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Abstract 
 

Artery-wall motion due to the pulsation of the 
heart is often measured to evaluate mechanical 
properties of the arterial wall. Such motion is thought 
to occur only in the arterial radial direction because the 
main source of the motion is an increase of blood 
pressure. However, it has recently been reported that 
the artery also moves in the longitudinal direction. 
Therefore, a 2-D motion estimator is required even 
when the artery is scanned in the longitudinal direction 
because the arterial wall moves both in the radial 
(axial) and longitudinal (lateral) directions. Methods 
based on 2-D correlation of RF echoes are often used 
to estimate the lateral displacement together with axial 
displacement. However, these methods require much 
interpolation of the RF echo or correlation function to 
achieve a sufficient resolution in the estimation of 
displacement. To overcome this problem, Jensen et al. 
modulated the ultrasonic field in the lateral direction at 
a designed spatial frequency to use the lateral phase for 
the estimation of lateral motion. This method, namely, 
the lateral modulation method, generates complex 
signals whose phases change depending on the lateral 
motion. Therefore, the lateral displacement can be 
estimated with a good resolution without interpolation, 
although special beamformers are required. The present 
paper describes a method that can be applied to 
ultrasonic echoes obtained by a conventional 
beamformer to estimate lateral displacements using the 
phases of lateral fluctuations of ultrasonic echoes. In 
the proposed method, complex signals were generated 
by the Hilbert transform, and the phase shift was 
estimated by correlation-based estimators. The 
proposed method was validated using a cylindrical 
phantom mimicking an artery. The error in the lateral 
displacement estimated by the proposed method was 
13.5% of the true displacement of 0.5 mm with a 
kernel size used for calculating the correlation function 
of 0.6 mm in the lateral direction, which was slightly 
smaller than the width at -20 dB of the maximum 
lateral ultrasonic field (about 0.8 mm). 
 
1. Introduction 
 

Noninvasive measurement of mechanical properties 
of the arterial wall, such as elasticity, is useful for 
diagnosing atherosclerosis because there are significant 

differences between the elastic moduli of normal 
arterial walls and those affected by atherosclerosis [1-
3]. In particular, mechanical properties of plaque are 
important because the rupture of plaque may cause 
acute myocardial infarction and cerebral infarction [4-
6]. Magnetic resonance imaging (MRI) and 
intravascular ultrasound (IVUS) are promising 
technologies for directly imaging plaque morphology 
[7,8]. On the other hand, the dynamic change of artery 
diameter due to the pulsation of the heart can be 
measured noninvasively by the previous method with 
ultrasound [9-13]. Some parameters related to artery-
wall elasticity can be obtained by the measured change 
in diameter of the artery [14-16]. However, in the 
derivation of these parameters, the artery is assumed to 
be a cylindrical shell with an uniform wall thickness 
and, thus, the elasticity of atherosclerotic plaque cannot 
be evaluated. 

For measurement of the mechanical properties of the 
arterial wall, including the case with atherosclerotic 
plaque, we previously developed a method, namely, the 
phased tracking method, for measuring small 
vibrations in the heart wall or arterial wall with 
transcutaneous ultrasound [17,18]. For some years, we 
have been measuring the displacement and small 
change in thickness of the arterial wall caused by the 
heartbeat using this method [19-22]. In our phased 
tracking method, a set of two points is assigned along 
an ultrasonic beam, and the change in thickness of the 
layer between these two points is estimated. 
Furthermore, by sliding the position of the layer along 
the ultrasonic beam by intervals of the sampled points, 
the spatial distribution of changes in thickness along 
the ultrasonic beam can be obtained. 

