Partitioning Graphs of Supply and Demand

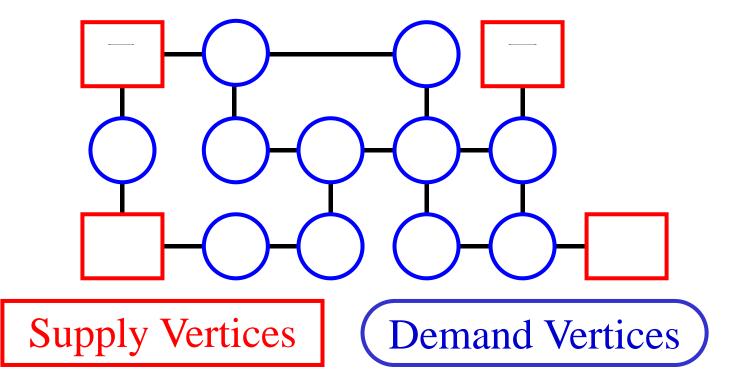
——Generalization of Knapsack Problem——

Takao Nishizeki

Tohoku University

Graph

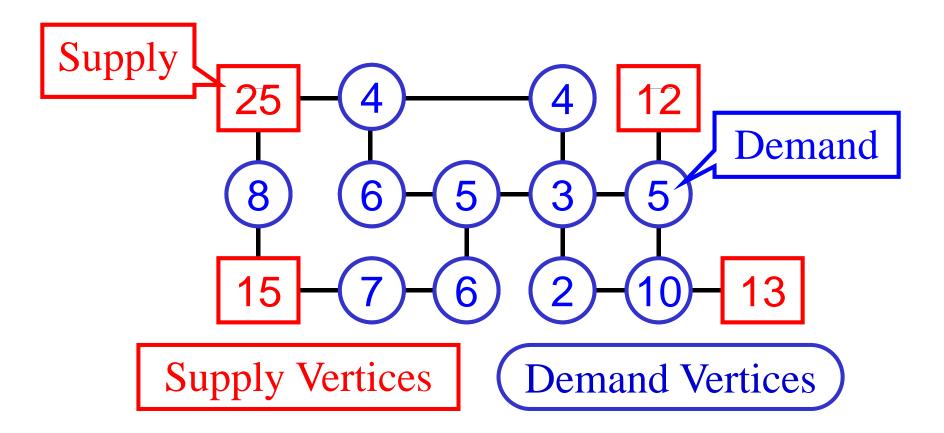
Supply Vertices and Demand Vertices



Graph

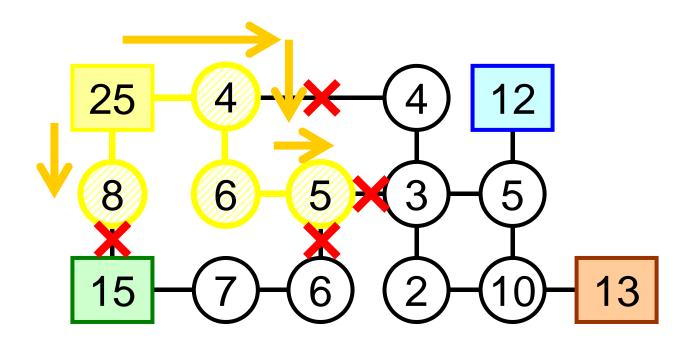
Each Supply Vertex has a number, called Supply.

