

Invitation to Combinatorial Reconfiguration

Takehiro ITO

Tohoku University, Japan

CoRe 2017 --- January 23, 2017

Combinatorial Reconfiguration

asks the "reachability"/"connectivity" of the solution space.

Search Problem asks the existence of a feasible solution. solution space given path? given Reconfiguration Problem asks the reachability

between two given feasible solutions solution space

Enumeration Problem asks to **output** ALL feasible solutions

The concept of reconfiguration problems is located "<u>between</u>" standard search problems and enumeration problems.

Search Problem asks the existence of a feasible solution.

ex) SAT formula:
$$f = (x \lor \overline{y}) \land (\overline{x} \lor y \lor z) \land (\overline{y} \lor \overline{z})$$

Check if there exists at least one feasible solution (i.e., satisfiable truth assignment of f) from 2^n candidates of solutions for n variables.

Enumeration Problem asks to output ALL feasible solutions

ex) SAT formula:
$$f = (x \lor \overline{y}) \land (\overline{x} \lor y \lor z) \land (\overline{y} \lor \overline{z})$$

output <u>all</u> feasible solutions from 2^n candidates of solutions for n variables.

Combinatorial Reconfiguration

Combinatorial Reconfiguration

Reconfiguration Problem

asks the **reachability**

between two given feasible solutions Reconfiguration is a <u>decision</u> problem:

- simply output Yes/No
- actual reconfiguration sequence is not required

Indeed, there are examples such that a **shortest** reconfiguration sequence requires **super-polynomial** length!

Output the answer <u>without</u> constructing the solution space

Challenge!!

- solution space can be exponential size w.r.t. the input size
- but, evaluate the running time of algorithm w.r.t. the input size!

Motivations

[Puzzles]

- Sliding block puzzle
- Rubik cube
- 15 puzzle

R.A. Hearn, E.D. Demaine. Games, Puzzles, and Computation. A K Peters (2009)

[Power-supply network]

by operating switches, reconfigurable without causing any blackout?

[The Potts model in physics]

= Graph coloring reconfiguration (under Kempe change rule)

Adjacency relation

Example:

Solution space for SAT formula $f = \left(x \vee \overline{y}\right) \land \left(\overline{x} \vee y \vee z\right) \land \left(\overline{y} \vee \overline{z}\right)$

[SAT reconfiguration]

- feasible solutions: satisfiable truth assignments of f
- adjacency relation: flip of a single variable (Hamming distance one)

Independent set reconfiguration

[Independent set reconfiguration (Token Jumping)]

- feasible solutions: independent sets of size exactly k
- adjacency relation: move a single token

Independent set of a graph:

a vertex subset such that no two vertices are adjacent.

(We regard a token is placed on each vertex in an independent set.)

Independent set reconfiguration

[Independent set reconfiguration (Token Jumping)]

- feasible solutions: independent sets of size exactly k
- adjacency relation: move a single token

[Independent set reconfiguration (Token Sliding)]

- feasible solutions: independent sets of size exactly k
- adjacency relation: slide a single token to its neighbor along an edge

* The figure above is a no-instance for Token Sliding.

Reachability depends on the choice of adjacency relations. (= the structure of the solution space)

k-coloring reconfiguration

[*k*-coloring reconfiguration]

- feasible solutions: k-colorings of a graph G
- adjacency relation: recoloring a single vertex

Coloring reconfiguration is one of the most well-studied problems.

k-coloring reconfiguration

[*k*-coloring reconfiguration]

- feasible solutions: k-colorings of a graph G
- adjacency relation: recoloring a single vertex

[*k*-coloring reconfiguration (Kempe change)]

- feasible solutions: k-colorings of a graph G
- adjacency relation: swapping "connected" two color classes

* The figure above is a yes-instance under the Kempe change relation.

Adjacency relation

Relationship between some adjacency relations are clarified:

- For independent set reconfiguration, TJ and TAR are equivalent M. Kamiński, P. Medvedev, M. Milanič. Complexity of independent set reconfigurability problems. Theoretical Computer Science 439, pp. 9-15 (2012)
- For clique reconfiguration, TJ, TAR and TS are all equivalent <u>T. Ito</u>, H. Ono, Y. Otachi. Reconfiguration of cliques in a graph. Proc. TAMC 2015, LNCS 9076, pp. 212-223 (2015)

History of combinatorial reconfiguration (from my viewpoint ...)