In the above-mentioned methods including our 
method, the radial motion of the arterial wall, such as 
changes in diameter [9-13] and radial strain [19-22], 
are measured because it is considered that the source of 
the artery-wall motion is the change in internal 
pressure (blood pressure) and that there is no 
longitudinal motion. However, Cinthio et al. showed 
that the artery also moves in the longitudinal direction 
[23]. Therefore, a 2-D motion estimator is required to 
estimate both the axial (radial) and lateral 
(longitudinal) displacements, even when an artery is 
scanned in the longitudinal direction. 

de Korte et al. introduced a motion estimator based 
on the correlation between RF echoes to measure the 2-
D displacement of the arterial wall in the cross-
sectional scan [24]. Such a motion estimator based on 



correlation between RF echoes had previously been 
developed and thoroughly investigated in the field of 
tissue elasticity imaging [25-28], results indicating that 
it accurately estimates the 2-D displacement. However, 
much interpolation is required to realize an accurate 
estimation. 

Jensen et al. introduced a method, namely, the lateral 
modulation method, in which the ultrasonic field is 
modulated in the lateral direction at a designed spatial 
frequency to realize a lateral displacement estimation 
using the lateral phase induced by the modulated field 
[29]. This method generates complex signals whose 
phases change depending on the lateral displacement 
and, therefore, the lateral displacement can be 
estimated with a good resolution because the phase 
change can be directly converted into the lateral 
displacement. However, this method requires special 
beamformers that are not available in conventional 
equipment. 

To overcome this problem, Chen et al. recently 
proposed a method to estimate lateral displacements 
using the lateral phases of ultrasonic echoes obtained 
by conventional beamformers [30]. The accurate 
estimation of lateral displacements would be very 
useful, particularly when it could be done based on 
conventional beamformers. The present paper 
describes a method, which also uses the lateral phases 
of echoes obtained by conventional beamformers, for 
estimation of lateral displacements of arterial walls 
[31]. In the proposed method, complex signals are 
generated by the Hilbert transform, and the phase shift 
due to the lateral motion is estimated by a correlation-
based estimator. The proposed method was validated 
using a cylindrical phantom mimicking an artery and 
compared with the lateral modulation method. 
 
2. Materials and Methods 
2.1. Difficulties Encountered in Estimation of 
Lateral Motion Using Phases of Ultrasonic 
Echoes 
 

This section describes the fundamental theory of 
ultrasonic fields to show why it is difficult to use the 
phase information of ultrasonic echoes for estimation 
of lateral motion. 

When the ultrasonic field is focused at a depth of 
interest z using a linear array probe, a point spread 
function (PSF) h(x) is created as illustrated in Fig. 1, 
where only its profile in the lateral direction x at depth 
z is considered. By defining the spatial distribution of 
the amplitude reflection coefficient of an object in the 
n-th frame as r(x; n), the amplitude s(x; n) of an echo at 
depth z obtained by an ultrasonic beam focused at the 
point of interest (x, z) is expressed as follows: 
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where * denotes convolution. 
Let ux(n) be the lateral displacement of the object 

between the n-th and (n + 1)-th frames. Reflection 
coefficient r(x; n + 1) in the (n + 1)-th frame is 
expressed by r(x; n + 1) = r(x - ux(n); n), where it can 
be assumed that there is only the lateral motion when 
the axial motion is compensated by an axial motion 
estimator (in this study, the method proposed in [32] 
was used). In addition, it was assumed that there is no 
distortion in r(x; n) between the nth and (n + 1)-th 
frames. Under such conditions, the amplitude s(x; n + 
1) is given by 
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Fig. 1. Geometry for measurement. 
 

In the lateral modulation method proposed by Jensen 
et al. [29], 2 point spread functions, hr(x) and hi(x), 
which oscillate at the same spatial frequency, fx0, but 
with a phase difference of 90 degrees, are produced to 
create a complex signal g(x; n), whose phase changes 
depending on the lateral displacement of the object. 
Based on the relationship in (1), g(x; n) can be 
considered to be the complex version of s(x;n). In this 
case, the 2 point spread functions hr(x) and hi(x) are 
approximately expressed by cos(2πfx0x) and 
−sin(2πfx0x), respectively. Therefore, complex signal 
g(x; n) can be obtained based on (1) as follows: 
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As can be seen in (3), the complex signal g(x; n) 