Each Demand Vertex has a number, called Demand



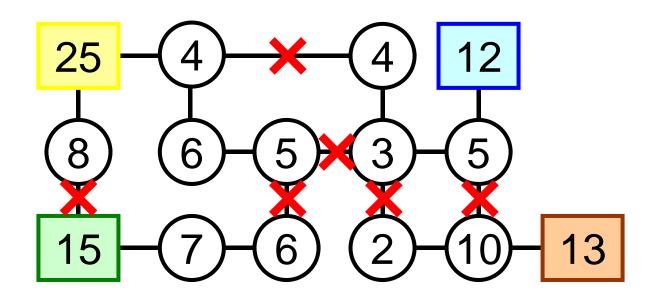
Desired Partition

partition G into connected components so that



Desired Partition

partition G into connected components so that

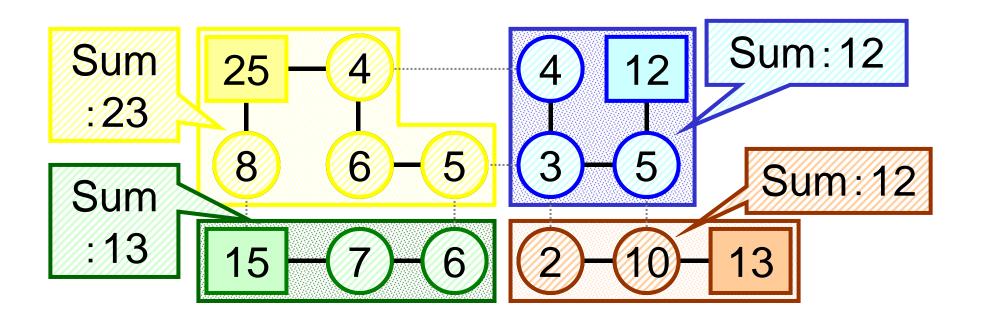


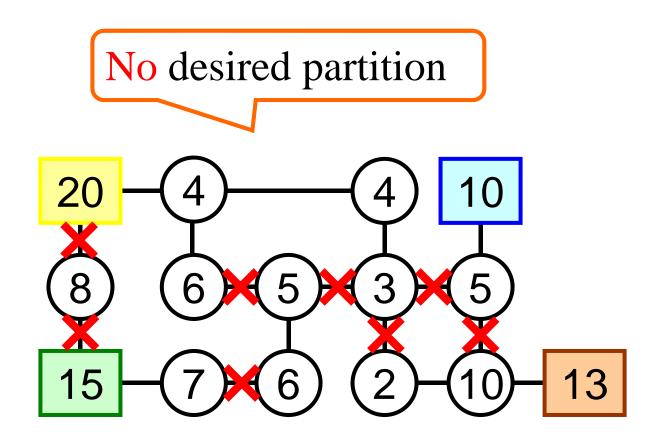
Desired Partition

partition G into connected components so that

- (a) each component has exactly one supply vertex,
- (b) supply is no less than the sum of demands in the component.

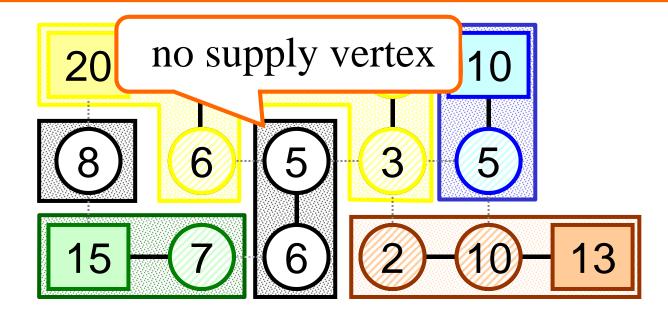
 Desired partition





A partition of a graph must satisfy

- (a) each component has at most one supply vertex,
- (b) supply is no less than the sum of demands in the component.



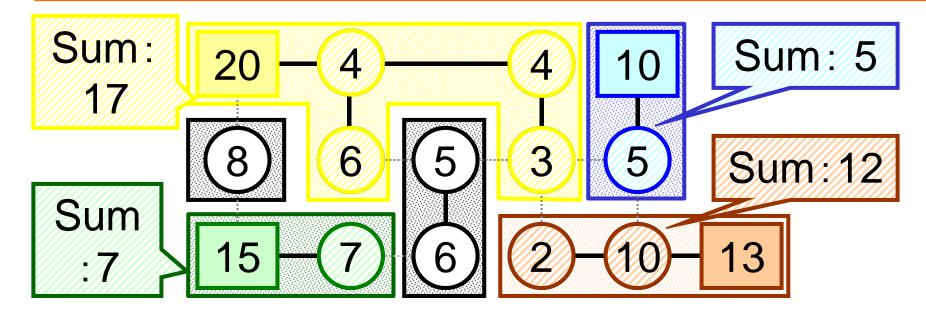
finds a partition that maximizes the "fulfillment."

