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Abstract. Assume that each vertex of a graph G is assigned a nonneg-
ative integer weight and that l and u are nonnegative integers. One wish
to partition G into connected components by deleting edges from G so
that the total weight of each component is at least l and at most u. Such
an “almost uniform” partition is called an (l, u)-partition. We deal with
three problems to find an (l, u)-partition of a given graph. The minimum
partition problem is to find an (l, u)-partition with the minimum num-
ber of components. The maximum partition problem is defined similarly.
The p-partition problem is to find an (l, u)-partition with a fixed number
p of components. All these problems are NP-complete or NP-hard even
for series-parallel graphs. In this paper we show that both the minimum
partition problem and the maximum partition problem can be solved in
time O(u4n) and the p-partition problem can be solved in time O(p2u4n)
for any series-parallel graph of n vertices. The algorithms can be easily
extended for partial k-trees, that is, graphs with bounded tree-width.

1 Introduction

Let G = (V, E) be an undirected graph with vertex set V and edge set E, and
let |V | = n. Assume that each vertex v ∈ V is assigned a nonnegative integer
ω(v), called the weight of v. Let l and u be nonnegative integers, called the lower
bound and upper bound on component size, respectively. We wish to partition G
into connected components by deleting edges from G so that the total weights
of all components are almost uniform, that is, the sum of weights of all vertices
in each component is at least l and at most u for some bounds l and u with
small u − l. We call such an almost uniform partition an (l, u)-partition of G.
Figures 1(a) and (b) illustrate two (10, 20)-partitions of the same graph, where
each vertex is drawn by a circle, the weight of each vertex is written inside
the circle, and the deleted edges are drawn by dotted lines. In this paper we
deal with three partition problems to find an (l, u)-partition of a given graph
G. The minimum partition problem is to find an (l, u)-partition of G with the
minimum number of components. The minimum number is denoted by pmin(G).
The maximum partition problem is defined similarly. The p-partition problem
is to find an (l, u)-partition of G with a fixed number p of components. The
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Fig. 1. (a) Solution for the minimum partition problem, and (b) solution for the max-
imum partition problem, where l = 10 and u = 20.

(10, 20)-partition with four components in Fig. 1(a) is a solution for the minimum
partition problem, and hence pmin(G) = 4 for the graph G in Fig. 1(a). The
(10, 20)-partition with six components in Fig. 1(b) is a solution for the maximum
partition problem.

The three partition problems often appear in many practical situations such
as the image processing [5, 7], the paging system of operation system [10], and
the political districting [3, 11]. Consider a map of a country, which is divided into
several regions. Let G be a dual graph of the map. Each vertex v of G represents
a region, and the weight ω(v) represents the number of voters in region v. Each
edge (u, v) of G represents the adjacency of the two regions u and v. For the
political districting, one wishes to divide the country into electoral zones. Each
zone must consist of connected regions, that is, the regions in each zone must
induce a connected subgraph of G. There must be an almost equal number of
voters in each zone, that is, the sum of ω(v) for all regions v in each zone is at
least l and at most u for some bounds l and u with small u − l. Such electoral
zoning corresponds to an (l, u)-partition of the plane graph G.

Two related problems have been studied for trees. One is to partition a tree
into the maximum number of subtrees so that the total weight of each subtree
is at least l [8]. The other is to partition a tree into the minimum number of
subtrees so that the total weight of each subtree is at most u [6]. Both can be
solved for trees in linear time. Our three partition problems are generalizations
of these problems. One may expect that there would exist efficient algorithms
for the three partition problems on trees, but our problems are more difficult
than the two problems in [6, 8], except for paths; all the three partition problems
can be solved for paths in linear time [7].

An NP-complete problem, called the set partition problem [4], can be easily
reduced in linear time to our problems for a complete bipartite graph K2,n−2,
and K2,n−2 is a series-parallel graph. (A definition of a series-parallel graph will
be given in Section 2.) Therefore, the p-partition problem for general p is NP-
complete and both the minimum partition problem and the maximum partition
problem for general l and u are NP-hard even for series-parallel graphs. Hence,
it is very unlikely that the three partition problems can be solved for series-
parallel graphs in polynomial time, although a number of combinatorial problems
including many NP-complete problems on general graphs can be solved for series-
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parallel graphs and partial k-trees in polynomial time or even in linear time [1, 2,
9]. One can also observe from the reduction above that, for any ε > 0, there is no
polynomial-time ε-approximation algorithm for the minimum partition problem
or the maximum partition problem on series-parallel graphs unless P = NP.

