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Optimal orthogonal drawing
An orthogonal drawing of a planar graph G is optimal if it has the 
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Known results

The problem:The problem:
NP-complete for planar graphs of Δ≦4
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If Δ≧5, then no orthogonal drawing.
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Δ 3    7
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Biconnected graphs G:
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Biconnected graphs G:

G – v is connected for each  vertex v.G v is connected for each  vertex v.
v v
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Algorithm(G)
Let G be a biconnected SP graph of Δ≦3.
Case (a): ∃ a  diamond                Case (a): ∃ a  diamond                ,

Recursively find an optimal drawingRecursively find an optimal drawing.
Case (b): ∃Case (b): ∃

Decompose to smaller subgraphs in series or     Decompose to smaller subgraphs in series or     
parallel, and iteratively find an optimal drawing

Case (c): ∃

Similar as Case (b).
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Else  If ∃ a  diamond                ,

contract
Return

Then Algorithm(               ), find
contract

Recur G to a smaller one

optimal optimal



Algorithm(G)
Let G be a biconnected SP graph of Δ≦3.
If n(G)< 6  Then find an optimal drawing of GIf n(G)< 6, Then find an optimal drawing of G
Else  If ∃ a  diamond                ,

Then Algorithm(               ),
E lExample

Find an optimal Find an optimal 
drawing of SP 
graphs without 
diamonds



Algorithm(G)
Let G be a biconnected SP graph of Δ≦3.
If n(G)< 6  Then find an optimal drawing of GIf n(G)< 6, Then find an optimal drawing of G
Else  If ∃ a  diamond                ,

Then Algorithm(               ),
E lExample

Find an optimal Find an optimal 
drawing of SP 
graphs without 
diamonds



Algorithm(G)
Let G be a biconnected SP graph of Δ≦3.
Case (a): ∃ a  diamond                Case (a): ∃ a  diamond                ,

contract
Return

expand
Algorithm(               ), find

expand

Case (b): ∃



deg=1               deg=1deg 1               deg 1

2 legged SP2-legged SP

Case (b): ∃

Fi d Find an
opt & U-shape



Our Main Idea
2-legged SP graph

s t
U-shape U-shape

Definition of I- , L- and U-shaped drawings
terminals are drawn on the 
outer face;
the drawing except terminals 
doesn’t intersect the north side

I-shape L-shape U-shape



Our Main Idea
2-legged SP graph

I-shape

s tI-shape
Definition of I- , L- and U-shaped drawings

I-shape

terminals are drawn on the 
outer face;
the drawing except terminals 
intersects neither the north side 

L-shape U-shapenor the south side I-shape



Our Main Idea
2-legged SP graph
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Definition of I- , L- and U-shaped drawings
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terminals are drawn on the 
outer face;
the drawing except terminals 
intersects neither the north side 
nor the east side I-shape L-shape U-shape
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Every 2-legged SP graph without diamond has 
optimal I-, L- and U-shaped drawings

optimal optimal optimal

I-shape L-shape U-shape



Lemma 2

Every 2-legged SP graph without diamond has 
optimal I-, L- and U-shaped drawings

optimal optimal optimal

bend

bend bend

I-shape L-shape U-shape
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parallel connectionseries connection
decompose

deg 1               deg 1

2 legged SP
Δ ≦ 3
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Return an 
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Fi d 
extend

Find an
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Examplep

How to find an optimal 
U shaped drawing ?U-shaped drawing ?