A partition of a complement actiofy

- (a) each con
- (b) supply is

sum of demands in all components with supply vertices

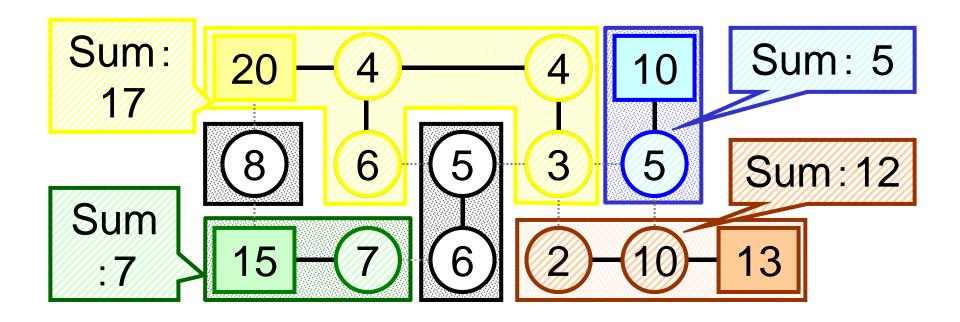
component if there is a supply vertex.



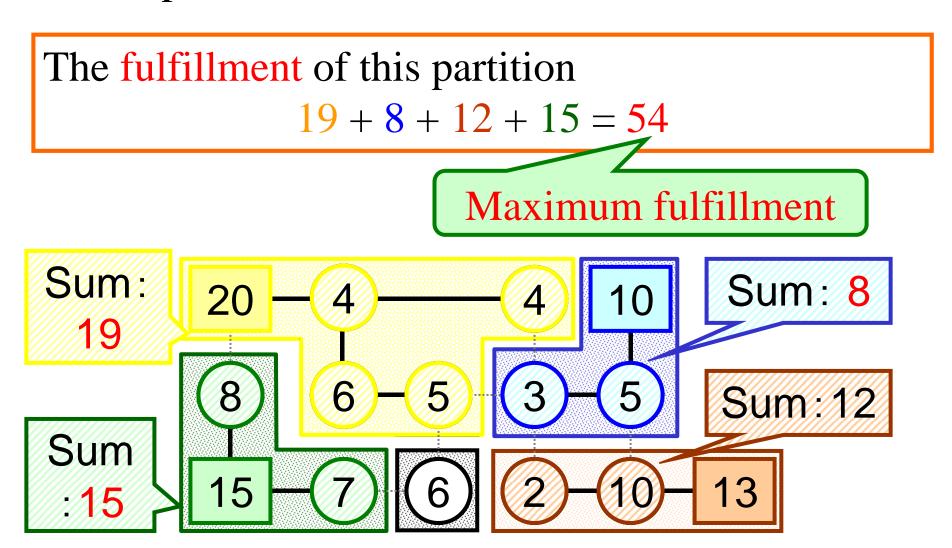
finds a partition that maximizes the "fulfillment."

The fulfillment of this partition

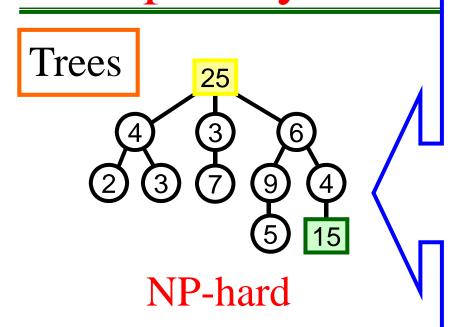
$$17 + 5 + 12 + 7 = 41$$



finds a partition that maximizes the "fulfillment."

