Partitioning Graphs
of Supply and Demand

——Generalization of Knapsack Problem ——

Takao Nishizeki
Tohoku University

Graph
Supply Vertices and Demand Vertices

-O—0
efelelele
00 OO

Supply Vertices CDemand Vertices)

Graph

Each Supply Vertex has a number, called Supply. ‘

‘Each Demand Vertex has a number, called Demand ‘

|
Supply Lﬁzs D—0) 1]

Demand‘
® OO
15 6) (210 13]

Supply Vertices CDemand Vertices)

Desired Partition

partition G into so that

Desired Partition

partition G into so that

Desired Partition

partition G Into so that

(a) each component has exactly one supply vertex,
(b) supply is no less than the sum of demands in the

component. _ iy
i /Deswed partltlon\

N— -

Maximum Partition Problem (Max PP)

wfd partition]

Maximum Partition Problem (Max PP)

A partition of a graph must satisfy

(a) each component has at most one supply vertex,
(b) supply is no less than the sum of demands in the
component.

Maximum Partition Problem (Max PP)

finds a partition that maximizes the “fulfiliment.”

A partition o _ .
(a) each co sum of demands In all components |
-ZL with supply vertices
(b) supply |)

component If there Is a supply vertex.

Sum:
17

20 — 4

Sum
o/

Maximum Partition Problem (Max PP)

finds a partition that maximizes the “fulfiliment.”

The fulfillment of this partition
+5+12+7=41

Maximum Partition Problem (Max PP)

finds a partition that maximizes the “fulfiliment.”

The fulfillment of this partition
+8+12+15=54

,_/7

Maximum fulfillment

Complexity Status

B

max subset sum problem
Trees o5 (simple ver. of Knapsack)
K33
2 ® 0O W
(5) [15

NP-hard

Maximum Subset Sum Problem (NP-hard)
Instance: a set A of integers and an integer b

find: a subset C < A which maximizes the sum of
Integers in C s.t. the sum does not exceed b.

Complexity Status

max subset sum problem [

Trees (simple ver. of Knapsack)

L W
NP- hard ® @‘O\@))@

ﬂl\lﬂn cAo
U VUil oL

Maximum Subset Sum Problem (NP-hard)
Instance: a set A of integers and an integer b

find: a subset C < A which maximizes the sum of
Integers in C s.t. the sum does not exceed b.

Related Result

max subset sum problem (NP-hard)

Fully Polynomial-Time
Approximation Scheme

3WOBOW (FPTAS)

Max PP for Stars [Ibarra and Kim ’75]
with one supply at center

FPTAS: for any ¢, 0 < ¢< 1, the algorithm finds an
approximation solution such that

APPRO > (1-¢) OPT
In time polynomial in both n and 1/«

Related Result

max subset sum problem (NP-hard)

Fully Polynomial-Time
Approximation Scheme

3WOBOW (FPTAS)

Max PP for Stars [Ibarra and Kim ’75]
with one supply at center

~

D
good approximation @O W ASodd

for larger classes 7) @G g 20 O¢
\ |

&

Our Results (approximabiliy)

General graphs (1) MAXSNP-hard
P (APX-hard)

© OO :
7)G6) C) No PTAS unless P=NP

10413
No FPTAS unless P=NP]

PTAS: for any ¢, 0 < £< 1, the algorithm finds an
approximation solution such that

APPRO > (1-¢) OPT
In time polynomial in n. (1/& :regarded as a constant.)

Our Results (approximabiliy)

General graphs (1) MAXSNP-hard

25 99 12 (APX-hard)
8) (65 9’6
SO0 DT No PTAS unless P=NP

Trees [NP-hard]

25

g G (2) FPTAS
D0 E @

(5) [15

Our Results (approximabiliy)

General graphs (1) MAXSNP-hard

25 99 12 (APX-hard)
8) (65 6’6
SO0 O~ No PTAS unless P=NP

Trees [NP-hard]

25

g G (2) FPTAS
D0 E @

(5) [15

(1) MAXSNP-hardness

Max PP i1s MAXSNP-hard for bipartite graphs.