In this paper we first obtain pseudo-polynomial-time algorithms to solve the
three partition problems for series-parallel graphs. More precisely, we show that
both the minimum partition problem and the maximum partition problem can
be solved in time O(u4n) and hence in time O(n) for any bounded constant u,
and that the p-partition problem can be solved in time O(p2u4n). We then show
that our algorithms can be easily extended for partial k-trees, that is, graphs
with bounded tree-width [1, 2]. (A definition of a partial k-tree will be given in
Section 5.)

2 Terminology and Definitions

In this section we give some definitions.
A (two-terminal ) series-parallel graph is defined recursively as follows [9]:

(1) A graph G of a single edge is a series-parallel graph. The ends of the
edge are called the terminals of G and denoted by s(G) and t(G). (See
Fig. 2(a).)

(2) Let G′ be a series-parallel graph with terminals s(G′) and t(G′), and
let G′′ be a series-parallel graph with terminals s(G′′) and t(G′′).

(a) A graph G obtained from G′ and G′′ by identifying vertex t(G′)
with vertex s(G′′) is a series-parallel graph, whose terminals are
s(G) = s(G′) and t(G) = t(G′′). Such a connection is called a
series connection, and G is denoted by G = G′ • G′′. (See
Fig. 2(b).)

(b) A graph G obtained from G′ and G′′ by identifying s(G′)
with s(G′′) and identifying t(G′) with t(G′′) is a series-parallel
graph, whose terminals are s(G) = s(G′) = s(G′′) and t(G) =
t(G′) = t(G′′). Such a connection is called a parallel connection,
and G is denoted by G = G′ ‖ G′′. (See Fig. 2(c).)

The terminals s(G) and t(G) of G are often denoted simply by s and t, respec-
tively. Since we deal with the partition problems, we may assume without loss
of generality that G is a simple graph and hence G has no multiple edges.

s(G)
=s(G' )

t(G)
=t(G'' )

t(G' )

s(G'' )
G' G''

G''

G'
s(G)

=s(G' )
=s(G'')

t(G)
=t(G' )
=t(G'')

(a) (c)

s(G) t(G)

(b) 

Fig. 2. (a) A series-parallel graph of a single edge, (b) series connection, and (c) parallel
connection.
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A series-parallel graph G can be represented by a “binary decomposition
tree” [9]. Figure 3 illustrates a series-parallel graph G and its binary decom-
position tree T . Labels s and p attached to internal nodes in T indicate series
and parallel connections, respectively. Nodes labeled s and p are called s- and
p-nodes, respectively. Every leaf of T represents a subgraph of G induced by
a single edge. Each node v of T corresponds to a subgraph Gv of G induced
by all edges represented by the leaves that are descendants of v in T . Thus Gv

is a series-parallel graph for each node v of T , and G = Gr for the root r of
T . Since a binary decomposition tree of a given series-parallel graph G can be
found in linear time [9], we may assume that a series-parallel graph G and its
binary decomposition tree T are given. We solve the three partition problems
by a dynamic programming approach based on a decomposition tree T .

s(G) t (G)

p

s s

p

s

(s,v2) (v2 ,v3)

(s,v3)
(v3 , t) (s ,v1) (v1 , t)

v2 v3

v1

(a)  G (b)  T

root r

Fig. 3. (a) A series-parallel graph G, and (b) its binary decomposition tree T .

3 Minimum and Maximum Partition Problems

In this section we have the following theorem.
Theorem 1. Both the minimum partition problem and the maximum partition
problem can be solved for any series-parallel graph G in time O(u4n), where n
is the number of vertices in G and u is the upper bound on component size.

In the remainder of this section we give an algorithm to solve the minimum
partition problem as a proof of Theorem 1, because the maximum partition
problem can be similarly solved. We indeed show only how to compute the
minimum number pmin(G). It is easy to modify our algorithm so that it actually
finds an (l, u)-partition having the minimum number pmin(G) of components.