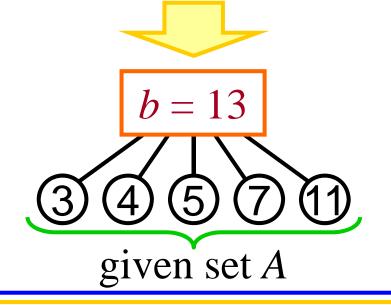


Complexity Status



max subset sum problem

(simple ver. of Knapsack)



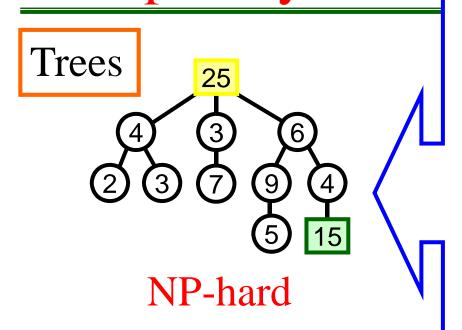
Maximum Subset Sum Problem (NP-hard)

instance: a set A of integers and an integer b

find: a subset $C \subseteq A$ which maximizes the sum of

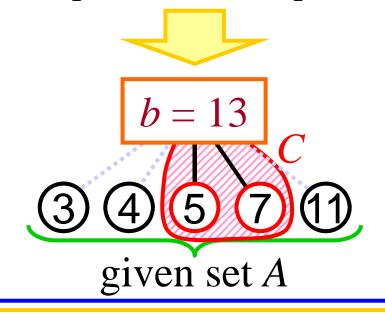
integers in C s.t. the sum does not exceed b.

Complexity Status



max subset sum problem

(simple ver. of Knapsack)



Maximum Subset Sum Problem (NP-hard)

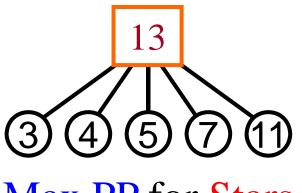
instance: a set A of integers and an integer b

find: a subset $C \subseteq A$ which maximizes the sum of

integers in C s.t. the sum does not exceed b.

Related Result

max subset sum problem (NP-hard)



Max PP for Stars

Fully Polynomial-Time Approximation Scheme (FPTAS)

[Ibarra and Kim '75]

with one supply at center

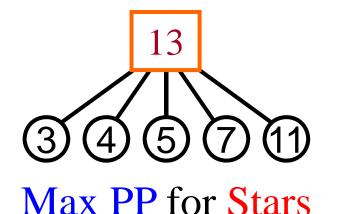
FPTAS: for any ε , $0 < \varepsilon < 1$, the algorithm finds an approximation solution such that

APPRO
$$> (1-\varepsilon)$$
 OPT

in time polynomial in both n and $1/\varepsilon$.

Related Result

max subset sum problem (NP-hard)

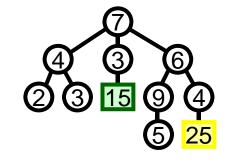


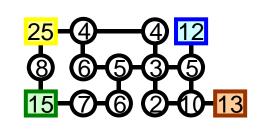
Fully Polynomial-Time Approximation Scheme (FPTAS)

[Ibarra and Kim '75]

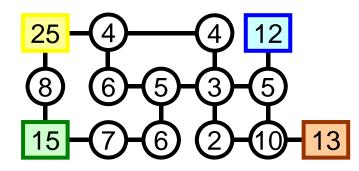
with one supply at center

good approximation for larger classes ?





General graphs



(1) MAXSNP-hard (APX-hard)

No PTAS unless P=NP

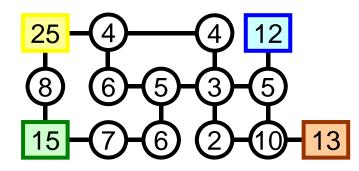
No FPTAS unless P=NP

PTAS: for any ε , $0 < \varepsilon < 1$, the algorithm finds an approximation solution such that

APPRO
$$> (1-\varepsilon)$$
 OPT

in time polynomial in n. (1/ ε :regarded as a constant.)