obtained by the lateral modulation method is the 
Fourier coefficient R(fx0; n) of reflection coefficient r(x; 
n) at spatial frequency fx0. Therefore, g(x; n + 1) in the 
(n + 1)-th frame can be expressed by g(x; n + 1) = g(x; 



n)·exp{-2πfx0ux(n)}. Under such condition, the lateral 
displacement ux(n) can be estimated by the phase shift  
-2πfx0ux(n) from g(x; n) to g(x; n + 1) using the 
conventional correlation technique because the spatial 
modulation frequency fx0 can be appropriately obtained 
by designing the point spread functions hr(x), and hi(x). 

In the present study, the Hilbert transform was 
applied to RF echoes obtained by conventional 
beamforming to use the lateral phase. Complex 
spectrum S(fx; n) of s(x; n) of (1) is expressed by H(fx; 
n) and R(fx; n) of the point spread function h(x) and 
reflection coefficient r(x; n) at spatial frequency fx as 
S(fx; n) = H(fx)·R(fx; n). Complex spectra H(fx) and R(fx; 
n) are described as follows: 
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Analytic signal y(x; n) of s(x; n) is obtained by the 

inverse Fourier transform of S(fx; n) in the range of 
positive spatial frequencies as follows: 
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In the integration of (6), in a strict sense, the direct 

current component (at fx = 0) should be multiplied by 
0.5. However, in this study, the direct current 
component in the measured signal s(x; n) was removed 
before applying the Fourier transform to s(x; n). In this 
case, the Hilbert transform can be expressed by (6). 

Similarly, the analytic signal y(x; n + 1) of s(x; n + 1) 
in the (n + 1)-th frame is expressed as follows: 
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In actual measurements, s(x; n) is sampled at the 
interval of scan lines Δx, and the sampled version of 
s(x; n) is denoted by s(mΔx; n) ≡ s(m; n) (m = -M / 2,     
-M / 2 + 1, …, -2, -1, 0, 1, 2, …, M / 2), where M + 1 is 
the number of scan lines (lateral length of the scanned 
region L = M·Δx). In such a discrete system, (6) and 
(11) are denoted in the digital system as follows: 
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where (12) and (13) are obtained from (6) and (11), 
respectively, by replacing the integration, spatial 
frequency fx, and lateral spatial position x by the 
summation, k / (M·Δx) (discrete spatial frequency), and 
mΔx (discrete spatial position), respectively. As shown 
in (12) and (13), the phase shift from y(m; n) to y(m; n 
+ 1) actually depends on the lateral displacement ux(n) 
of the object between the n-th and (n + 1)-th frames. 
The phase shift of complex signal g(x; n) of (3) 
obtained by the lateral modulation method is simply 
related to lateral displacement ux(n) such as g*(x; 
n)·g(x; n + 1) = |g(x; n)|2·exp{j2πfx0ux(n)}, where * 
denotes complex conjugate. However, it is difficult to 
relate the phase shift from y(m; n) to y(m; n + 1) to the 
lateral displacement ux(n) because h(x) cannot be 
assumed to be a sinusoidal wave fluctuating at a known 
spatial frequency of fx0 when a conventional 
beamformer is used. This is a major difficulty for 
utilization of the lateral phase with conventional 
beamformers. In the present study, a new method was 
introduced to overcome this problem. 
 
2.2. Principle of Lateral Displacement 
Estimation Using the Lateral Phase 
 

Let us define the complex correlation function γ(Δm; 
m; n) between y(m; n) of (12) and y(m; n + 1) of (13) at 
lateral lag Δm·Δx as 
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where Mc determines the number of sampled points 
used for calculating the correlation function. 

