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Optimal orthogonal drawing

An orthogonal drawing of a planar graph G is optimal if it has the
minimum # of bends among all possible orthogonal drawings
of G.
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Find an optimal orthogonal drawing of
a given planar graph.
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Optimal orthogonal drawing

An orthogonal drawing of a planar graph G is optimal if it has the
minimum # of bends among all possible orthogonal drawings
of G.

__Problem
Find an optimal orthogonal drawing of

a given planar graph.
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Known results

— The problem:
NP-complete for planar graphs of A=4

A. Garg, R. Tamassia, 2001

fA=3, O(n°logn)time D Battista, etal. 1998
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Our results
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Our results

For series-parallel graphs

If A=3, O(n) time our result
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Lemma 1 (Our Main Idea

Every biconnected SP graph G of A=3 has one of the
following three substructures:
| (a)a diamond C

(b) two adjacent vertices v and v s.t. d(u)=d(v)=2

(c) a triangle K.
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Algorithm(G

Let G be a biconnected SP graph of A=3.

Case (a): 3 a diamond ® ,

Recursively find an optimal drawing.
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Algorithm(G

Let G be a biconnected SP graph of A=3.
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Lemma 2

Every 2-legged SP graph without diamond has
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Algorithm(G

Let G be a biconnected SP graph of A=3. Return
Case 3 a diamond optimal
@ | ® drawing
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Algorithm(G

Let G be a biconnected SP graph of A=3.
If n(G)< 6, Then find an optimal drawing of G
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Algorithm(G

Let G be a biconnected SP graph of A=3.
If n(G)< 6, Then find an optimal drawing of G
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Conclusions

An optimal orthogonal drawing of a biconnected SP graph
G of A=3 can be found in linear time.
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Our algorithm works well even if G is not biconnected.
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Conclusions
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Conclusions

imal orthogonal drawing of a biconnected SP graph
G fAéB can be found in linear time.
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Conclusions

Our algorithm works well even if G is not biconnected.
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For series-parallel graphs G with A=4

s there an O(n)-time algorithm to find an optimal
orthogonal drawing of G ? open

o—eo—¢ I o no optimal U-shape

optimal I-shape
o—o pltﬂ]nal L-sﬁgpe




l Optimal drawing




Our Main |dea

— 2-legged SP graph

A SP graph G is 2-legged
if n(G)=3 and d(s)=d(f)=1 for the terminals s and t.

o i




R A _° 11

////////// /////////

Ishape

/

— Definition of |-, L- and U-shaped drawings
& terminals are drawn on the
& the drawing except terminals

intersects neither the north side

outer face;
nor the south side l-shape ' -chape L-shape




Our Main |dea

4 7////////

L-shape T- sha e
K P P

— DGM U-shaped drawmgs

& terminals are drawn on the
outer face;

& the drawing except terminals
Intersects neither the north side
nor the east side




Our Main |dea

. % g )

U-shape U-shape not U-shape

N J
— DM U-shaped drawings

& terminals are drawn on the
outer face;

& the drawing except terminals
doesn’t intersect the north side

-

~shape | -shape U-shape




Lemma 2

The following (a) and (b) hold for a 2-legged SP graph G

of A=3 unless G has a diamond:
(a) G has three optimal o_o{"\P_O
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(b) such drawings can be found in linear time.
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— A Diamond graph is recursively defined as follows: — ——
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Definition of Diamond Graph

— A Diamond graph is recursively defined as follows:

(a)

(b)

O o 7 is a diamond graph
a path with three edges Jrapn.
if are diamond graphs,

Q
\

>
then O—O/.‘.\ O—o Is a diamond graph
s

\




Diamond Graph

N
| x\“’/x
%

O s a diamond graph.

O @
O :
If C{“‘\O and 1\ ~ 7 are diamond graphs,

then ©—<®O—@ IS a diamond graph




Diamond Graph

AN

® O isadiamond grap;\i/

If C{“‘\ and } f) are diamond graphs,
then ©—<®O—@ IS a diamond graph




Lemma 1
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If G is a diamond graph, then
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Lemma 1

If G is a diamond graph, then
(a) G has both
a no-bend I-shaped drawing
and
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Lemma 2

The following (a) and (b) hold for a 2-legged SP graph G

of A=3 unless G is a diamond graph
(a) G has three optimal
-, L- and U-shaped drawings
(b) such drawings can be found in linear time.
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Lemma 2

The following (a) and (b) hold for a 2-legged SP graph G
of A=3 unless G is a diamond graph
(a) G has three optimal
-, L- and U-shaped drawings
(b) such drawings can be found in linear time.

Proof: by an induction on # of vertices.
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Lemma 2

The following (a) and (b) hold for a 2-legged SP graph G
of A=3 unless G is a diamond graph
(a) G has three optimal
-, L- and U-shaped drawings
(b) such drawings can be found in linear time.

Proof: by an induction on # of vertices.
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Lemma 3

Every biconnected SP graph G of A=3 has one of the
following three substructures:

| (a)a diamond C

(b) two adjacent vertices v and v s.t. d(u)=d(v)=2
(c) a complete graph K.
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Lemma 1 (Our Main Idea

Every biconnected SP graph G of A=3 has one of the
following three substructures:
| (a)a diamond

(b) two adjacent vertices v and v s.t. d(u)=d(v)=2

(c) a complete graph K.
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Lemma 1 (Our Main Idea

Every biconnected SP graph G of A=3 has one of the
following three substructures:

(@) a diamond
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Lemma 1 (Our Main Idea

Every biconnected SP graph G of A=3 has one of the
following three substructures:

(@) a diamond

(b) two adjacent vertices v and v s.t. d(u)=d(v)=2
| (c) a complete graph K.
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For each SP graph G’ optimal U-shapea
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