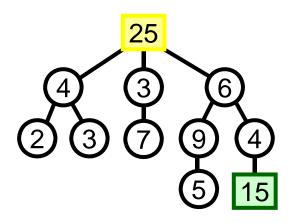
General graphs



(1) MAXSNP-hard (APX-hard)

No PTAS unless P=NP

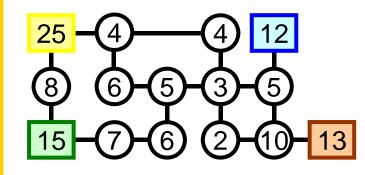
Trees



NP-hard

(2) FPTAS

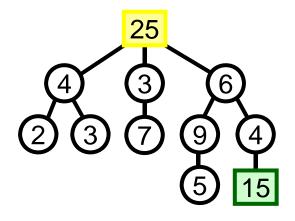
General graphs



(1) MAXSNP-hard (APX-hard)

No PTAS unless P=NP

Trees



NP-hard

(2) FPTAS

Max PP is MAXSNP-hard for bipartite graphs.

L-reduction: preserves approximability

error ratio: ε'

3-occurrence MAX3SAT

L-reduction

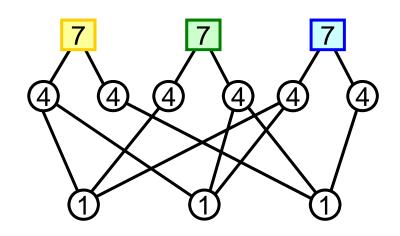
error ratio: ε

Max PP for bipartite graphs

each variable appears

at most 3 times

$$f = (x \lor y \lor z) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{y} \lor \overline{z})$$



3-occurrence MAX3SAT (MAXSNP-hard)

instance: variables and clauses s.t.

- each clause has exactly 3 literals; and
- each variable appears at most 3 times in the clauses find: a truth assignment which maximizes # of satisfied clauses

variables:
$$v$$
 w x y z at most 3 times
$$f = (v) w \vee y) \wedge (\overline{w} \vee \overline{x} \vee z) \wedge (\overline{v}) w \vee \overline{z}) \wedge (\overline{x} \vee \overline{y} \vee \overline{z})$$

3-occurrence MAX3SAT (MAXSNP-hard)

instance: variables and clauses s.t.

- each clause has exactly 3 literals; and
- each variable appears at most 3 times in the clauses find: a truth assignment which maximizes # of satisfied clauses

variables:
$$v$$
 w x y z at most 3 times
$$f = (v \lor w) \lor y) \land (\overline{w}) \lor \overline{x} \lor z) \land (\overline{v} \lor w) \lor \overline{z}) \land (\overline{x} \lor \overline{y} \lor \overline{z})$$

3-occurrence MAX3SAT (MAXSNP-hard)

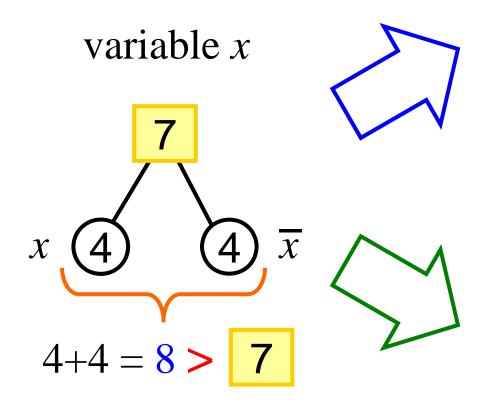
instance: variables and clauses s.t.

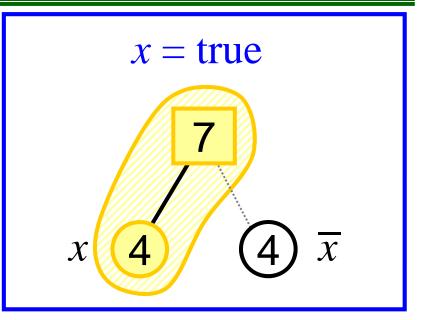
- each clause has exactly 3 literals; and
- each variable appears at most 3 times in the clauses find: a truth assignment which maximizes # of satisfied clauses