The phase shift Δθ(m; n) from y(m; n) to y(m; n + 1) 
induced by lateral displacement ux(n) between the n-th 
and (n + 1)-th frames can be obtained by setting lateral 
lag Δm at 0 (conventional correlation technique [33]) 
as follows: 
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In this study, as illustrated in Fig. 2, it was assumed 

that there is a linear relationship between the lateral 



displacement ux(n) and the change in the lateral phase 
Δθ(m; n), as expressed by  
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where a(n) is a constant (corresponding to the slope of 
the linear relationship), which linearly relates the phase 
shift to the lateral displacement. 

When Δm is set at 1, it can be considered that y(m; n 
+ 1) of (13) is artificially displaced by Δx ( = an 
interval of scan line) relative to y(m; n) of (12). 
Therefore, the following relationship holds: 
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By solving simultaneous equations consisting of (16) 
and (17), slope a(n) and lateral displacement ux(n) are 
estimated as follows: 
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where )(ˆ ),( 21

na mm ΔΔ
 and )(ˆ ),(, 21

nu mmx ΔΔ
 are the slope and 

the lateral displacement, respectively, which are 
estimated by correlation functions at lateral lags from 
Δm1 to Δm2.  

Although more computation is required, other 
correlation functions at different lateral lags can be 
used for displacement estimation. As in (17), the 
following relationship holds: 
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where it should be noted that ΔmΔx is an artificial 
displacement. 

Using more than 2 correlation functions, lateral 
displacement ux(n) of a target can be estimated by the 
least-squares method. To do that, let us consider the 
relationship that is obtained by subtracting (16) from 
(20) as follows: 
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where ∠γ’(Δm; m; n) = ∠γ (Δm; m; n) - ∠γ (0; m; n). 

By considering the left and right sides of (21) to be 
the actual and model lateral displacements, respectively, 
the mean squared difference α(n) between the actual 
and model displacements is expressed as follows: 
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To determine )(ˆ ),( 21

na mm ΔΔ
 which minimizes the mean 

squared difference α(n), the partial derivative of (22) 
with respect to α(n) is set to be zero: 
 

 
 

Fig. 2. Assumed relationship between phase shift and 
lateral displacement. Complex correlation function 
γ(Δm; m; n) is shown by γ(Δm). 
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By solving (23), )(ˆ ),( 21

na mm ΔΔ
 is obtained as follows: 
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By substituting (24) into (16), lateral displacement 
ux(n) is estimated as follows: 
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Fig. 3. Schematic of measurement system. 
 

In a subsequent section describing experiments using 
a phantom, accuracies in estimation of lateral 
displacements achieved by the 2 estimators, i.e., the 
computationally efficient version given by (19) and the 
estimator given by (25) consisting of 3 correlation 
functions at lags {Δm} of -1, 0, and 1 (Δm1 = -1, Δm2 = 
1), are compared. 
 
2.3. Experimental System 
 
In this study, a cylindrical phantom (inner diameter: 8 
mm; external diameter: 10 mm) made from silicone 
rubber (elastic modulus: 750 kPa) containing 5% 
carbon powder (by weight) was measured in the 
experimental system illustrated in Fig. 3. The radial 
motion ( = axial motion) of the phantom was induced 
by changing the internal pressure using a flow pump 
(pulse pressure: about 60 mmHg, theoretical resulting 
radial strain: about 4%). The longitudinal motion ( = 
lateral motion) was simulated by moving a ultrasonic 
probe using an automatic stage. The maximum lateral 
displacements were controlled to be 0.1, 0.25, and 0.5 
mm by the automatic stage. The stage was triggered by 
a signal from the flow pump, which shows the 
beginning of ejection. 

In ultrasonic measurements for the method proposed 
in this study, RF echoes from the phantom were 
acquired at a frame rate of 286 Hz with a 10-MHz 
linear array probe (UST-5545, Aloka, Tokyo, Japan) 
equipped with conventional ultrasonic diagnostic 
equipment (SSD-6500, Aloka, Tokyo, Japan). The 
phantom was scanned in the longitudinal direction at 
intervals Δx of 0.15 mm (46 scan lines), and RF echoes 
were sampled at 40 MHz at a 16-bit resolution. 