Every (l, u)-partition of a series-parallel graph G naturally induces a parti-
tion of its subgraph Gv for a node v of a decomposition tree T of G. The induced
partition is not always an (l, u)-partition of Gv but is either a “connected parti-
tion” or a “separated partition” of Gv, which are illustrated in Fig. 4 and will be
formally defined later. Roughly speaking, two functions f(Gv, x) and h(Gv, x, y),
0 ≤ x, y ≤ u, represent the minimum number of components without terminals
in connected partitions and separated partitions of Gv, respectively, and x and
y represent the total weight of non-terminal vertices in a component with a ter-
minal. Our idea is to compute f(Gv, x) and h(Gv, x, y) from leaves v to the root
r of T by means of dynamic programming.
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Fig. 4. (a) A connected partition, and (b) a separated partition.

We now formally define the connected partition and the separated partition
of a series-parallel graph G = (V, E). Let P = {P1, P2, · · · , Pr} be a partition
of vertex set V of G into r nonempty subsets P1, P2, · · · , Pr for some integer
r ≥ 1. Thus |P| = r. The partition P of V is called a partition of G if Pi induces
a connected subgraph of G for each index i, 1 ≤ i ≤ r. For a set P ⊆ V , we
denote by ω(P ) the total weight of vertices in P , that is, ω(P ) =

∑
v∈P ω(v).

Let ωst(G) = ω(s) + ω(t). We call a partition P of G a connected partition if P
satisfies the following two conditions (see Fig. 4(a)):

(a) there exists a set Pst ∈ P such that s, t ∈ Pst and ω(Pst) ≤ u; and
(b) l ≤ ω(P ) ≤ u for each set P ∈ P − {Pst}.

Note that the equation l ≤ ω(Pst) does not necessarily hold for Pst. For a
connected partition P , we always denote by Pst the set in P containing both s
and t. A partition P of G is called a separated partition if P satisfies the following
two conditions (see Fig. 4(b)):

(a) there exist two distinct sets Ps, Pt ∈ P such that s ∈ Ps, t ∈ Pt,
ω(Ps) ≤ u, and ω(Pt) ≤ u; and

(b) l ≤ ω(P ) ≤ u for each set P ∈ P − {Ps, Pt}.
Note that the equations l ≤ ω(Ps) and l ≤ ω(Pt) do not always hold for Ps and
Pt. For a separated partition P , we always denote by Ps the set in P containing
s and by Pt the set in P containing t.

We then formally define a function f(G, x) for a series-parallel graph G and
an integer x, 0 ≤ x ≤ u, as follows:

f(G, x) = min{q ≥ 0 | G has a connected partition P such that
x = ω(Pst) − ωst(G) and q = |P| − 1}. (1)

If G has no connected partition P such that ω(Pst) − ωst(G) = x, then let
f(G, x) = +∞. We now formally define a function h(G, x, y) for a series-parallel
graph G and a pair (x, y), 0 ≤ x, y ≤ u, as follows:

h(G, x, y) = min{q ≥ 0 | G has a separated partition P such that
x = ω(Ps) − ω(s), y = ω(Pt) − ω(t) and q = |P| − 2}. (2)

If G has no separated partition P such that ω(Ps)−ω(s) = x and ω(Pt)−ω(t) =
y, then let h(G, x, y) = +∞.
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Our algorithm computes f(Gv, x) and h(Gv, x, y) for each node v of a binary
decomposition tree T of a given series-parallel graph G from leaves to the root
r of T by means of dynamic programming. Since G = Gr, one can compute the
minimum number pmin(G) of components from f(G, x) and h(G, x, y) as follows:

pmin(G) = min
{
min{f(G, x) + 1 | l ≤ x + ωst(G) ≤ u},

min{h(G, x, y) + 2 | l ≤ x + ω(s) ≤ u, l ≤ y + ω(t) ≤ u}
}
. (3)

Note that pmin(G) = +∞ if G has no (l, u)-partition.
We first compute f(Gv, x) and h(Gv, x, y) for each leaf v of T , for which the

subgraph Gv contains exactly one edge. For x = 0

f(Gv, 0) = 0, (4)

and for (x, y) = (0, 0)

h(Gv, 0, 0) = 0. (5)

For each integer x, 1 ≤ x ≤ u,

f(Gv, x) = +∞, (6)

and for each pair (x, y), 1 ≤ x, y ≤ u,

h(Gv, x, y) = +∞. (7)

By Eqs. (4)–(7) one can compute f(Gv, x) in time O(u) for each leaf v of T and
all integers x ≤ u, and compute h(Gv, x, y) in time O(u2) for each leaf v and all
pairs (x, y) with x, y ≤ u. Since G is a simple series-parallel graph, the number
of edges in G is at most 2n − 3 and hence the number of leaves in T is at most
2n − 3. Thus one can compute f(Gv, x) and h(Gv, x, y) for all leaves v of T in
time O(u2n).

