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{ Prescribed-Area Octagonal Drawing}

Input
Plane graph
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Plane graph
A real number for each inner face



{ Prescribed-Area Octagonal Drawing]

Output

Input

Plane graph
A real number for each inner face

Prescribed-area
octagonal drawing



{ Prescribed-Area Octagonal Drawing]

Output

Input

Each nner face 1s drawn as a rectilinear polygon of
at most eight corners.
The outer face 1s drawn as a rectangle.

Each face has its prescribed area.



[ Prescribed-Area Octagonal Drawing]

Output

Input

Each nner face 1s drawn as a rectilinear polygon of
at most eight corners.
The outer face 1s drawn as a rectangle.

Each face has its prescribed area.



| Applications |

VLSI Floorplanning

Obtained by subdividing a given rectangle into

smal
Eac

Eac]

ler rectangles.

1 smaller rectangle corresponds to a module.

h module has area requirements.



| Applications ]
VLSI Floorplanning

. >< Area requirements can be
Area requirements cannot be . : :

. . : satisfied i1f each module 1s
satisfied i1f each module i1s

allowed to be only a rectangle. allowed to be a simple
rectilinear polygon.

It 1s desirable to keep the shape of each rectilinear
polygon as simple as possible.




[ Our Results ]

G: a good slicing graph

O(n) time algorithm.



{ Slicing Floorplan J

Slicing Floorplan

A slicing floorplan can be obtained by repeatedly
subdividing rectangles horizontally or vertically.



[ Slicing Floorplan and Slicing Graph }
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[ Slicing Tree |
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[ Slicing Tree |

Right subgraph becomes right subtree
Left subgraph becomes left subtree
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[ Slicing Tree |
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[ Slicing Tree |
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Upper subgraph becomes right subtree

Lower subgraph becomes left subtree



[ Slicing Tree |
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A slicing tree 1s good 1f each horizontal
slice 1s a face path.




Three face paths

On a boundary of a




Not a face path



A slicing tree 1s good 1f each horizontal
slice 1s a face path.




A slicing tree 1s good 1f each horizontal
slice 1s a face path.

We call a graph a good slicing graph
if 1t has a good slicing tree.




Can be vertically sliced

For a horizontal slice, at least one of the upper subgraph
and the lower subgraph cannot be vertically sliced.
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A Good Slicing Graph

A Good Slicing Tree




Prescribed-area
Octagonal drawing

Each inner face 1s drawn as a
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Octagons of nine shapes must
satisfy some conditions on size
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[Al gorithm }

f1q

Depth-first search

First traverse root































[Algorithm }




[Algorithm ]

Initialization at root



[Algorithm ]

Initialization at root
Draw the outer cycle as an

arbitrary rectangle of area
A(G).

A(G): sum of the prescribed
areas of all inner faces in G.
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[Algorithm ]

Initialization at root

Draw the outer cycle as an
arbitrary rectangle of area

AG).

A(G): sum of the prescribed
areas of all inner faces in G.

A(G)=5+9+15+---+8=460 =23x20



[Algorithm ]

Initialization at root
Draw the outer cycle as an

arbitrary rectangle of area
A(G).

A(G): sum of the prescribed
areas of all inner faces in G.

of
vertices on the right side of the

rectangle preserving their
relative positions.



[Algorithm ] @

Operation at root Wm v
Root : vertical slice @
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Operation at root

Root : vertical slice
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Operation at root

Root : vertical slice




Operation at root

[Algorithm ]

Root : vertical slice




[Algorithm ]

Operation at root
Root : horizontal slice

A(G)

A(Gy)




[Algorithm ]

Operation at root
Root : horizontal slice

Case 1: A(G,)) =A(R)




[Algorithm ]

Operation at root
Root : horizontal slice

AG)

A(G,)

Case 2: A(G,) > A(R)




(Algorithm | Case 3: A(G,) <A(R)

Operation at root
Root : horizontal slice

AG)

A(G,)

Case 2: A(G,) > A(R)




(Algorithm | Case 3: A(G,) <A(R)

Operation at root

Root : horizontal slice

6 corners

AG)

A(G,)

Case 2: A(G,) > A(R)




6 corners

o 8 corners‘ @

® O
Polygon of exactly 8 corners may appear

when a horizontal slice 1s embedded inside
a polygon of 6 corners.
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[ General computation at an internal node }

Vertical slice

Feasible .:'
Octagon %,

Ry g




[ General computation at an internal node }

Vertical slice

Fixed
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0. »
Feasible »
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[ General computation at an internal node }

Vertical slice Fixed

Face o L
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[ General computation at an internal node }

Vertical slice
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Feasible

Octagon
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Embed the slicing path in R,




[ General computation at an internal node }

Vertical slice
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Octagon
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f number of inner faces in G
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large enough
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TE A< _x large enough

|‘ 5 East side
R

very small foot-lenght

fE

The number of inner
faces each of which
has an edge on the
east side.