Else If∃

Then
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Example parallel connectionp
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Algorithm(G)
Return 
optimal 

Let G be a biconnected SP graph of Δ≦3.
Case (a): ∃ a  diamond                p

drawing

expand

Case (a): ∃ a  diamond                ,
contraction

Algorithm(               ),
expand

u v
u vCase (b): ∃

opt & U shapeCase (c):∃ a complete graph K3. 
opt & U-shape

bend
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If n(G)< 6  Then find an optimal drawing of GIf n(G)< 6, Then find an optimal drawing of G
Else  If ∃ a  diamond                ,

Then Algorithm(               ),

Else If∃ two adjacent vertices u,v s.t. d(u)=d(v)=2
u vu v

Find an optimal 
drawing of SP 

Then graphs without 
diamonds

Else∃ a complete graph K3. 
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Let G be a biconnected SP graph of Δ≦3.
If n(G)< 6  Then find an optimal drawing of GIf n(G)< 6, Then find an optimal drawing of G
Else  If ∃ a  diamond                ,

Then Algorithm(               ),

Else If∃ two adjacent vertices u,v s.t. d(u)=d(v)=2
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Else∃ a complete graph K3. 



Theorem 1
Conclusions

An optimal orthogonal drawing of a biconnected SP graph
Theorem 1

G of Δ≦3 can be found in linear time.

Our algorithm works well even if G has multiple edges
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Our algorithm works well even if G has multiple edges

bend
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Theorem 1
An optimal orthogonal drawing of a biconnected SP graph
Theorem 1
Our algorithm works well even if G is not biconnected. 
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bend
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bend
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2 bends



Theorem 1
Conclusions

An optimal orthogonal drawing of a SP graph
Theorem 1

G of Δ≦3 can be found in linear time.



Conclusions

bend(G)≦ n/3 for  biconnected SP graphs G of Δ≦3g p

Grid size ≦ 8n/9

=width + height

height

width





Optimal orthogonal drawingp g g

planar graph

Optimal orthogonal drawings ?Optimal orthogonal drawings ?



Optimal orthogonal drawingp g g

1-connected SP graph

a 2-bend orthogonal drawing ∃a one-bend orthogonal drawing ?

one bend

bend

one bend

bend

not optimal
one bend

not optimal
one bend Is this optimal ?



Optimal orthogonal drawingp g g

1-connected SP graph

∃a one-bend orthogonal drawing ?

bend

one bendno bend
optimal not optimal



one bendone bend

Yes∃a one-bend orthogonal drawing ?∃a 0-bend orthogonal drawing ?

bendbend

one bendno bend
optimal not optimal

Is this optimal ?



Optimal orthogonal drawingp g g

1-connected SP graph

0  b d

∃a 0-bend orthogonal drawing ?
0  bend

th l d iorthogonal drawings
optimal



Optimal orthogonal drawingp g g

1-connected SP graph

0 b d0  b d

∃a 0-bend orthogonal drawing ?
0 bend0  bend

th l d i
optimaloptimal

orthogonal drawings



Optimal orthogonal drawingp g g

1-connected SP graph

No∃a 0-bend orthogonal drawing ?

crossing crossing

no bend no bend
optimal

no bend
optimal

no bend



one bend
optimal

1-connected SP graph
optimal

bendbend
bend

t b d

bend

two bends



Theorem 1
Conclusions

An optimal orthogonal drawing of a biconnected SP graph
Theorem 1

G of Δ≦3 can be found in linear time.

Our algorithm works well even if G is not biconnected. 
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Conclusions

Our algorithm works well even if G is not biconnected. 

bend(G)≦ (n+4)/3 for SP graphs G of Δ≦3

Best possiblep
bend bend

bend(G)= (n 8)/3 + 4
bendbendbend

bend(G)= (n – 8)/3 + 4
= (n +4)/3 bend bend



For series-parallel graphs G with Δ=4

Is there an O(n)-time algorithm to find an optimal 

p g p

orthogonal drawing of G ? open

s t s t s t

s t s t

toptimal I shape
no optimal U-shape

s toptimal I-shape
optimal L-shape
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Lemma 1

If G is a diamond graph, then
(a) G has both 

a no-bend I-shaped drawing
1-bend  
U-shaped

and
a no-bend L-shaped drawing

U shaped
drawing

(b) every no-bend drawing is either I-shaped or L-shaped.

I-shape ∃no-bend  U-shaped drawing ?
NOL-shape NO
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(a) G has both 
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and
a no-bend L-shaped drawing

(b) every no-bend drawing is either I-shaped or L-shaped.
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Lemma 1

If G is a diamond graph, then
(a) G has both 

a no-bend I-shaped drawing
and
a no-bend L-shaped drawing

(b) every no-bend drawing is either I-shaped or L-shaped.