L-reduction: preserves approximability

error ratio: &]

3-occurrence
MAX3SAT

_-reduction

>

each variable appears

at most 3 times

f =(Xv A% Z)/\(vav Z)/\(Xv A% Z)

! error ratio: &]

Max PP for

bipartite graphs

(1) MAXSNP-hardness

3-occurrence MAX3SAT (MAXSNP-hard)

Instance: variables and clauses s.t.

e each clause has exactly 3 literals; and

* each variable appears at most 3 times In the clauses
find: a truth assignment which maximizes # of

satisfied clauses

variables: W X Yy Z

at most 3 times

wv y)a(wy xv z) vy wy z)a (xv y v z)

(v

(1) MAXSNP-hardness

3-occurrence MAX3SAT (MAXSNP-hard)

Instance: variables and clauses s.t.

o each clause has exactly 3 literals; and

* each variable appears at most 3 times In the clauses
find: a truth assignment which maximizes # of

satisfied clauses

variables: v

W) z)a(xvyvz)

(1) MAXSNP-hardness

3-occurrence MAX3SAT (MAXSNP-hard)

Instance: variables and clauses s.t.

e each clause has exactly 3 literals; and

* each variable appears at most 3 times In the clauses
find: a truth assignment which maximizes # of

satisfied clauses

variables: v. w x y zZ

f :(Vva y)/\(V_Vviv Z)/\(_/vaE)/\(;vva)

(1) MAXSNP-hardness

variable gadget

variable x @

x|

A

4+44=8> 7

x|

(1) MAXSNP-hardness

variable x variable y variable z

(1) MAXSNP-hardness

variable x variable y variable z

(1) MAXSNP-hardness

variable x variable y variable z

@) MAXST 42 oo

variable x enough power variable z

(1) MAXSNP-hardness

variable x variable y variable z

f =(Xv AY Z)/\(vav Z)/\(Xv AY Z)

(1) MAXSNP-hardness

= true y = false 2 = false

(1) MAXSNP-hardness

variable x variable y variable z

f =(Xv AY Z)/\(vav Z)/\(Xv AY Z)

(1) MAXSNP-hardness

X = false y = false 2 = false

XV YVZ

(1) MAXSNP-hardness

Max PP i1s MAXSNP-hard for bipartite graphs.

L-reduction: preserves approximability

3-occurrence
MAX3SAT

L_-reduction

>

each variable appears

at most 3 times

f :(Xv AY Z)/\(X\/y\/ Z)/\(Xv AY Z)

Max PP for
bipartite graphs

Our Results (approximabiliy)

General graphs (1) MAXSNP-hard

25 —(2) (2) [12 (APX-hard)
® @ee 6
L s 90@ — No PTAS unless P=NP
Trees [NP-hard]
25

g G (2) FPTAS
eleJolole 4

(5) [15

Pseudo-poly.-time algorithm

Pseudo-Polynomial-Time Algorithm

Max PP 1s NP-hard even for trees.

Max PP can be solved for a tree T in time O(F ?n)
If the supplies and demands are integers.

7

\.

e sum of all demands

F:mM{ .
« sum of all supplies

J

25

fof -
(2) (3) 9) (4)

® [15

() 2+3+4+---+4+5=43
[] 15+25=40
F=min{43,40}=40

max fulfillment < F |

Pseudo-Polynomial-Time Algorithm

Dynamic Programming

Pseudo-Polynomial-Time Algorithm

Py

optimal partition of T, optimal partition of T

fulfillment = 18 7 fulfillment = 20 V

Pseudo-Polynomial-Time Algorithm

Dynamic Programming

marginal power

20 - (1o+5+3% =2

20-10=10

llllllllllllll

fulfillment: 18 fulfillment: 10

Pseudo-Polynomial-Time Algorithm

Dynamic Programming

20-(10+3)=7 20-(10+5)=5

:
L4 “
& .
& *
& .
& *

fulfillment: fulfillment: 15 [

Pseudo-Polynomial-Time Algorithm

& X

optimal partition of T

fulfillment: 15

Pseudo-Polynomial-Time Algorithm

stalrcase,non-increasing

marginal power

A
P—0—0
0
fulfillment: 10 3
2 0—0—0
1 JT F
ol 123 IO
fulfillment
) —
fulfillment: 15 F points