[ Computation at a leaf node }




{ Overall time complexity is linear. }




[ Conclusion }

We have presented a linear algorithm for

prescribed area octagonal drawings of good
slicing graphs.

We also give a sufficient condition for a graph
of maximum degree 3 to be a good slicing
graph and give a linear-time algorithm to find
a good slicing tree of such graphs.



{ A sufficient condition for a good slicing graph }

A good slicing tree can be found in linear time
for a cyclically 5-edge connected plane cubic
graph.




Cyclically 5-edge Connected Cubic Plane Graphs

Removal of any set of less than 5-edges leaves a graph such
that exactly one of the connected components has a cycle.



Not cyclically 5-edge connected

()

Two connected components
having cycles.

4

No connected component has a
cycle.



{ A sufficient condition for a good slicing graph }

Any graph G obtained from a cyclically 5-
edge connected plane cubic graph by inserting
four vertices of degree 2 on outer face 1s a
good slicing graph.
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[Algorithm ]

Initialization at root




If a large number of inner faces have edges on Pg
then foot-lengh should be large enough.

Dimensions of R, play crucial roles.



Dimensions of a Feasible Octagon ?






h: [ +fo<l,<fo

f number of inner faces in G

fE The number of inner
faces each of which
has an edge on the
east side.

5 a positive constant.
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Input at root R,
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l,, =0
for a facial octagon whose X¢; 1S convex.



[ General computation at an internal node }

Feasible Octagon

BN

Feasible
Octagon

R

W

Feasible
Octagon
R\I
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[ 11IME LCOmMpICXIity

@ Using a bottom-up computation on slicing tree, area
of subgraphs for all internal nodes can be computed in
linear time.

@ With an O(n) time preprocessing, embedding of the
slicing path at each internal node takes constant time.

© Computation time at a leaf node 1s proportional to
the number of non-corner vertices on the west side
of the face.

@ Overall time complexity 1s linear.



[ Conclusion J

We have presented a linear algorithm for
prescribed area octagonal drawings of good
slicing graphs.
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If the octagon 1s a rectangle
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{ Feasible Octagon }

R,1s a if R, satisfies the following
eight conditions

(1) ARy =AG)

(i) 1,<fs
(111) if Xy, 1S @ convex corner
then I )

(iv) 1t Xg 18 a convex corner
then | > flo

(v) if both Xy, and X

then | =~ — | flo

tu —



(vi) if both X, and Xg; are concave corners
u
then Itu o Ibu 2 1:Eé‘

(vii) 1t Xy, 1s a concave corner
then Itu < ( f - fEu )5

(viii) 1f Xg; 18 a concave corner
then |, <(f-f)o
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(111) if Xy, 1S @ convex corner
u
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XN2
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for a facial octagon whose Xy, 1s convex.



(vi) 1t Xg 18 a convex corner

u
then |, = feo
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for a facial octagon whose X¢; 1s convex.



(v) if both X\, and X, are concave corners
u
then Ibu _Itu = 1:E5

O XN1
N2 |

~ st ‘3"’ h Ibu - Itu
X

sl



(v) if both X\, and X, are concave corners

u

then Ibu o Itu 2 1:E5

o AN1
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for a facial octagon whose Xy, and
Xg, are concave



(v1) if both Xy, and X, are concave corners
u

Ibu B Itu

It

for a facial octagon whose Xy, and
Xg; are concave

u



[ General computation at an internal node }

Feasible Octagon
R

u

AN

Feasible Feasible

Octagon Octagon
R, R

Vv




[ Embedding of a vertical slicing path }




(i) 1,<fd

Red area <, H<foH <A,

The vertical slicing path
1s always embedded as a

vertical line segment. .
|, =max{l .| }

'[U’



[ Embedding of a vertical slicing path }

R, 1s a feasible octagon
since R 1s a feasible "W

octagon.