For the lateral modulation method, a scanner (its 
front end is same as that of α-10 [Aloka, Tokyo, 
Japan]), which was modified so that RF echoes 

received by each array element could be acquired 
(frame rate: 289 Hz), was employed together with a 10-
MHz linear array probe (UST-5545, Aloka, Tokyo, 
Japan) [34]. With this system, plane waves were 
transmitted and the receive beamforming was 
performed with the apodization and delay factors 
shown in Fig. 4 [29]. Figures 5(a) and 5(b) show a 
beamformed RF echo from a fine wire (diameter: 16 
μm) placed about 20 mm away from the ultrasonic 
probe, and Fig. 5(c) shows the spectrum of the echo 
signal shown in Fig. 5(a) obtained by the 2-D Fourier 
transform. There were 72 scan lines at lateral intervals 
Δx of 0.2 mm, and the lateral modulation frequency fx0 
was set at 0.89 mm−1.  
 

 
 

Fig. 4. (a) Amplitude apodization and (b) time delay 
(for in-phase [solid line] and quadrature [dashed line] 
beamformers) values for creating the lateral 
modulation during receive beamforming. 
 
3. Results of Experiments Using a Phantom 
3.1. Estimation of Lateral Displacements by the 
Proposed Method 
 

Fig. 6 shows the procedure to obtain analytic signals 
{y(m; n)}. Fig. 6(a) shows RF echoes from the 
phantom that was scanned in the longitudinal direction 
using the linear array probe with a conventional 
beamformer. Envelopes {s’(m; n)} of the RF echoes 
were detected as shown in Fig. 6(c). The direct current 
component contained in the envelope signal s’(m; n) 
has no phase information and, therefore, it was 
removed. In this study, the envelope signal without 
bias was used as echo amplitude s(m; n), which is 
given by  
 

[ ],);(');(');( nmsEnmsnms m−=                             (26) 
 
where E[·] denotes the averaging operation with 
respect to lateral position m·Δx. The Hilbert transform 
with a Tukey window shown in Fig. 6(b) was then 
applied to s(m; n) to obtain the analytic signal y(m; n). 
The real and imaginary parts of analytic signal y(m; n) 
were obtained as shown in Figs. 6(e) and 6(f). 



The method proposed in Section II-B was applied to 
analytic signal y(m; n) to estimate lateral displacement 
ux(n). Twenty points of interest were assigned in the 
posterior wall at axial intervals of 50 μm along each 
scan line, and lateral displacements {ux(n)} of these 
points were estimated. In Figs. 7(1) and 7(2), plots and 
vertical bars show means and standard deviations of 
the maximum lateral displacements {ûx,(01),max(n)} and 
{ûx,(-11),max(n)} along each scan line estimated by the 
estimators given by (19) and (25), respectively, with 4 
different sizes of kernels used for calculating 
correlation function γ(Δm; m; n) defined by (14). The 
dashed lines in Fig. 7 show the actual assigned 
maximum lateral displacements. In calculation of the 
correlation function, 2-D kernels were used, the axial 
size of the kernel being fixed to be the optimum value 
(0.5 μs) determined in [32], and the lateral size of a 
kernel being changed. In Figs. 7(b), 7(c), 7(d), and 7(e), 
the lateral sizes of kernels were set at 0.6 mm (Mc = 2), 
1.2 mm (Mc = 4), 2.4 mm (Mc = 8), and 3.6 mm (Mc = 
12), respectively. As shown in Fig. 7, standard 
deviations were reduced by the estimator consisting of 
3 correlation functions given by (25). 

Fig. 8 shows rms errors of the estimated lateral 
displacements obtained by the estimator given by (19) 
from the actual displacement, where the errors were 
evaluated from all the estimates except for those 
obtained at 10 scan lines at each edge of the scanned 
region because the estimates at these scan lines were 
influenced by the shape of the Tukey window (not flat). 
As shown in Fig. 8, the errors were reduced by 
increasing the size of the correlation kernel, and similar 
errors resulted from the kernel sizes greater or equal to 
2.5 mm. 
 