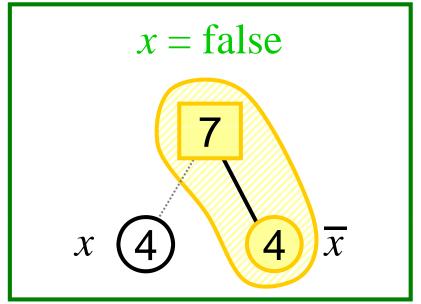
variables: v w x y z

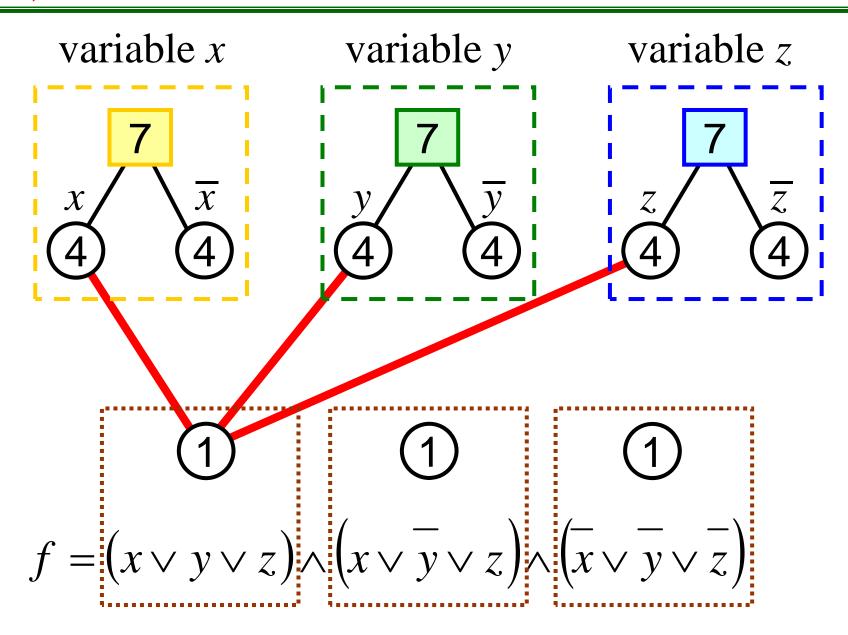
$$f = (v \lor w \lor y) \land (\overline{w} \lor \overline{x} \lor z) \land (\overline{v} \lor w \lor \overline{z}) \land (\overline{x} \lor \overline{y} \lor \overline{z})$$