We next compute f(Gv, x) and h(Gv, x, y) for each internal node v of T
from the counterparts of the two children of v in T . We first consider a parallel
connection. Let Gv = G′ ‖ G′′, and let s = s(Gv) and t = t(Gv). (See Figs. 2(c)
and 5.)

We first explain how to compute h(Gv, x, y). The definitions of a separated
partition and h(G, x, y) imply that if ω(Ps) = x + ω(s) > u or ω(Pt) = y +
ω(t) > u then h(Gv, x, y) = +∞. One may thus assume that x + ω(s) ≤ u
and y + ω(t) ≤ u. Then every separated partition P of Gv can be obtained by
combining a separated partition P ′ of G′ with a separated partition P ′′ of G′′

as illustrated in Fig. 5(a). We thus have

h(Gv, x, y) = min{h(G′, x′, y′) + h(G′′, x − x′, y − y′) | 0 ≤ x′, y′ ≤ u}. (8)

We next explain how to compute f(Gv, x). If ω(Pst) = x + ωst(Gv) > u,
then f(Gv, x) = +∞. One may thus assume that x + ωst(Gv) ≤ u. Then every
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Fig. 5. The combinations of a partition P ′ of G′ and a partition P ′′ of G′′ for a partition
P of Gv = G′ ‖ G′′.

connected partition P of Gv can be obtained by combining a partition P ′ of G′

with a partition P ′′ of G′′, as illustrated in Figs. 5(b), (c) and (d). There are the
following three Cases (a)–(c), and we define three functions fa(Gv, x), f b(Gv, x)
and f c(Gv, x) for the three cases, respectively.

Case (a): both P ′ and P ′′ are connected partitions. (See Fig. 5(b).)
Let

fa(Gv, x) = min{f(G′, x′) + f(G′′, x − x′) | 0 ≤ x′ ≤ u}. (9)

Case (b): P ′ is a separated partition, and P ′′ is a connected partition. (See
Fig. 5(c).)

Let

f b(Gv, x) = min{h(G′, x′, y′) + f(G′′, x − x′ − y′) | 0 ≤ x′, y′ ≤ u}. (10)

Case (c): P ′ is a connected partition, and P ′′ is a separated partition. (See
Fig. 5(d).)

Let

f c(Gv, x) = min{f(G′, x − x′′ − y′′) + h(G′′, x′′, y′′) | 0 ≤ x′′, y′′ ≤ u}. (11)
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From fa, f b and f c above, one can compute f(Gv, x) as follows:

f(Gv, x) = min{fa(Gv, x), f b(Gv, x), f c(Gv, x)}. (12)

By Eq. (8) one can compute the function h(Gv, x, y) for all pairs (x, y), 0 ≤
x, y ≤ u, in time O(u4), and by Eqs. (9)–(12) one can compute the function
f(Gv, x) for all integers x, 0 ≤ x ≤ u, in time O(u3). Thus one can compute the
functions f(Gv, x) and h(Gv, x, y) for each p-node v of T in time O(u4).
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Fig. 6. The combinations of a partition P ′ of G′ and a partition P ′′ of G′′ for a partition
P of Gv = G′ • G′′.

We next consider a series connection. Let Gv = G′ • G′′, and let w be the
vertex of G identified by the series connection, that is, w = t(G′) = s(G′′). (See
Figs. 2(b) and 6.)