3.2 Comparison with Results Obtained by the 
Lateral Modulation Method 
 
Fig. 9(a) shows RF echoes from the phantom obtained 
by the lateral modulation method (in-phase 
beamformer), and Fig. 9(b) shows the lateral profiles of 
RF echoes at a depth indicated by the arrow in Fig. 9(a) 
obtained by in-phase and quadrature beamformers. As 
in the displacement estimation by the proposed method, 
changes in the phases of complex signals {g(x; n)} 
obtained by in-phase and quadrature beamformers were 
estimated by the correlation technique described in [29] 
to obtain lateral displacements {ux(n)} at 20 points of 
interest assigned along each scan line at axial intervals 
of 50 μm.  

As in Section III-A, the use of different lateral sizes 
of kernels used for calculation of correlation functions 
was examined. Lateral displacements estimated by 
applying the motion estimator in [29] to complex 
signals {g(x; n)} obtained by the lateral modulation 
method are shown in Fig. 10(1). In Figs. 10(1-a), (1-b), 
(1-c), and (1-d), lateral displacements {ux(n)} were 
estimated using kernel sizes of 0.6 mm (Mc = 2), 1.2 
mm (Mc = 4), 2.4 mm (Mc = 8), and 3.6 mm (Mc = 12), 
respectively. As in Fig. 10(1), lateral displacements 
obtained by applying the proposed motion estimator to 

{g(x; n)} are shown in Fig. 10(2) for different 
correlation kernel sizes. There were no improvements 
by using the proposed motion estimator together with 
the lateral modulation method. As shown in Fig. 11, 
rms errors of the lateral displacements obtained by the 
motion estimator in [29] were calculated from all the 
estimates shown in Fig. 10(1). 
 

 
 

Fig. 5. Radio frequency echo from a fine wire obtained 
by the lateral modulation method. (a) Radio frequency 
echo Re{g(x; n)} obtained by inphase receive 
beamforming, where Re{·} means the real part. (b) 
Lateral profiles at a depth indicated by the arrow in (a) 
obtained by in-phase and quadrature receive 
beamforming. (c) Magnitude of spectrum of the echo 
signal Re{g(x; n)} shown in (a) obtained by the 2-D 
Fourier transform. 
 
5. Discussion 
 

In this study, lateral displacements were estimated 
using the phases of complex signals generated by the 
Hilbert transform applied to ultrasonic echoes obtained 
by a conventional beamformer. The phase shift due to 
the lateral displacement was estimated by the 
conventional correlation technique, and a larger 
correlation kernel size in the lateral direction was 
found to achieve better accuracy. Errors in the 
estimated lateral displacements were reduced by 
increasing the kernel size, and similar errors were 
obtained with kernel sizes greater or equal to 2.5 mm, 
which roughly corresponds to 3 times the width at −20 
dB of the maximum lateral ultrasonic field (about 0.8 
mm). In a previous study, the estimation of axial 



displacements, the optimal kernel size in the axial 
direction corresponded to a pulse duration defined by 
the width at -20 dB of the envelope of an ultrasonic 
pulse (about 0.4 mm) [32]. In the axial displacement 
estimation, a smaller kernel relative to the point spread 
function (0.4 mm) yielded good estimates because 
there were 2 to 3 oscillations during pulse duration. On 
the other hand, there was no oscillation in the lateral 
direction (or more exactly, one oscillation because 
there was a peak in the lateral profile of the ultrasonic 
field). Therefore, a kernel size of about 3 times the 
point spread function was required to minimize the 
error. 
 

 
 
Fig. 6. (a) Radio frequency echoes from the phantom. 
(b) Tukey window used for frequency analysis of 
envelope signals of RF echoes. (c) Envelope signals of 
RF echoes. (d) Envelope signals after bias removal. (e) 
Imaginary and (f) real part of analytic signals {y(x; n)}. 
 