[2002 – 2012]

- Negative results (PSPACE-completeness)
- Sufficient conditions for yes-instances
- Algorithms obtained using mostly greedy methods

[2013 – now]

- Broader algorithmic techniques are starting to emerge These three years, ≥ 20 papers have been published @ arXiv
 → later presented at ICALP, STACS, ISAAC, SWAT, WADS, etc.
- Algorithm methods capturing the solution space
 - Dynamic programming
 - Fixed-parameter tractability (FPT)

We now have techniques/results for **<u>both</u>** negative & positive sides!

In this talk: I will give an <u>overview</u> of these techniques/results quickly! ... without proofs/details

[From the viewpoint of algorithm designer]

If a reconfiguration problem is **PSPACE-complete**, then

- 1. no polynomial-time algorithm under $P \neq NP$; and
- 2. exists a yes-instance whose **shortest** reconfiguration sequence requires <u>super-polynomial length</u> under NP \neq PSPACE.

Sufficient Condition

for reconfiguration problems being in Class PSPACE:

- a. Search problem finding a feasible solution is in Class NP; and
- b. Given two feasible solution, there is a polynomial-time algorithm to determine whether they are adjacent or not in the solution space.

(All reconfiguration problems in this talk belong to PSPACE.)

[Theorem 1] <u>T. Ito</u>, E.D. Demaine, N.J.A. Harvey, C.H. Papadimitriou, M. Sideri, R. Uehara, Y. Uno. On the complexity of reconfiguration problems. Theoretical Computer Science 412, pp. 1054-1065 (2011)

PSPACE-hardness

For many NP-complete search problems, we can show the PSPACEhardness of their reconfigurations by following the "flow" of NPhardness reductions (with noting that they preserve the reachability).

[GKMP09] P. Gopalan, P.G. Kolaitis, E.N. Maneva, C.H. Papadimitriou. The connectivity of Boolean satisfiability: computational and structural dichotomies. SIAM J. Computing 38, pp. 2330-2355 (2009)

Reduction for preserving the reachability

This reduction is correct for NP-hardness,

but does not preserve the connectivity (reachability) of solution space.

No "don't care" variable

- Every independent set corresponds to exactly one satisfiable truth assignment of *f*
- This reduction preserves the reachability of solutions spaces. (Details omitted)

Reduction for preserving the reachability

Reduction from Problem P to Problem Q:

reachable on P $\leftarrow \rightarrow$ reachable on Q

Suffice to construct

- 1. each feasible solution in G_P corresponds to <u>distinct &</u> <u>connected</u> component in G_Q .
- 2. every $p_1p_2 \in E(G_P) \bigstar$ there exist two feasible solutions q_1 in $G_Q(p_1)$ and q_2 in $G_Q(p_2)$ such that $q_1q_2 \in E(G_Q)$.

Solution

space G_O of Q

PSPACE-hardness

For many NP-complete search problems, we can show the PSPACEhardness of their reconfigurations by following the "flow" of NPhardness reductions (with noting that they preserve the reachability).

[GKMP09] P. Gopalan, P.G. Kolaitis, E.N. Maneva, C.H. Papadimitriou. The connectivity of Boolean satisfiability: computational and structural dichotomies. SIAM J. Computing 38, pp. 2330-2355 (2009)

Hardness results for graph classes

Theorem: The following problems remain PSPACE-complete even for bounded bandwidth graphs.

- independent set reconfiguration
- feedback vertex set reconfiguration
- coloring reconfiguration
- shortest path reconfiguration, etc.

A.E. Mouawad, N. Nishimura, V. Raman, M. Wrochna. Reconfiguration over tree decompositions. Proc. IPEC 2014, LNCS 8894, pp. 246-257 (2014)

Note that treewidth(G) \leq pathwidth(G) \leq bandwidth(G).

(But, the constants are big for many problems, so they may be solvable in polynomial time for small constant width.)

Recently, the PSPACE-hardness of NCL was strengthened, and this yields that several reconfiguration problems remain PSPACEcomplete for planar <u>AND</u> bounded bandwidth graphs.

> T.C. van der Zanden. Parameterized complexity of graph constraint logic. Proc. of IPEC 2015, LIPIcs 9076, pp. 282-293 (2015)

Complexity of k-coloring reconfiguration

[*k*-coloring reconfiguration]

- feasible solutions: k-colorings of a graph
- adjacency relation: recoloring a single vertex

Theorem: k-coloring reconfiguration is PSPACE-complete for $k \ge 4$.

