50 kPa. Means and standard deviations are 
89 ± 47 (lipids), 131 ± 56 (blood clots), 1,022 ± 1,040 
(fibrous tissue), and 2,267 ± 1,228 kPa (calcified 
tissue). Although similarities were found in the 
elasticity distributions of lipids and blood clots and in 
those of fibrous and calcified tissues, differences in the 
elasticity distributions of these tissues were found. 
 
4. Determination of the Optimal Size of a 
Region of Interest 
 

Figure 8 shows the probability density of each tissue 
obtained by the axis transformation of the elasticity 
distribution. As shown in these figures, the horizontal 
axis showing the elastic modulus is nonlinear. Using 

these databases, each pixel in an elasticity image was 
classified as a certain tissue component. 

Figures 9(c) and 9(d) show the tissue classification 
results obtained by the proposed method for the iliac 
artery (A). The regions classified as lipids, blood clots, 
fibrous tissue, and calcified tissue were stained yellow, 
red, blue, and purple, respectively. Figure 9(c) 
graphically shows the tissue classification image 
obtained with an ROI size of 1 × 1 pixel. Although 
arterial tissues were roughly classified into soft tissues 
(lipids and blood clots) and hard tissues (fibrous tissue 
and calcified tissue), the classified tissue distributions 
are scattered, and the misclassified regions are 
outstanding. Alternatively, Fig. 9(d) shows the result of 
classification with an ROI size of 1,500 μm ( = 20 
pixels) in the radial direction and 1,500 μm ( = 5 
pixels) in the longitudinal direction. Moreover, the 
region with low likelihood for all tissue components is 
colored gray. The threshold To for the maximum of the 
likelihood functions {Li} was set at 0.21. As shown in 
Fig. 9(d), the region with the maximum likelihood 
which is higher than threshold To is accurately 
classified as the corresponding tissue identified by 
referring to the pathological image. 
 

 
 
Fig. 5. (a) B-mode image of a femoral artery. (b) Image 
of the maximum change in thickness during the cardiac 
cycle. 
 

For another specimen (iliac artery (B)), calcified 
tissue in the fibrous tissue was identified as shown in 
Fig. 10(e). As in Fig. 8, tissue classification was 
improved using the elasticity distribution of each ROI 
(not a single pixel). In the case of Fig. 10, there was no 
region with low likelihood for any of the tissue 
components. 

Figure 11 shows the relationship between the size 
SROI of an ROI and the recognition rate Rr (SROI). The 
ROI size SROI was changed with its shape being kept 



square. In Fig. 11, the horizontal axis shows the width 
ROISW =  of an ROI in the longitudinal direction. 

An ROI consists of a single pixel when the width, W, 
in Fig. 11 is 0.3 mm. Only in this specific case, is an 
ROI not square (75 μm × 300 μm). Figure 11(b) shows 
the relationship between width ROISW =  of an ROI 
in the longitudinal direction and the recognition rate   
Rr (SROI) in arteries which are composed of a single 
type of tissue, such as fibrous tissue. In such case, the 
recognition rate Rr (SROI) is monotonically improved by 
increasing the size of an ROI because an elasticity 
image is uniformly classified as the corresponding 
tissue using a large ROI, which results from the 
worsening spatial resolution in tissue classification. 
Figure 11(a) shows the relationship between width W 
of an ROI and the recognition rate Rr (SROI) in arteries 
composed of different types of tissues. For this case, 
tissue classification using some pixels in an ROI is 
superior to that using a single pixel. However, the 
improvement of tissue classification by the 
enlargement of an ROI is limited because the 
classification using a large ROI provides a uniform 
tissue classification image whereas the arterial wall is 
composed of different kinds of tissues. Therefore, there 
should be an optimum size of an ROI. As shown in Fig. 
11(a), the recognition rates became maximum in most 
arteries when the size of an ROI was 1,500 μm × 1,500 
μm. 
 

 
 
Fig.6. (a) Elasticity image of the arterial wall. (b) 
Pathological image of the corresponding section. (c) 
Elasticity distribution in the region between the two 
green lines in (a). 
 
 
 
 

 
 
Fig. 7. Elasticity distribution of each tissue. (a) Lipids 
(N = 288). (b) Blood clots (N = 178). (c) Fibrous tissue 
(N = 19,120). (d) Calcified tissue (N = 1,101). 
 
 

 
 
Fig. 8. Probability density for each tissue. (a) Lipids. 
(b) Blood clots. (c) Fibrous tissue. (d) Calcified tissue. 
 