To estimate the artery-wall motion using the phases 
of ultrasonic echoes, it is necessary to avoid the 
aliasing effect. Therefore, the frame rate fFR should be 
kept as high as possible. In general, motion of the 
arterial wall in the radial direction is larger than that in 
the longitudinal direction, and the oscillation frequency 
in the axial direction ( = radial direction) is higher than 
that in the lateral direction ( = longitudinal direction). 
Therefore, the aliasing limit for the radial motion ( = 
axial motion) should be considered. 

Basically, using the change in the axial phase Δφ, 
the axial velocity va is estimated as follows [33], [35]: 
 

,
π4
φ

FR
0

0 f
f

cva
Δ

=                                                      (27) 

 
where c0 and f0 are the speed of sound and the center 
frequency of ultrasound, respectively. In addition, a 
typical maximal velocity of the carotid arterial wall in 
the radial direction is about 10 mm/s. The frame rate 
required for the measurement of the axial motion at 10 
mm/s is obtained by substituting va = 10 mm/s, Δφ = π 
rad, c0 = 1500 m/s, and f0 = 10 MHz into (27) as 

follows: fFR = 4 × (10 × 10−3) × (10 × 106) / 1500 ≈ 267 
Hz. To achieve a frame rate higher than 267 Hz at a 
fixed pulse repetition frequency of 13156 Hz, the 
number of scan lines was reduced to 46 (this is the 
lowest available number of scan lines of the employed 
ultrasonic equipment). 

As can be seen in Fig. 8, there is a trade-off between 
the accuracy and the kernel size (spatial resolution). 
When we want to estimate the global motion of an 
object, a large kernel can be used for higher accuracy. 
On the other hand, it is necessary to use a smaller 
kernel to obtain the spatial distribution of lateral 
displacement, although the accuracy will be degraded. 
Therefore, the method should be optimized depending 
on the purposes, for example, a greater number of 
correlation functions in an estimator would reduce 
standard deviations, as shown in Fig. 7, at the expense 
of computational efficiency. In addition, further 
improvements would be required to achieve better 
accuracy with a smaller kernel. In this study, a linear 
relationship between the lateral displacement and the 
change in the phase of the complex signal obtained by 
the Hilbert transform was assumed. Fig. 12(a) shows a 
B-mode image of a fine wire (same as that in Fig. 5), 
and Fig. 12(b) shows a lateral profile of envelopes of 
RF echoes at a depth indicated by the arrow in Fig. 
12(a). By applying the Fourier transform to the lateral 
profile shown in Fig. 12(b), a power spectrum, which is 
shown by the solid line in Fig. 12(c), was obtained. As 
shown by the solid line in Fig. 12(c), in general, the 
direct current component is largest (central spatial 
frequency is zero). Therefore, it is difficult to use the 
lateral phase with conventional beamformers. The 
dashed line in Fig. 12(c) shows a power spectrum 
obtained by applying the Fourier transform to the 
lateral profile after removing the direct current 
component based on (26). In this case, the power 
spectrum is largest at a certain spatial frequency (≠ 0), 
and it can be considered that the lateral profile is 
fluctuating at the central spatial frequency (≠ 0), as in 
the lateral modulation method. Therefore, a linear 
relationship was assumed in the present paper. In 
addition, correlation functions in a range from -1 to 1, 
which corresponded to a range from -150 μm to 150 
μm in the lateral direction were used for estimation of 
lateral displacements. This region is much smaller than 
the size of the width at -20 dB of the maximum lateral 
ultrasonic field. Therefore, the assumption of the linear 
relationship between the change in the lateral phase 
and the lateral displacement in such small range was 
considered to be appropriate, even when the overall 
relationship was not perfectly linear. To use a greater 
number of correlation functions, identification of a 
better function describing this relationship would be 
required. 

