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combine individual small sectors into a large field of 
view [11]. In this method, the lateral size of a sector 
(corresponding to the number of scan lines), which is 
obtained in one acquisition, is narrowed to achieve a 
higher frame rate of about 500 Hz. By measuring a 
number of small sectors during the corresponding 
number of cardiac cycles, the measured small sectors 
are combined into a large sector format based on ECG-
gating. Although this method achieves a frame rate of 
about 500 Hz, which is much higher than the 
conventional frame rate of several tens of Hertz, 
measurements for a number of cardiac cycles are 
required. 

To achieve a high frame rate of about 500 Hz 
without ECG-gating, we used sparse sector scanning, 
in which the number of scan lines was decreased to 
about 10 [12]. In this method, the angle intervals 
between scan lines are increased to obtain a large 
lateral field of view with a small number of scan lines. 
Therefore, the lateral image resolution is significantly 
degraded. 

The above-mentioned methods are based on 
conventional beamforming. Therefore, they need to 
sacrifice the density of scan lines or field of view to 
achieve a high frame rate. To overcome this problem, 
parallel receive beamforming with a wide transmit 
beam have been developed13) to illuminate a wider 
region by one transmission to reduce the number of 
transmissions. This could be done in the cited study by 
conventional transmit beamforming (focusing at a 
certain range distance) because such beams are wide in 
the region shallower than the focal distance (between 
the transducer surface and the focal point). Using this 
method, real-time 3D imaging of the heart was realized 
at a frame rate of a few tens of Hertzes. However, the 
width of the transmit beam is narrower than the size of 
an aperture, and this would limit the number of 
receiving beams created by one transmission. 

Lu et al. proposed an alternative imaging method 
using unfocused but non-diverging transmit beam, 
namely, limited diffraction beam [14-17]. Unfocused 
beams achieved a wider beam width, and non-
diverging beams used in these cited studies prevent the 
insonified energy from being spread to assure the 
required penetration depth. However, the width of a 
non-diverging beam is still limited by the size of an 
aperture. 

On the other hand, diverging beams have potential to 
enlarge the region illuminated by one transmission. In 
synthetic aperture ultrasound imaging, a single element 
or a small number of elements are used to produce 
spherical waves [21,22]. Although a spherical wave 
can illuminate a wide area by one transmission, 
acoustic pressure significantly decreases with 
propagation distance, and the signal-to-noise ratio 
(SNR) of the received signal would be significantly 
reduced. 

In the present study, the feasibility of a diverging 
transmit beam in ultrasonic imaging with parallel 
beamforming [18-20] was investigated to achieve a 
frame rate above 200 Hz with an adequate lateral 
spatial resolution, a wider field of view, and no ECG-

gating. Diverging waves can be produced by using all 
transducer elements in an ultrasonic array probe to 
obtain ultrasonic echoes with better SNR.23) The 
width of diverging angle was limited to suppress the 
decay of acoustic pressure due to the propagation 
distance. Furthermore, the diverging beam was steered 
to obtain an ultrasonic image of a heart with a full 
angle of 90 degrees with a limited beam width. To 
increase the frame rate, the number of transmits was 
reduced to 15 with a transmit angular interval of 6 
degrees, and 16 receiving beams were created in each 
transmit to obtain the number and density of scan lines 
which were same as those realized by conventional 
sector scanning. The spatial resolution of the proposed 
imaging method was evaluated by basic experiments 
using fine nylon wires. Furthermore, B-mode images of 
a heart of a 23-year-old healthy male measured by the 
proposed method were obtained. 
 
2. Materials and Methods 
2.1. Mathematical description of ultrasound 
waves emitted from transducer elements 
 

Let us describe ultrasound waves emitted from 
transducer elements of a phased array ultrasonic probe. 
To achieve a frame rate over 200 Hz under a typical 
pulse repetition frequency of 5 kHz (realized by the 
ultrasound system used in the present study under a 
setting of an observation range of 130 mm), the 
number of transmits should be less than 25. Therefore, 
in the present study, plane waves or diverging waves 
were transmitted in 15 directions {mΘ} (m = −7, −6, ·  ·  
·  , 0, 1, ·  ·  ·  , 7) with angular intervals of Θ = 6 degrees. 
The ultrasonic wave gi,m(p; t) at time t from the time of 
transmission, which is emitted from the i-th transducer 
element (i = 0, 1, ·  ·  ·  , L − 1) in the m-th transmission 
and insonifies to a spatial point p = (r, θ), as shown in 
Fig. 1, is expressed as follows: ݃,ሺܘ; ሻݐ = ݏ ቀݐ − ߬୲,,ሺܘሻቁ,                           (2.1) 

where si(t) is the impulse response of the i-th 
transducer element, and τt,i,m(p) is a time delay due to 
propagation of an ultrasonic wave from the i-th 
element to the spatial point p. The time delay τt,i,m(p) of 
gi,m(p; t) is given by 
 ߬୲,,ሺܘሻ = ටమୡ୭ୱమఏାቄୱ୧୬ఏିቀିಽషభమ ቁ∆௫ቅమబ + ܶ,,,  (2.2) 

 
where Δx and c0 are the lateral pitch of transducer 
elements and speed of sound, respectively, and TTBF,i is 
the time delay applied to the i-th element by the 
transmit beamformer. 

To emit a plane wave at the steering angle of mΘ, 
TTBF,i,m should be given by 

 

்ܶி,, = ቐ ∙∆௫∙ୱ୧୬ሺሻబ 					݂݅	݉ ≥ 0,ሺିାଵሻ∙∆௫∙ୱ୧୬ሺሻబ 				݂݅	݉ < 0.          (2.3) 

                                               ( i = 0, 1, …, L-1) 
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