 
5. Determination of the Optimal Threshold 
5.1 Basic experiments using a phantom for 
evaluation of variance in measurement of 
radial strain 
 

A homogeneous cylindrical phantom (internal 
radius: ri = 4 mm, external radius: ro = 5 mm, elastic 
modulus: E = 750 kPa) made from silicone rubber 
containing 5% carbon powder by weight was measured 
with a 7.5 MHz linear ultrasonic probe. The scan plane 
was parallel to the longitudinal direction of the 
phantom, and the directions of all ultrasonic beams 
coincided with the radial direction of the phantom. The 
change in internal pressure, which was applied using a 
flow pump, was measured by a pressure sensor. The 
sampling frequency of the quadrature demodulated 
signal and the frame rate were 10 MHz and 200 Hz, 
respectively. The theoretical value of radial strain     
Δεr (r) at each radial position r is obtained by [30] 
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where Δp is the pressure increment. The radial strain 
measured by the phased tracking method was 
compared with the theoretical value Δεr (r). 
 

 
 
Fig. 9. For the iliac artery (A). (a) Pathological image 
of an arterial wall subjected to elastica-Masson staining. 
(b) Elasticity image. (c) Tissue classification image 
(ROI size: 1 × 1 pixel). (d) Tissue classification image 
(ROI size: 5 × 20 pixels). 
 

Figures 12(a)-12(d) show the strain distribution 
along the radial direction of the phantom obtained by 
the phased tracking method for cases of pressure 
increments Δp = 40, 50, 60, and 70 mmHg, 
respectively. Plots and vertical bars show means and 
standard deviations for 60 ultrasonic beams. The 
difference between the mean and the theoretical value 
is lower than the standard deviation, and mean value 
follows the theoretical profile. 

Figure 13 shows the relationship between the mean 
μs and the standard deviation σs normalized by the 
mean value. The plots and the straight line show all the 
measured results in Fig. 12 and the regression line, 
respectively. A positive correlation was found between 
the mean μs and the normalized standard deviation σs 
because the standard deviation was almost constant 

over every pressure increment. The regression line was 
determined as follows: 
 

.40.01.7 +⋅= ss μσ                                                    (5.2) 
 

 
 
Fig. 10. For the iliac artery (B). (a) Pathological image 
of another arterial wall subjected to hematoxylin-eosin 
staining. (b) Pathological image of the arterial wall 
subjected to elastica-Masson staining. (c) Elasticity 
image. (d) Tissue classification image (ROI size: 1 × 1 
pixel). (e) Tissue classification image (ROI size: 5 × 
20 pixels). 
 

The threshold To,i (Rm,n) for likelihood function Li (m, 
n) of tissue i of each ROI Rm,n is determined using the 
experimental results with the phantom. Using eq. (5.2), 
the normalized standard deviation σs(Rm,n) in the 
measurement of the radial strain in Rm,n was given 
approximately by: 
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where εmax(k, l) and μ  are the maximum radial strain 
during one cardiac cycle in the k-th row and l-th column 



and the average of the maximum radial strain in Rm,n, 
respectively. 
 

 
 
Fig. 11. Relationship between width W of an ROI in 
the longitudinal direction and the recognition rate       
Rr (SROI). (a) Arteries composed of several types of 
tissues. (b) Arteries composed of a single tissue. Each 
line shows the recognition rate Rr (SROI) of the 
corresponding artery. 
 

Figure 14 shows an illustration for determining the 
threshold To,i (Rm,n) for the likelihood function Li (m, n) 
of tissue i. Let us consider the elasticity distribution in an 
ROI. Variance )( ,

2
0 nmRσ  of the measured elasticity 

lkE ,
ˆ  

in the k-th row and l-th column in Rm,n is expressed as 
follows: 
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where ][

,),( ⋅∈ nmRlkE  shows the averaging for the data 

included in the ROI Rm,n, and 
nmRE

,
ˆ  is the average of the 

measured elasticity values }ˆ{ ,lkE  in Rm,n. By assuming 
that the true elasticity values {Ek,l} are not constant in 
Rm,n due to the elasticity inhomogeneity of tissue even 
when there is no measurement error, the measured 
elasticity }ˆ{ ,lkE  is described by the sum of true elasticity 

{Ek,l} and the error {ΔEk,l} (sum of random error {ek,l} 
and bias error bRm,n) as follows: 
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respectively. By substituting eq. (5.7), eq. (5.5) is 
modified as follows: 
 