We first explain how to compute f(Gv, x). If x+ωst(Gv) > u, then f(Gv, x) =
+∞. One may thus assume that x+ωst(Gv) ≤ u. Then every connected partition
P of Gv can be obtained by combining a connected partition P ′ of G′ with a
connected partition P ′′ of G′′ as illustrated in Fig. 6(a). We thus have

f(Gv, x) = min{f(G′, x′) + f(G′′, x′′) | 0 ≤ x′, x′′ ≤ u,

x′ + x′′ + ω(w) = x}. (13)

We next explain how to compute h(Gv, x, y). If x+ω(s) > u or y +ω(t) > u,
then h(Gv, x, y) = +∞. One may thus assume that x+ ω(s) ≤ u and y + ω(t) ≤
u. Then every separated partition P of Gv can be obtained by combining a
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partition P ′ of G′ with a partition P ′′ of G′′, as illustrated in Figs. 6(b), (c) and
(d). There are the following three Cases (a)–(c), and we define three functions
ha(Gv, x, y), hb(Gv, x, y) and hc(Gv, x, y) for the three cases, respectively.

Case (a): P ′ is a connected partition, and P ′′ is a separated partition. (See
Fig. 6(b).)

Let

ha(Gv, x, y) = min{f(G′, x′) + h(G′′, x′′, y) | 0 ≤ x′, x′′ ≤ u,

x′ + x′′ + ω(w) = x}. (14)

Case (b): P ′ is a separated partition, and P ′′ is a connected partition. (See
Fig. 6(c).)

Let

hb(Gv, x, y) = min{h(G′, x, y′) + f(G′′, x′′) | 0 ≤ y′, x′′ ≤ u,

y′ + x′′ + ω(w) = y}. (15)

Case (c): both P ′ and P ′′ are separated partitions. (See Fig. 6(c).)
Let

hc(Gv, x, y) = min{h(G′, x, y′) + h(G′′, x′′, y) + 1 | 0 ≤ y′, x′′ ≤ u,

l ≤ y′ + x′′ + ω(w) ≤ u}. (16)

From ha, hb and hc above one can compute h(Gv, x, y) as follows:

h(Gv, x, y) = min{ha(Gv, x, y), hb(Gv, x, y), hc(Gv, x, y)}. (17)

By Eq. (13) one can compute the function f(Gv, x) for all integers x, 0 ≤
x ≤ u, in time O(u2), and by Eqs. (14)–(17) one can compute the function
h(Gv, x, y) for all pairs (x, y), 0 ≤ x, y ≤ u, in time O(u4). Thus one can compute
the functions f(Gv, x) and h(Gv, x, y) for each s-node v of T in time O(u4).

In this way one can compute the functions f(Gv, x) and h(Gv, x, y) for each
internal node v of T in time O(u4). Since T is a binary tree and has at most
2n − 3 leaves, T has at most 2n − 4 internal nodes. Since G = Gr for the root
r of T , one can compute the functions f(G, x) and h(G, x, y) in time O(u4n).
By Eq. (3) one can compute the minimum number pmin(G) of components in an
(l, u)-partition of G from the functions f(G, x) and h(G, x, y) in time O(u2). Thus
the minimum partition problem can be solved in time O(u4n). This completes
a proof of Theorem 1.

4 p-Partition Problem

In this section we have the following theorem.

Theorem 2. The p-partition problem can be solved for any series-parallel graph
G in time O(p2u4n), where n is the number of vertices in G, u is the upper bound
on component size, and p is the fixed number of components.
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The algorithm for the p-partition problem is similar to the algorithm for
the minimum partition problem in the previous section. So we present only an
outline.

For a series-parallel graph G and an integer q, 0 ≤ q ≤ p− 1, we define a set
F (G, q) of nonnegative integers x as follows:

F (G, q) = {x ≥ 0 | G has a connected partition P
such that x = ω(Pst) − ωst(G) and q = |P| − 1}.

For a series-parallel graph G and an integer q, 0 ≤ q ≤ p − 2, we define a set
H(G, q) of pairs of nonnegative integers x and y as follows:

H(G, q) = {(x, y) | G has a separated partition P such that
x = ω(Ps) − ω(s), y = ω(Pt) − ω(t) and q = |P| − 2}.

Clearly |F (G, q)| ≤ u + 1 and |H(G, q)| ≤ (u + 1)2.
We compute F (Gv, q) and H(Gv, q) for each node v of a binary decomposition

tree T of a given series-parallel graph G from leaves to the root r of T by means
of dynamic programming. Since G = Gr, the following lemma clearly holds.

