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is relaxed as a result of the response to the produced 
NO. This function is important for maintaining the 
homeostasis of the vascular system. Smooth muscle 
cells in the media are classified into two types with 
different functionalities [3]. The composite type is 
proliferative, and the contractional type contracts and 
relaxes as responses to chemical and mechanical 
stimuli. 

When the blood vessel is initially formed, smooth 
muscle cells change their type from composite to 
contractional and control blood flow and blood 
pressure. On the other hand, after the vascular system 
is established, smooth muscle cells change their 
characteristics from contractional to composite owing 
to atherosclerosis. The composite type is related to the 
growth factor and accelerates the migration of smooth 
muscle cells to the intimal layer. Therefore, as 
described above, the evaluation of the endothelial 
function and characteristics of smooth muscle cells is 
important for the early diagnosis of atherosclerosis. 

For the evaluation of the endothelial function, there 
is a conventional technique of measuring the transient 
change in the inner diameter of the brachial artery 
caused by flow-mediated dilation (FMD) after the 
release of avascularization [4]. For a more sensitive 
and regional evaluation, we developed a method of 
directly measuring the change in the elasticity of the 
intima–media region due to FMD [5]. 

We propose a method for the evaluation of FMD, 
which was previously applied to the measurement of 
the radial artery. There is an inversely proportional 
relationship between the percent change in inner 
diameter due to FMD and that in the inner diameter of 
the artery at rest because the flow velocity, which 
affects the shear stress, is inversely proportional to the 
square of the inner diameter when the pressure and 
flow volume are constant [6]. Additionally, the blood 
pressure (stress) waveform can be continuously 
measured in the radial artery, together with the minute 
change in thickness (radial strain), which is measured 
using the ultrasonic phased tracking method [7]. From 
such measurements, we could determine the stress-
strain relationship during each heartbeat [8]. Therefore, 
the radial artery would be a more suitable site for the 
measurement of FMD. 

In this study, from the stress-strain relationship 
during each heartbeat, the viscoelasticity of the intima–
media region was estimated using the least-squares 
method, and the transient change in viscoelasticity due 
to FMD was estimated. In addition, the viscoelasticity 
at rest was measured for 10 min to evaluate the 
variance in measurements [9]. 

 
1.2. Evaluation of red blood cell aggregation 

Medical ultrasound is clinically used to make a 
diagnosis for various organs, and because it is 
noninvasive and relatively stress free for patients, it can 
be repeatedly employed to confirm time-dependent 
changes. Ultrasound B-mode imaging is widely used 
for the morphological diagnosis of the arterial wall. In 
addition, methods for evaluating the viscoelasticity of 
the arterial wall have recently been developed [8,10] 

because the mechanical properties of the arterial wall 
are related to the atherosclerotic change. 

The condition of blood is an important factor related 
to various circulatory diseases. However, conventional 
ultrasonic images cannot be used to evaluate the 
condition of the blood in the blood vessel because red 
blood cells (RBCs), which are the main components of 
blood, are much smaller than the wavelength of 
ultrasound and the variation in acoustic impedance 
between blood plasma and RBCs is very small. 
However, the condition of blood is related to various 
circulatory diseases, and the evaluation and diagnosis 
of such a condition are important for the detection of a 
disease at an early stage. 

As one of the determinants of blood viscosity, RBC 
aggregation plays an important role in blood flow 
rheology. The adventitia of healthy RBCs is charged 
with negative electricity, which impedes RBC 
adherence by electrostatic repulsion [11]. However, 
owing to increases in protein and saturated fatty acid 
levels in blood, such repulsion between RBCs is 
gradually weakened and RBC aggregation is induced 
by the overlapping of RBCs. The main function of 
blood is to transport nutrients, oxygen, and essential 
elements to tissues and to remove metabolic products, 
such as carbon dioxide and lactic acid, produced by 
those tissues [12]. However, RBC aggregation 
significantly degrades this function because of the 
decrease in the superficial area used to transport 
materials. Excessive RBC aggregation may promote 
various circulatory diseases, such as atherosclerosis, 
hypercholesterolemia, diabetes, thrombosis, and so on 
[13-16]. Therefore, the assessment of RBC aggregation 
is essential [17]. The micro channel array flow analyzer 
(MCFAN) method is a recently developed technique 
for the assessment of RBC aggregation by determining 
whether red blood cells pass through gaps in silicon 
substrates simulating blood capillaries [18]. However, 
this method is invasive and is not quantitative. The 
present study was conducted to establish a noninvasive 
quantitative method for the assessment of RBC 
aggregation [19]. 

 
 
2. Materials and Methods 
2.1. Measurement of viscoelasticity of radial 
arterial wall 
2.1.1. Measurement of minute change in 
thickness of arterial wall for measurement of 
stress-strain relationship 
 

The arterial wall is composed of three layers, namely, 
intima, media and adventitia. The smooth muscle, 
which constructs the media, is the main source of the 
viscoelasticity of the vessel wall. Therefore, the 
dilation and contraction of the artery depend on the 
characteristics of the media. The detailed analysis of 
the change in the viscoelasticity of the arterial wall due 
to FMD requires the in vivo measurement of the stress-
strain relationship, which has not been measured 
noninvasively thus far. 
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