P. Bonsma, L. Cereceda. Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. Theoretical Computer Science 410, pp. 5215-5226 (2009)

Theorem: k-coloring reconfiguration is solvable poly time for $k \leq 3$.

L. Cereceda, J. van den Heuvel, M. Johnson. Finding paths between 3-colorings. Journal of Graph Theory 67, pp. 69-82 (2011)

[This dichotomy has been generalized to "circular coloring"]

R.C. Brewster, S. McGuinness, B. Moore, J.A. Noel. A dichotomy theorem for circular colouring reconfiguration. Theoretical Computer Science 639, pp. 1-13 (2016)

History of combinatorial reconfiguration (from my viewpoint ...)

[2002 – 2012]

- Negative results (PSPACE-completeness)
- Sufficient conditions for yes-instances
- Algorithms obtained using mostly greedy methods

[2013 – now]

- Broader algorithmic techniques are starting to emerge These three years, ≥ 20 papers have been published @ arXiv
 → later presented at ICALP, STACS, ISAAC, SWAT, WADS, etc.
- Algorithm methods capturing the solution space
 - Dynamic programming
 - Fixed-parameter tractability (FPT)

We now have techniques/results for **<u>both</u>** negative & positive sides!

In this talk: I will give an <u>overview</u> of these techniques/results quickly! ... without proofs/details

Sufficient condition for k-coloring reconfiguration

Showing when the solution space consists of a single connected component

[*k*-coloring reconfiguration]

- feasible solutions: k-colorings of a graph G
- adjacency relation: recoloring a single vertex

Theorem: For an instance of k-coloring reconfiguration, if $k \ge degeneracy(G) + 2$, then it is a yes-instance.

degeneracy = coloring number

ex) Every planar graph G satisfies degeneracy(G) ≤ 5 , and hence $k \geq 5 + 2 \geq \text{degeneracy}(G) + 2$.

Thus, any two 7-colorings of a planar graph is a yes-instance.

Note: there are graphs G whose chromatic # is degeneracy(G) + 1. In this sense, (roughly speaking) this theorem says that **only one additional color** is **sufficient to connect all colorings** of G.

P. Bonsma, L. Cereceda. Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. Theoretical Computer Science 410, pp. 5215-5226 (2009)

Sufficient condition: Other examples

[*k*-coloring reconfiguration]

Several sufficient conditions on # of colors are given when restricted to graph classes. In particular, the diameters of solution spaces can be bounded by a polynomial length (quadratic)

[BB13] M. Bonamy, N. Bousquet. Recoloring **bounded treewidth graphs**. Electronic Notes in Discrete Mathematics 44, pp. 257-262 (2013)

[BJLPP14] M. Bonamy, M. Johnson, I. Lignos, V. Patel, D. Paulusma. Reconfiguration graphs for vertex colourings of **chordal** and **chordal bipartite graphs**. J. Combinatorial Optimization 27, pp. 132-143 (2014)

For trees,

- constant # of additional colors
- polynomial diameter

[*k*-edge-coloring reconfiguration]

- feasible solutions: k-edge-colorings of a graph G
- adjacency relation: recoloring a single edge

[IKD12] <u>T. Ito</u>, M. Kamiński, E.D. Demaine. Reconfiguration of list edge-colorings in a graph. Discrete Applied Mathematics 160, pp. 2199-2207 (2012)

Sufficient condition: Other examples

[*k*-dominating set reconfiguration]

- feasible solutions: dominating sets of a graph G with size $\leq k$
- adjacency relation: add or remove a single token

[HS14] R. Haas, K. Seyffarth. The k-dominating graph. Graphs and Combinatorics 30, pp. 609–617 (2014)

[SMN16] A. Suzuki, A.E. Mouawad, N. Nishimura. Reconfiguration of dominating sets. Journal of Combinatorial Optimization 32, pp. 1182-1195 (2016)

History of combinatorial reconfiguration (from my viewpoint ...)

[2002 - 2012]

- Negative results (PSPACE-completeness)
- Sufficient conditions for yes-instances
- Algorithms obtained using mostly greedy methods

[2013 – now]

- Broader algorithmic techniques are starting to emerge These three years, ≥ 20 papers have been published @ arXiv
 → later presented at ICALP, STACS, ISAAC, SWAT, WADS, etc.
- Algorithm methods capturing the solution space
 - Dynamic programming
 - Fixed-parameter tractability (FPT)

We now have techniques/results for **<u>both</u>** negative & positive sides!