1S a rectange
which 1s a feasible octagon.




[ Embedding of a horizontal slicing path ]

(v) if both Xy, and Xg, are concave corners

u
- XN1
_J RV
R
O wW N R XN,z,\
X a fI: .\'\.\ _ v
u
Xsl Cg

Both R,and ' are feasible octagons.

We can prove for other cases.



[ Computation at a leaf node X }




[Algorithm Octagonal-Draw J

Reverse preorder traversal from root fy




Intuitively

o We call R, a feasible

octagon 1if P, can embedded
. O | successfully irrespective of
size of A(G,).

7 ‘__éﬁ

: : :
«— very small —

O

P, can be embedded
successfully although
A(G,) 1s very large.

Dimensions of R, play crucial roles.
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[Computation at a V-node X }

Let y be the right child of X and z be left child of x.

(a) (b)

(c)

P

X

R

drawn with more than eight

A face in R, may need to be
corners.

-




[ Foot Length |, of an Octagon R, 1

|, = max {t,, b} X



f f The number of inner faces in G, :
cach of which has an edge on the PN |
cast side. :

5 a positive constant.

OsésA“in
fH

f number of inner faces in G

H height of initial rectangle R,



If the footlength of R, 1s resonably small then R, will

always be drawn as a rectngle.

R




[ Maximum foot length ] o

N
i
ImaX < fd P
E
Imax
f : number of faces in G RS G

Neck Length d of a Facial Octagon

d .
Cooord . Fig

\ 4




Estimating d

We fix d such that fd H Am o holds.

. =max{t, b} ~

| H < fdH' < fdH < A_.



R, 1s always a rectangle.

R




[ Computation at a H-node X J
Let y be the right child of x and z be left child of X.

X Q
According to Areas of G, and G,
Satisfying some Invariants

Py x PN

G, . L

G : i
G 'S b S g b,



Invariants

X

t,—b, > f5d

fx number of faces in G, having an edge on PEX



Invariants




[ Computation at a leaf node X }

PN
g Lk
w o Pw
G, E
RS
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@ Using a bottom-up computation on slicing tree, area
of subgraphs for all internal nodes can be computed in
linear time.
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T ( 1 i1
[ 11IME LCOmMpICXIity

@ Using a bottom-up computation on slicing tree, area
of subgraphs for all internal nodes can be computed in
linear time.

@ With an O(n) time preprocessing, embedding of the
slicing path at each internal node takes constant time.
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[ 11IME LCOmMpICXIity

@ Using a bottom-up computation on slicing tree, area
of subgraphs for all internal nodes can be computed in

linear time.

@ With an O(n) time preprocessing, embedding of the
slicing path at each internal node takes constant time.

© Computation time at a leaf node 1s proportional to
the number of non-corner vertices on the west side

of the face.



[ Computation at a leaf node X }
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Foot Length |, of an Octagon R,
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{ Previous works on prescribed-area drawing }

Thomassen, 1992

G: Obtained from cyclically 5-edge connected plane cubic
graphs by inserting four vertices of degree 2 on outer
face.




Cyclically 5-edge Connected Cubic Plane Graphs

Removal of any set of less than 5-edges leaves a graph such
that exactly one of the connected components has a cycle.



Not cyclically 5-edge connected

()

Two connected components
having cycles.

4

No connected component has a
cycle.



{ Previous works on prescribed area drawing }

Thomassen, 1992

G: Obtained from cyclically 5- edge connected plane cubic
graphs by 1nserting four — “er
face.

e i Outer face 1s a rectangle

G has a prescribed area straight-line drawing.  [nner faces are

arbitrary polygons
An 1nner face 1s not always drawn as a rectilinear polygon.
O(n?) time algorithm.



[ Theorem }

Let G be a 2-3 plane graph obtained from a cyclically 5-edge
connected plane cubic graph by inserting four vertices of
degree 2 on four distinct edges. Then G 1s a good slicing graph.

That 1s, Thomassen’s graph 1s a good slicing graph.



Cyclically 5-edge
Connected cubic graph
with four vertices of
degree 2 inserted
on outer face



[ Slicing Graph }

G: 2-3 plane graph

G 1s a slicing graph if either 1t has exactly one inner face
or it has an NS-path or a WE-path P such that both the
subgraphs corresponding to P are slicing graphs.

P is called a slicing path.