Pseudo-Polynomial-Time Algorithm

optimal partition of T

deficient power

_ :
fulfillment: 9

Pseudo-Polynomia’- Time Algorithm_

& X

optimal partition of T

OV..
_.N' fulfillment: 5 R fulfillment: 8

_| fulfillment: 9 N fulfillment: 12

Pseudo-Polynomial-Time Algorithm

‘staircase, non-decreasing ‘

deficient power

A
N B
(s¥sf O—0—
*[rutfiimenta] o 0
2_w q)_o_
—
01123 fulfillment
A ~ ~— —
_I fulfillment: 9 [utfiliment 12 F points

Pseudo-Polynomial-Time Algorithm

marginal power deficient power
A A

< ’.o ! boseoomeensonsonsononsed 9.9

° F oO F
00 QO i i i i i

ASEILES —————
0 123 fulfillment 0 123 fyIfiliment

Q| /Q\
(2) (3) |20] F4\ O(F 2) time
(5) |25}

o0

O
3

marginal power deficient power marginal power deficient power

A
A A N S S—

0 oo Pecececiecceteticticnienans oo

ooo |- e 00 L E
?:- ‘OOF ?.,-MI:; ‘?9;;5;; >
0 123 fulfillment 0 123 fulfillment| [0 123 fulfillment O 123 ¢ (fijiment

? o> . -

4 deficient power

——

marginal power

root LY

(3
(4) @

20 (5

OWOO max fulflllment '
S ' o
0 12 3 fulfilment 0 '123 fulfillment
@ N
ynamic
DO®Q W Q) T6 Programming
2) 3 20/ @ 4
® [25]

15|

Pseudo-Polynomial-Time Algorithm

Computation

time ‘

for each vertex

There are n vertices.

root

(3
(4) @

2® @ @ Q) Tg

20 (5
15|

2 @

20

©)
5

A

25|

Dynamic
Programming

Pseudo-Polynomial-Time Algorithm

Computation time ‘

for each vertex =« +=x=ererve- O(F?)
There are n vertices.

Computation time
O(F 2n)

The algorithm takes polynomial time if
F Is bounded by a polynomial in n.

(2) FPTAS

et all demands and supply be positive real numbers.

In time polynomial

For any &, 0< £<1, the algorithm finds a partition
of a tree T such that

OPT - APPRO < £ OPT

In both nand 1/¢.

-

\

!

=7

n:
o2

_/

n : # of vertices

(2) FPTAS

The algorithm 1s similar to the previous algorithm.

marginal
power

t sampled fulflllment

(2) FPTAS

e
The alg total error < error/merge X # of merge

< 21 X n
.

|

marginal ———/
nower OPT - APPRO < 2nt

0 T fulfillment
APPRO

(2) FPTAS

Error my: max demand

_&em,

OPT—APPRO <2nt < | t

(2) FPTAS

Error my: max demand
OPT — APPRO < 2nt | t= 82T1d
—éMy < m, < oPT
= ¢OPT

OPT — APPRO < ¢ OPT

error OPT — APPRO
ratio OPT

<&

(2) FPTAS

Error my: max demand

OPT — APPRO < ¢ OPT

marginal power

Computation time

O_t Siripledfulflﬂment
- .
— points

t

Conclusions

General graphs
19 (1) MAXSNP-hard

22 9“9 12 (APX-hard)

8) (65 @’6
15-H6) -G 13 No PTAS unless P=NP

Trees | NP-hard |

25

g G (2) FPTAS
eloloJole

(5) [15

Variant (Generalization of Knapsack Problem)

find a partition which maximizes sum of profits of
all demand vertices that are supplied power.

10

Efete

l demand || profit]

Variant (Generalization of Knapsack Problem)

find a partition which maximizes sum of profits of
all demand vertices that are supplied power.

O 10 x 10

Sum Sum

demands = 8 demands = 3+7 = 10
profits = 2004 orofits = 50+30 = 80

Variant (Generalization of Knapsack Problem)

find a partition which maximizes sum of profits of
all demand vertices that are supplied power.

10
@39 G4 (620
EPTAS for KP FPTAS for trees

[Ibarra and Kim ’75]

Variant (Generalization of Knapsack Problem)

find a partition which maximizes sum of profits of
all demand vertices that are supplled power.

10

EPTAS for KP FPTAS fOr trees

4 .
extendable to partial k- trees

\If there Is exactly one supply

Variant (Generalization of Knapsack Problem)

find a partition which maximizes sum of profits of
all demand vertices that are supplled power.