[ ] ( )[ ]
[ ] [ ],E2E2

EEE)(

,),(,,),(

2
,),(

2

,),(,),(,
2
0

,
,

,

,
,,,

lkRlkRlklkRlk

RlkRlklkRlklkRlknm

ebeE

eeEER

nm
nm

nm

nm
nmnmnm

∈∈

∈∈∈

+⋅+

−+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −=σ  

(5.8) 
 
where 
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,

 is assumed to be zero because {ek,l} is 

random error. Variance (σe(Rm,n))2 of the measurement 
error {ek,l} in Rm,n is expressed by 

,)ˆ)(())(( 2
,

2
, ,nmRnmsnme ERR ⋅= σσ  where σs(Rm,n) is 

determined by eq. (5.3). By defining the variance due to 
the elastic inhomogeneity of tissue in Rm,n by 2

, )( nmRσ  
eq. (5.8) is expressed as follows: 
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where there is no correlation between the inhomogeneity 
of Ek,l and {ek,l} in Rm,n. Therefore, variance (σ(Rm,n))2 
without error of eq. (5.9) is given by 2

, }ˆ)({
,nmRnms ERσ  

subtracted from the variance 2
0σ  of the measured 

elasticity values }ˆ{ ,lkE  in Rm,n as follows: 
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Based on this relation, by setting the acceptance 

region [from –aσi (Rm,n) to aσi (Rm,n)] of the probability 
density ))(,( ,

2
nmii RN σμ  for each tissue i, the threshold 

To,i (Rm,n) for the likelihood function Li (m, n) of tissue i 
in Rm,n was determined by the probability of the 
distribution ))(,( ,

2
,0 nmii RN σμ with the error at the distance 

from mean μi as shown in Fig. 15. Therefore, the 
threshold To,i (Rm,n) for the likelihood function Li (m, n) 
of tissue i is given by 
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where σ0,i is the variance of measured elasticity 
distribution for tissue i. 

Figures 16(c)-16(g) show the tissue classification 
images for an excised human iliac artery (A). The 
regions classified as lipids, blood clots, fibrous tissue, 
and calcified tissue are color-coded yellow, red, blue, 
and purple, respectively. Figure 16(c) shows the 
classification image obtained with an ROI size of 5 × 20 
pixels (1,500 × 1,500 μm2) without thresholding. 
Although the pixels were roughly classified into the 
correct tissues, the pixels which have low likelihood     
Li (m, n) were also classified. Figures 16(d)-16(g) show 
the classification images obtained with thresholds        
To,i (Rm,n) determined at four different area ratios of w = 
99, 95, 90, and 85%, respectively. In Figs. 16(d)-16(g), a 
region whose likelihood is less than the threshold        
To,i (Rm,n) for all tissue components is colored gray. As 
shown in Figs. 16(d)-16(g), similarities among the 
classification images seem to be qualitatively high 
especially for those at an area ratio w less than or equal 
to 95%. It can be expected from the result shown in Fig. 
17 that improvement in the recognition rate Rr (w) by 
decreasing area ratio w slightly diminish at area ratio w 
less than 95%. For these results, the misclassification 
was reduced using the threshold To,i (Rm,n) determined 
from the area ratio of the acceptance region less than or 
equal to 95%. 
 
 
 
 
 
 
 
 
 
 

 
Fig. 12. Estimated strains of the phantom, plotted as a 
function of the distance from the lumen. (a) Δp = 40 
mmHg. (b) Δp = 50 mmHg. (c) Δp = 60 mmHg. (d) Δp = 
70 mmHg. 
 
 
4. Conclusion 
 

In this study, tissue classification based on the 
likelihood function with the configured appropriate 
ROI size (not a single pixel) and a lower limit of 
likelihood were investigated. Using the elasticity 
distribution in an ROI, the differentiation of lipids from 
blood clots and that of fibrous tissue from calcified 
tissue were improved. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 13. Relationship between mean μs and standard 
deviation σs normalized by mean μs of the measured 
strains of the phantom. 
 
 
 
 
 
 
 
 
 
 
 

 
図 14. Illustration of a method for determining threshold 
To,i (Rm,n) to likelihood function Li (m, n). 
 

 
 
 
 
 
 
 
 
 
 

 
図 15. Example of determination of threshold To,i (Rm,n) 
to likelihood function Li (m, n). 
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