In this talk: I will give an <u>overview</u> of these techniques/results quickly! ... without proofs/details

Greedy algorithm

- <u>Idea</u>: Take the symmetric difference between two given solutions, and transform the difference one by one.
- **Ensure**: the feasibility of intermediate solutions
 - "no" if we cannot obtain a reconfiguration by this way

[Matching reconfiguration]

- feasible solutions: matchings of a graph with cardinality exactly k
- adjacency relation: exchange a single edge (edge-jump)

 $M_0 \bigtriangleup M_r = (M_0 \setminus M_r) \cup (M_r \setminus M_0)$

Greedy algorithm for matching reconfiguration

[Matching reconfiguration]

- feasible solutions: matchings of a graph with cardinality exactly k
- adjacency relation: exchange a single edge (edge-jump)

<u>T. Ito</u>, E.D. Demaine, N.J.A. Harvey, C.H. Papadimitriou, M. Sideri, R. Uehara, Y. Uno. On the complexity of reconfiguration problems. Theoretical Computer Science 412, pp. 1054-1065 (2011)

Greedy algorithm: Other examples

[Independent set reconfiguration (Token Jumping)]

- feasible solutions: independent sets of size exactly k
- adjacency relation: move a single token

Theorem: Token Jumping is solvable in linear time for even-holefree graphs.

> M. Kamiński, P. Medvedev, M. Milanič. Complexity of independent set reconfigurability problems. Theoretical Computer Science 439, pp. 9-15 (2012)

[Minimum spanning tree reconfiguration]

- feasible solutions: minimum spanning trees of a weighted graph
- adjacency relation: exchange a single edge (edge-jump)

Theorem: Minimum spanning tree reconfiguration is solvable in polynomial time for any graph.

<u>T. Ito</u>, E.D. Demaine, N.J.A. Harvey, C.H. Papadimitriou, M. Sideri, R. Uehara, Y. Uno. On the complexity of reconfiguration problems. Theoretical Computer Science 412, pp. 1054-1065 (2011)

History of combinatorial reconfiguration (from my viewpoint ...)

[2002 - 2012]

- Negative results (PSPACE-completeness)
- Sufficient conditions for yes-instances
- Algorithms obtained using mostly greedy methods

[2013 – now]

- Broader algorithmic techniques are starting to emerge These three years, ≥ 20 papers have been published @ arXiv
 → later presented at ICALP, STACS, ISAAC, SWAT, WADS, etc.
- Algorithm methods capturing the solution space

Dynamic programming

Fixed-parameter tractability (FPT)

We now have techniques/results for **<u>both</u>** negative & positive sides!

In this talk: I will give an <u>overview</u> of these techniques/results quickly! ... without proofs/details

Dynamic Programming

It is a natural idea to try the **<u>DP method</u>** for reconfiguration.

However, only a few positive results are known based on DP method.

Ex: k-coloring of a tree (as a search problem)

Only store *k* types of colorings:

The min # of colors under the assumption that v is colored with c_i

DP algorithm for list coloring reconfiguration

[List coloring reconfiguration]

- feasible solutions: list colorings of a graph G
- adjacency relation: recoloring a single vertex

DP algorithm for list coloring reconfiguration

[List coloring reconfiguration]

- feasible solutions: list colorings of a graph G
- adjacency relation: recoloring a single vertex

Focus on the color assigned to the vertex w which is adjacent to the outside T_w ...

Subtree T_w

Solution space for T_w

39

DP algorithm for list coloring reconfiguration

[List coloring reconfiguration]

- feasible solutions: list colorings of a graph G
- adjacency relation: recoloring a single vertex

Theorem: List coloring reconfiguration is solvable in polynomial time for caterpillars.

<u>Contracted</u> solution space for T_w

T. Hatanaka, <u>T. Ito</u>, X. Zhou. The list coloring reconfiguration problem for bounded pathwidth graphs. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences E98-A, pp. 1168-1178 (2015)

DP algorithm: Other examples

[Shortest path reconfiguration]

- feasible solutions: shortest paths of an unweighted graph G
- adjacency relation: switch a single intermediate vertex

Theorem: Shortest path reconfiguration is solvable in polynomial time for unweighted planar graphs.

P. Bonsma. Rerouting shortest paths in planar graphs. Proc. FSTTCS 2012, LIPIcs 18, pp. 337-349 (2012)

[*k*-coloring reconfiguration]

- feasible solutions: k-colorings of a graph G
- adjacency relation: recoloring a single vertex

Theorem: k-coloring reconfiguration is solvable in polynomial time for (k - 2)-connected chordal graphs.