10
EPTAS for KP FPTAS for trees
8 .)
extendable to partial k-trees 20

(graphs with bounded treewidth)@. & G 1D+G, 25

df there Is exactly one supply G @13

Thank Youl

Series-Parallel Graphs (recursively)
(1) A single edge is a SP graph.

® ® @ .terminal
(2a) Serles connection

A N

(2b) Parallel connection

/ G\

N N
O >

T
\G,

SP Graph & Decomposition Tree

® :terminal

P

/7

P

S
/S\/ /<\

e, € € € e € &

leaves
Decomposition tree

SP Graph & Decomposition Tree

€,
77N
€6
5 € _ e

@ :terminal

1 & € € & € &
leaves
Decomposition tree

SP Graph & Decomposition Tree

77N

e, € €; € €5 € €
Series connection leaves

® ‘terminal Decomposition tree

SP Graph & Decomposition Tree

€,
el/‘
€6
e S S
‘Nl ¢/ /\
€5
e, © € € € € €

Series connection leaves

® ‘terminal Decomposition tree

SP Graph & Decomposition Tree

€
el} Y
P
e /
€, €, S S
h A A
e, € € € € € 6

Parallel connection leaves

® ‘terminal Decomposition tree

SP Graph & Decomposition Tree

f_. 3 AN/
N (AN AN

e, € €; € €5 € €
Series connection leaves

® ‘terminal Decomposition tree

SP Graph & Decomposition Tree

e, €3 S

/

P

S

e, € €; € €5 € €
Series connection leaves

® ‘terminal Decomposition tree

SP Graph & Decomposition Tree

P

e / AN
/

P

S
’ /S\/ /\/\

Parallel connection leaves

® ‘terminal Decomposition tree

SP Graph & Decomposition Tree

leaves
Decomposition tree

® :terminal

SP Graph & Decomposition Tree

DP algorithm @

e, € €3)\e € € e

leaves
Decomposition tree

® :terminal

Pseudo-Polynomial-Time Algorithm

Suppose that a SP graph has exactly one supply.

Max PP for such a SP graph can be solved in time
O(F2n) if the demands and the supply are integers.

[mf all demands | n: # of vertices

pseudo-polynomial-
time algorithm

e

‘ max fulfillment = F ‘ (2) FPTAS

Pseudo-Polynomial-Time Algorithm
What should we store In the table for Max PP ?

DP
Gy, @ﬁ@ table
P
\S NG
G
S 4 ! /\ (\ N\
(4)—5) 3) @
/\ g5 %

SE

J

il

Decomposition tree DP Corresponding
table SP subgraphs table

DP

Pseudo-Polynomial-Time Algorithm

Pseudo-Polynomial-Time Algorithm

>

N

Pseudo-Polynomial-Time Algorithm

Pseudo-Polynomial-Time Algorithm

Pseudo-Polynomial-Time Algorithm

If G had more than one supply;,
Max PP would find a partition.

Pseudo-Polynomial-Time Algorithm
Max PP finds only one component with the supply

Pseudo-Polynomial-Time Algorithm

(- .
two terminals are supplied power and
contained In same component

.

Pseudo-Polynomial-Time Algorithm
Max PP finds only one component with the supply

Pseudo-Polynomial-Time Algorithm

" two terminals will be supplied power, but are
contained In different components

.

Pseudo-Polynomial-Time Algorithm
Max PP finds only one component with the supply

Pseudo-Polynomia’- Time Algorithm_

[this terminal will be supplied power]

ERL

plied power]

IS never sup

Pseudo-Polynomial-Time Algorithm
Max PP finds only one component with the supply

Pseudo-Polynomial-Time Algorithm

[two terminals are never supplied power]

— —_~

Pseudo-Polynomial-Time Algorithm

both are/will be
supplied power

o

same component

e

different components

one 1s/will be supplied, but
the other is never supplied

)
b

‘both are never supplied

E—

S |

Pseudo-Polynomial-Time Algorithm

If the component has the supply vertex,
then the component may have the “marginal’” power.

Pseudo-Polynomial-Time Algorithm

If the component has the supply vertex,
then the component may have the “marginal’” power.

3 2)

10-(3+2)=5
marginal power

Pseudo-Polynomial-Time Algorithm

If the component has no supply vertex,
the component may have the “deficient” power.