In the present study, although it was assumed that 
there was no deformation, the proposed method could 
estimate the lateral displacements of a phantom under a 
specific degree of deformation. However, a method, in 
which the distortion of r(x; n) due to deformation of an 
object is taken into account, should be developed to 



improve the accuracy, and such method should be 
validated under the existence of various degrees of 
deformation. 

In the present study, the results obtained by the 
proposed method were compared with those obtained 
by the lateral modulation method. The results obtained 
by the lateral modulation method with the motion 
estimator described in [29] were worse than those 
obtained by the proposed method, and the combination 
of the lateral modulation method with the motion 
estimator proposed in the present paper did not achieve 
any improvements. It could be considered from these 
results that some optimization might be necessary to 
obtain correctly modulated fields. Therefore, it cannot 
be concluded at present that the proposed method is 
better than the lateral modulation method. Nevertheless, 
the proposed method would be useful because it can be 
applied to the ultrasonic echoes obtained by 
conventional beamformers. 
 

 
 
Fig. 7. Means and standard deviation of lateral 
displacements obtained by the estimators given by (1) 
Eq. (19) and (2) Eq. (25). (a) Tukey window used in 
the Hilbert transform. Lateral displacements estimated 
by the proposed method with correlation kernel sizes of 
(b) 0.6 mm, (c) 1.2 mm, (d) 2.4 mm, and (e) 3.6 mm. 
The 3 horizontal dashed lines in each figure (b)–(e) 
show the actual assigned displacements. 
 
5. Conclusion 
 
In this study, a method was developed to estimate 
lateral displacements using the lateral phase, which can 
be applied to ultrasonic echoes obtained by a 
conventional beamformer. In the proposed method, 
complex signals were generated by the Hilbert 
transform, and the phase shift due to the lateral 

displacement was estimated by correlation-based 
estimators. The proposed method was validated using a 
cylindrical phantom mimicking an artery. As a result, 
the lateral displacements could be measured with an 
error of 13.5% of the true displacement of 0.5 mm, and 
the proposed method would be useful because it can be 
applied to ultrasonic echoes obtained by conventional 
beamformers. 
 

 
 

Fig. 8. Root mean square errors of lateral 
displacements {ux,(0,1)(n)} obtained by the proposed 
estimator given by (19) are plotted as a function of 
correlation kernel size in the lateral direction. The 3 
curves show the errors in cases of actual lateral 
displacements of 0.1, 0.25, and 0.5 mm. 
 
 

 
 

Fig. 9. Radio frequency echo from the phantom 
obtained by the lateral modulation method. (a) Radio 
frequency echo Re{g(x; n)} obtained by in-phase 
receive beamforming. (b) Lateral profiles of {g(x; n)} 
at a depth indicated by the arrow in (a) obtained by in-
phase and quadrature receive beamforming. 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 10. Means and standard deviations of lateral 
displacements obtained by the lateral modulation 
method with (1) motion estimator given in [29] and (2) 
that given by (19). Means and standard deviations 
obtained with correlation kernel sizes of (a) 0.6 mm, (b) 
1.2 mm, (c) 2.4 mm, and (d) 3.6 mm in the lateral 
direction. The 3 horizontal dashed lines in each figure 
show the actual assigned displacements. 
 
 
 
 
 
 
 
 

 
 
Fig. 11. Root mean square errors of lateral displacements 
estimated by the lateral modulation method with the 
motion estimator in [29] are plotted as a function of 
correlation kernel size in the lateral direction. The 3 
curves show the errors in cases of actual lateral 
displacements of 0.1, 0.25, and 0.5 mm. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
Fig. 12. (a) B-mode image of a fine wire obtained by a 
conventional beamformer. (b) Lateral profile of 
envelopes of received ultrasonic RF echoes at a depth 
indicated by the arrow in (a). (c) Power spectra of lateral 
profiles of envelopes. The solid line shows power 
spectrum of the envelope shown in (b). The dashed line 
shows power spectrum of the envelope that was obtained 
by removing the direct current component from (b) 
based on (26). 
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