P. Bonsma, D. Paulusma. Using contracted solution graphs for solving reconfiguration problems. Proc. of MFCS 2016, LIPIcs 58, pp. 20:1-20:15 (2016)

History of combinatorial reconfiguration (from my viewpoint ...)

[2002 - 2012]

- Negative results (PSPACE-completeness)
- Sufficient conditions for yes-instances
- Algorithms obtained using mostly greedy methods

[2013 – now]

- Broader algorithmic techniques are starting to emerge These three years, ≥ 20 papers have been published @ arXiv
 → later presented at ICALP, STACS, ISAAC, SWAT, WADS, etc.
- Algorithm methods capturing the solution space

Dynamic programming

Fixed-parameter tractability (FPT)

We now have techniques/results for **<u>both</u>** negative & positive sides!

In this talk: I will give an <u>overview</u> of these techniques/results quickly! ... without proofs/details

FPT algorithms for reconfiguration problems

Previous polynomial-time algorithms:

Solution space has exponential size

Difficult to characterize the no-instances.

→ In FPT algorithms, this can be done by the brute-force manner!

Note: Answering "no" happens only in this step.

FPT algorithm for Token Jumping

[Independent set reconfiguration (Token Jumping)]

- feasible solutions: independent sets of size exactly k
- adjacency relation: move a single token

FPT algorithm for Token Jumping on general graphs Parameter: k + dk: bound on # of tokens $|I_0| = |I_r|$

d: bound on maximum degree $\Delta(G)$ of a graph G

FPT algorithm for Token Jumping

Parameter: k + d (# of tokens $|I_0| = |I_r| \le k$ and max degree $\Delta(G) \le d$)

1. Give a sufficient condition for a yes-instance

If $|V(G)| \ge 3k(d+1)$, then it is a yes-instance.

set I^* of size $\geq k$

Delete all vertices in $I_0 \cup I_r$ and their neighbors from G. Then, the remaining graph H is the "<u>safe place</u>" from $I_0 \cup I_r$. $|V(G)| \ge 3k(d+1)$ $k(d+1) \leftarrow I_0$ and its neighbors $k(d+1) \leftarrow I_r$ and its neighbors $|V(H)| \ge k(d+1)$ *H* has an independent

Since H has an independent set I^* of size $\geq k$, we can use it as a buffer space, that is, I_0 and I_r are reconfigurable via I^* .

FPT algorithm for Token Jumping

Parameter: k + d (# of tokens $|I_0| = |I_r| \le k$ and max degree $\Delta(G) \le d$)

1. Give a sufficient condition for a yes-instance

If $|V(G)| \ge 3k(d+1)$, then it is a yes-instance.

 \rightarrow Output "yes" if G satisfies the condition.

2. Kernelize a given instance into an FPT size

- → This step is executed <u>only when</u> |V(G)| < 3k(d + 1)
- \rightarrow Thus, G is of an FPT size already
- 3. Construct the solution space by the brute-force manner
 - → # of independent sets in G of size exactly k can be bounded by $O(|V(G)|^k) < O((3k(d+1))^k)$
 - Solution space has an FPT size, and be constructed in FPT time. (We can check the reachability between I_0 and I_r by a breadth-first search.)

Parameterized complexity of Token Jumping

[Independent set reconfiguration (Token Jumping)]

- feasible solutions: independent sets of size exactly k
- adjacency relation: move a single token

Parameter	Graph class	Result
# k of tokens + max degree d	general	FPT [IKOSUY14]
# <i>k</i> of tokens only	general	W[1]-hard [IKOSUY14]
	nowhere dense,	FPT [LMPRS15]
	bounded degeneracy	[IKO14] also shows
	(includes planar, bounded treewidth)	FPT for planar

[IKOSUY14] <u>T. Ito</u>, M. Kamiński, H. Ono, A. Suzuki, R. Uehara, K. Yamanaka. On the parameterized complexity for token jumping on graphs. Proc. TAMC 2014, LNCS 8402, pp. 341-351 (2014)

[LMPRS15] D. Lokshtanov, A.E. Mouawad, F. Panolan, M.S. Ramanujan, S. Saurabh.

Reconfiguration on sparse graphs. Proc. WADS 2015, LNCS 9214, pp. 398-409 (2015)

[IKO14] <u>T. Ito</u>, M. Kamiński, H. Ono. Fixed-parameter tractability of token jumping on planar graphs. Proc. ISAAC 2014, LNCS 8889, pp. 208-219 (2014)

FPT algorithms with length parameter

DP methods work nicely when the length ℓ of a sequence is taken as the parameter.