Pseudo-Polynomial-Time Algorithm

If the component has no supply vertex,
the component may have the “deficient” power.

i i deficient power

3+7+2=12

Pseudo-Polynomial-Time Algorithm

both are/will be
supplied power

o

same component

e

different components

one 1s/will be supplied, but
the other is never supplied

)
b

‘both are never supplied

E—>

S |

Pseudo-Polynomial-Time Algorithm

both are/will be
supplied power

fulfillment

Vv

marginal power

‘staircase,non-increasing

marginal power

A

()—O—(?

5 —0

3__

2 0—0—0

1 <[" F

ol 123 e
fulfillment

Pseudo-Polynomia’- Time Algorithm _

both are/will be
supplied power

‘staircase, non-decreasing ‘

deficient power

fulfillment |
L | e
ﬁ 2_, Q—O—
E —

fulfillment

deficient power

marginal power deficient power
A A

0 123fulfillment 0 123 fulfillment

marginal power

000

marginal power deficient power

A e
° F p——y F

) @00 i i i i

1 o0 F————
0 123 fulfillment 0 123

- -— - -_- .-

o

marginal power

1‘ deficient power

............ .ooo

deficient power ~ °°

: : i :-: a
= e s AR N fulfillment

different componen ¢ 123 turtimment 0

‘ooo F
>

123 fulfillment

Pseudo-Polynomia’- Time Algorithm_

f

time

O(F*
\P (LXJ ’ table
\ TE

Gl

> 9@ a o
A/\ @ D | TR

\—/\c J A

Decomposition tree SIZ€ respond| Siz€
O(F) |subgrap| ©(F)

Pseudo-Polynomial-Time Algorithm

P

of nodes
= 0O(n)

A \\ e
/\ O(F2n)

e1 e2 e; €, € € 6

Decomposition tree

n . # of vertices in a given SP graph

Pseudo-Polynomial-Time Algorithm

Suppose that a SP graph has exactly one supply.

Max PP for such a SP graph can be solved in time
O(F2n) if the demands and the supply are integers.

[mf all demands | n: # of vertices

pseudo-polynomial-
time algorithm

e

‘ max fulfillment = F ‘ (2) FPTAS

(2) FPTAS

et all demands and supply be positive real numbers.

In time polynomial

For any g, 0< £<1, the algorithm finds a
component with the supply vertex such that

APPRO > (1-£) OPT

In both nand 1/¢.

-

\

{

=7

n:
o2

_/

n : # of vertices

(2) FPTAS

The algorithm 1s similar to the previous algorithm.

marginal
power

t sampled fulflllment

(2) FPTAS

The algorithm 1s similar to the previous algorithm.

marginal
power

APPRO > (1-¢) OPT

0 <>

t zm,) Tulfillment
my: max demand 4n]

Open Problem

Is there an approximation algorithm for SP graphs
having more than one supply?

e FPTAS or PTAS ?
e constant-factor ?

Open Problem

both are/will be
supplied power

o

same component

e

different components

one 1s/will be supplied, but
the other is never supplied

:
b

‘both are never supplied

E—

S |

Open Problem

both are/will be supplied power

different components A
The two components must
become ONE component.

J
ﬁ; G deficient power
3 ~ i)
%

J : |
J+k<:

e

deficient power
— J + k

(1D)

F
o

fulfillment

ol 123

Open Problem

If a given graph has more than one supply.

{afCient power é ®\{2)

= j+k GZ

Our Results

‘ Max subset sum problem ‘ Max PP

FPTAS
[Ibarra and Kim, 1975] :> our FPTAS

straightforward ?

Our Results

‘ Max subset sum problem ‘ Max PP

FPTAS
[Ibarra and Kim, 1975] :> our FPTAS

straightforward ? margin: 2

Sum: 10
0 Sum: 8 10 — 5

The graph structure plays crucial role.

Assumption of the Problem

Every demand vertex must be supplied from exactly
one supply vertex.

:> Max PP is applied to Power delivery networks.

It is difficult to synchronize
two or more sources.

Application of Max PP

Power delivery problem

. 4
load

1
_ demand vertex

cable segment

feeder

1
\supply vertex

Power delivery network

Application of Max PP

Power delivery problem

Determine whether there
exIsts a switching so that
all loads can be supplied. |

If not all loads can be supplied,
we want to maximize the sum |
of loads supplied power.

Max Partition Problem POwer delivery ﬂetWOFKLJ