Lemma 1. A series-parallel graph G has an (l, u)-partition with p components
if and only if the following condition (a) or (b) holds:

(a) F (G, p−1) contains at least one integer x such that l ≤ x+ωst(G) ≤ u;
and

(b) H(G, p − 2) contains at least one pair of integers (x, y) such that l ≤
x + ω(s) ≤ u and l ≤ y + ω(t) ≤ u.

One can compute in time O(p) the sets F (Gv, q) and H(Gv, q) for each leaf v
of T and all integers q(≤ p− 1), and compute in time O(p2u4) the sets F (Gv, q)
and H(Gv, q) for each internal node v of T and all integers q(≤ p − 1) from the
counterparts of the two children of v in T . Since G = Gr for the root r of T , one
can compute the sets F (G, p−1) and H(G, p−2) in time O(p2u4n). By Lemma 1
one can know from the sets in time O(u2) whether G has an (l, u)-partition with
p components. Thus the p-partition problem can be solved in time O(p2u4n).

5 Partial k-Trees

In this section we have the following theorem.

Theorem 3. The minimum and maximum partition problems can be solved in
time O(u2(k+1)n) and the p-partition problem can be solved in time O(p2u2(k+1)n)
for any partial k-trees, where k = O(1).

The algorithm for partial k-trees is similar to those for series-parallel graphs
in the previous sections. So we present only an outline of the algorithm for the
minimum partition problem.
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A graph G is a k-tree if either it is a complete graph on k vertices or it has a
vertex v whose neighbors induce a clique of size k and G−{v} is again a k-tree.
A graph is a partial k-tree if it is a subgraph of a k-tree. A series-parallel graph
is a partial 2-tree. A partial k-tree G can be decomposed into pieces forming a
tree structure with at most k + 1 vertices per piece. The tree structure is called
a binary decomposition tree T of G [1, 2]. Each node v of T corresponds to a set
V (v) of k + 1 or fewer vertices of G, and corresponds to a subgraph Gv of G.
For a series-parallel graph, it suffices to consider only two kinds of partitions, a
connected partition and a separated partition, while for a partial k-tree we have
to consider many kinds of partitions of Gv. Let π be the number of all partitions
of set V (v) into pairwise disjoint nonempty subsets. Then π ≤ (2k+1)k+1 = O(1)
since we assume k = O(1) in the paper. For a partial k-tree G, we consider π
kinds of partitions of Gv. Let Vi, 1 ≤ i ≤ π, be the ith partition of set V (v), let
ρ(i) be the number of subsets in the partition Vi, and let Vi = {V1, V2, · · · , Vρ(i)}.
Clearly 1 ≤ ρ(i) ≤ k+1. In every partition of Gv of the ith kind, its jth connected
component, 1 ≤ j ≤ ρ(i), contains all the vertices in the jth subset Vj(⊆ V (v))
in Vi. We consider a set of functions hi(Gv, x1, x2, · · · , xρ(i)), 1 ≤ i ≤ π, defined
similarly to Eqs. (1) and (2). Variable xj , 1 ≤ j ≤ ρ(i), represents the sum of
weights of all vertices in the jth component except for the vertices in Vj . Thus
0 ≤ xj ≤ u. One can observe that the set of functions for Gv for an internal
node v can be computed from the counterparts of the two children of v in T in
time O((u + 1)2(k+1)). Thus the set of functions for G can be computed in time
O((u + 1)2(k+1)n). The hidden coefficient in the complexity is π2(≤ 22(k+1)2).

6 Conclusions

In this paper we first obtained pseudo-polynomial-time algorithms for three par-
tition problems on series-parallel graphs. Both the minimum partition problem
and the maximum partition problem can be solved in time O(u4n), and hence
they can be solved in time O(n) if u = O(1). On the other hand, the p-partition
problem can be solved in time O(p2u4n). Thus these algorithms take polynomial
time if u is bounded by a polynomial in n.

We then showed that our algorithms for series-parallel graphs can be easily
extended for partial k-trees, that is, graphs of bounded tree-width. The ex-
tended algorithm takes time O(u2(k+1)n) for the minimum and maximum par-
tition problems, and takes time O(p2u2(k+1)n) for the p-partition problem.

We finally remark that, for ordinary trees, one can solve the minimum and
maximum partition problems in time O(u2n) and the p-partition problem in
time O(p2u2n) or O(nCp−1 + n).
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