Token Jumping for trees (solvable in P, though) Store what happens at the *i*-th step, $i \in \{1, 2, ..., \ell\}$, of a reconfiguration sequence by distinguishing the following <u>three</u>:

- touched token on the separator v
- touched token on a vertex inside T_{v}
- touched token on a vertex outside T_{v}
- → all possible patterns can be bounded by 3^ℓ, and hence the size of DP tables can be bounded by an FPT size.

Thm: For every search problem expressible by the Monadic Second-Order Logic, its reconfiguration is in FPT when parameterized by treewidth and the length ℓ of a reconfiguration sequence.

A.E. Mouawad, N. Nishimura, V. Raman, M. Wrochna. Reconfiguration over tree decompositions. Proc. IPEC 2014, LNCS 8894, pp. 246-257 (2014)

[2002 – 2012]

- Negative results (PSPACE-completeness)
- Sufficient conditions for yes-instances
- Algorithms obtained using mostly greedy methods

[2013 – now]

- Algorithm methods capturing the solution space
 - Dynamic programming
 - Fixed-parameter tractability (FPT)

We now have techniques/results for **<u>both</u>** negative & positive sides!

[General Question]

 Clarify relationships on complexity between search problems and their reconfiguration problems?

Search problem vs its reconfiguration problem

For many NP-complete search problems,

their reconfiguration problems are **PSPACE-complete**. But, ...

	Search	Reconfiguration
3-coloring	NP-complete	Р
L(2,1)-labeling with 5 colors	NP-complete	Р

Difficult to find one solution \langle Easy to check the reachability

There are exponentially many solutions, but each connected component of the solution space is of polynomial size.

Our advantage: initial & target solutions are given as an input → check only polynomial number of solutions around them!

Search problem vs its reconfiguration problem

For several search problems in P,

their reconfiguration problems are also in P. But, ...

	Search	Reconfiguration
4-coloring for bipartite graphs	Р	PSPACE-complete
shortest path	Р	PSPACE-complete

Easy to find one solution C Difficult to check the reachability

So far, I don't have intuitive explanations to what makes these problems difficult in reconfiguration... 51

[2002 – 2012]

- Negative results (PSPACE-completeness)
- Sufficient conditions for yes-instances
- Algorithms obtained using mostly greedy methods

[2013 – now]

- Algorithm methods capturing the solution space
 - Dynamic programming
 - Fixed-parameter tractability (FPT)

We now have techniques/results for **<u>both</u>** negative & positive sides!

[General Question]

- Clarify **relationships** on complexity between search problems and their reconfiguration problems?
- Give a (sufficient) condition for which the **DP method** yields a polynomial-time algorithm?
- **Shortest** variant?

asks for the length of a **<u>shortest</u>** reconfiguration sequence.

[2015 – now]

- Algorithms for <u>shortest</u> variant, capturing "detours"
 - SAT reconfiguration [MNPR15]
 - □ Independent set reconfiguration (Token Sliding) for caterpillars [YU16]

Solution space for a SAT formula

[Difficult point]

Even though z = 0 in both initial & target, we need to flip z once for the feasibility.

Almost all previously known algorithms for shortest variants touch only the symmetric difference

➔ no detour.

[MNPR15] <u>A.E. Mouawad</u>, N. Nishimura, V. Pathak, V. Raman. Shortest reconfiguration paths in the solution space of Boolean formulas. Proc. ICALP 2015, LNCS 9134, pp. 985-996 (2015) [YU16] T. Yamada, R. Uehara. Shortest reconfiguration of sliding tokens on a caterpillar. Proc. WALCOM 2016, LNCS 9627, pp. 236-248 (2016)

Conclusion

[2002 - 2012]

- Negative results (PSPACE-completeness)
- Sufficient conditions for yes-instances
- Algorithms obtained using mostly greedy methods

[2013 – now]

- Algorithm methods capturing the solution space
 - Dynamic programming
 - Fixed-parameter tractability (FPT)

[2015 – now]

- Algorithms for shortest variant, capturing "detours"
 - □ SAT reconfiguration
 - □ Independent set reconfiguration (Token Sliding) for caterpillars

We now have techniques/results for **<u>both</u>** negative & positive sides!

... but, we still have several interesting open problems!

Let's collaborate!!