I-shapedL-shapedno bend I shaped drawings

Such drawings can be found in linear time.
ppno-bend I-shaped drawings



Lemma 2

The following (a) and (b) hold for a 2-legged SP graph G
of Δ≦3 unless G is a diamond graph

(a) G has three optimal
I-, L- and U-shaped drawings

(b) such drawings can be found in linear time. 

diamond graph not a diamond graph

I-shapeI shape

L-shape

no-bend drawing I-shapeL-shape U-shape
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(b) such drawings can be found in linear time. 

Proof: by an induction on # of vertices. 

Parallel-connection Series-connection
Suppose that the lemma holds true for                      and                    
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O(n2logn) time R  T i  1987O(n2logn) time R. Tamassia, 1987
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Lemma 3

Every biconnected SP graph G of Δ≦3 has one of the
following three substructures:

(a) a  diamond C
(b) two adjacent vertices u and v s.t. d(u)=d(v)=2
(c) a complete graph K3. 

(a) G



Lemma 1 (Our Main Idea)

Every biconnected SP graph G of Δ≦3 has one of the
following three substructures:

(a) a  diamond
(b) two adjacent vertices u and v s.t. d(u)=d(v)=2
(c) a complete graph K3. 

bend(G)=bend(G ) bend(G)=bend(G )=0

GG G G



Proof
bend(G)=bend(G )

G GG G
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Proof Given an optimal
drawing of G

bend(G)≧bend(G )
drawing of G

G GG G

Case 1: bend(       ) = 0Case 1: bend(       )  0

Case 2: bend(       ) = 1Case 2: bend(       ) = 1

Case 3: bend(       ) ≧ 2
omitted

Case 3: bend(       ) ≧ 2



Lemma 1 (Our Main Idea)

Every biconnected SP graph G of Δ≦3 has one of the
following three substructures:

(a) a  diamond
(b) two adjacent vertices u and v s.t. d(u)=d(v)=2
(c) a complete graph K3. 

bend(G)=bend(G ) ∃an optimal U-
h d iu v u v shape drawing

G G GNo  diamonds



Lemma 2

For each SP graph G optimal U-shaped
drawingIf n ≧ 4, Δ≦3  and d(s)=d(t)=1,

then ∃an optimal U-shape drawing
drawing

s t
s t

bend(G)=bend(G ) ∃an optimal U-
h d iu v u v shape drawing

GG GNo  diamonds G



Our Main Idea
2-legged SP graph
A SP graph G is 2-legged 
if n(G)≧3 and d(s)=d(t)=1 for the terminals s and t.U-shape

s tU-shape

Definition of I- , L- and U-shaped drawings
terminals are drawn on the 
outer face;
the drawing except terminals 
doesn’t intersect the north side

I-shape L-shape U-shape



Lemma 1 (Our Main Idea)

Every biconnected SP graph G of Δ≦3 has one of the
following three substructures:

(a) a  diamond
(b) two adjacent vertices u and v s.t. d(u)=d(v)=2
(c) a complete graph K3. 

bend(G)=bend(G )+1 ∃an optimal U-

K3
shape drawing

G GNo  diamonds G



Lemma 2

For each SP graph G optimal U-shaped
drawingIf n ≧ 4, Δ≦3  and d(s)=d(t)=1,

then ∃an optimal U-shape drawing
drawing

s t
s t

bend(G)=bend(G )+1 ∃an optimal U-

K3
shape drawing

GG GNo  diamonds G



Optimal orthogonal drawingp g g

1-connected planar graphnon

Optimal orthogonal drawings ?Optimal orthogonal drawings ?



parallel connectionseries connection

deg=1               deg=1

parallel connectionseries connection

deg 1               deg 1

2 leg SP
U-shape not U-shapeU-shape

2-leg SP

Case (b): ∃

Fi d Find an
opt & U-shape