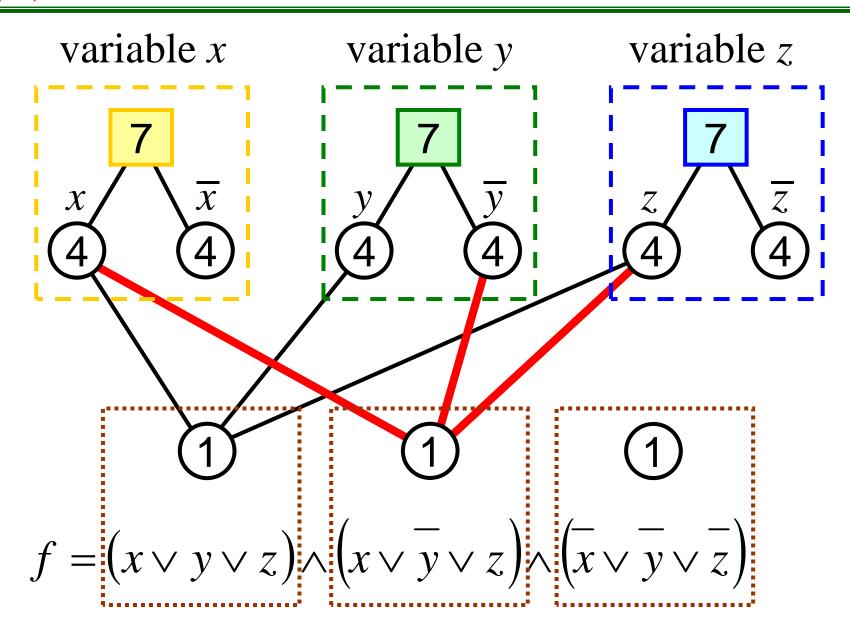
variable gadget

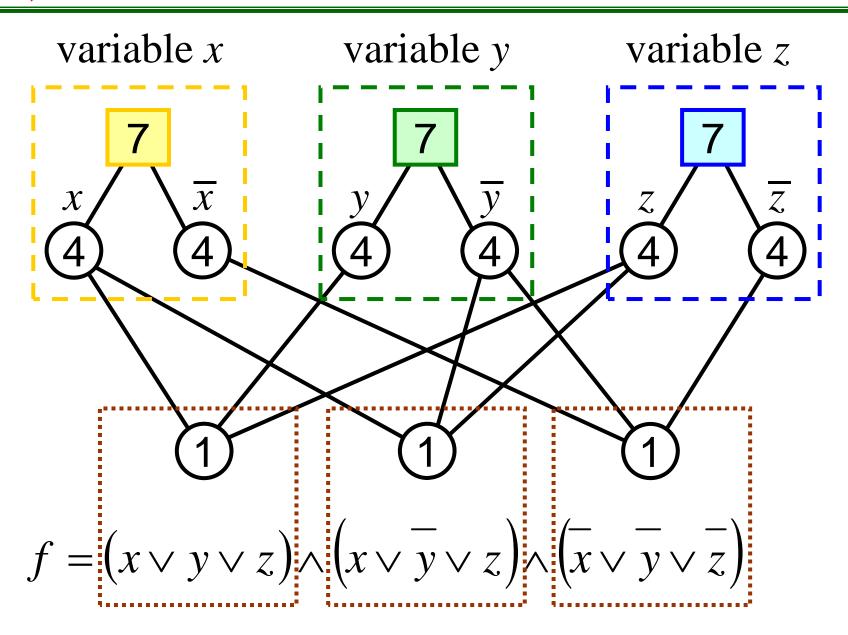












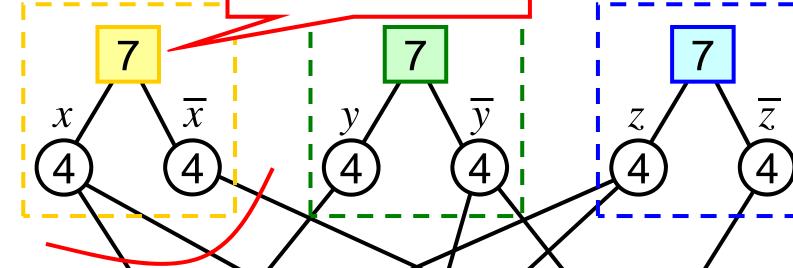
(1) **MAXS**

7 - 4 = 3

variable *x*

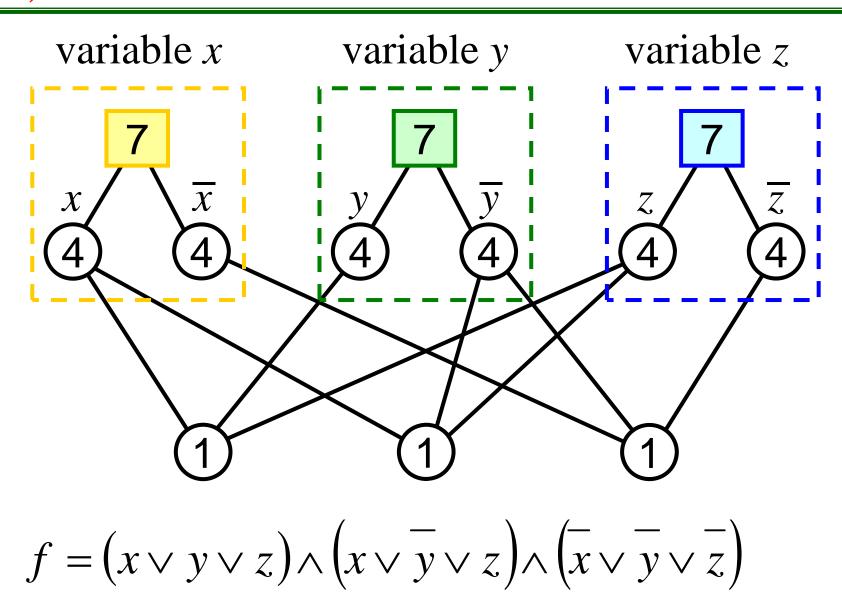
enough power

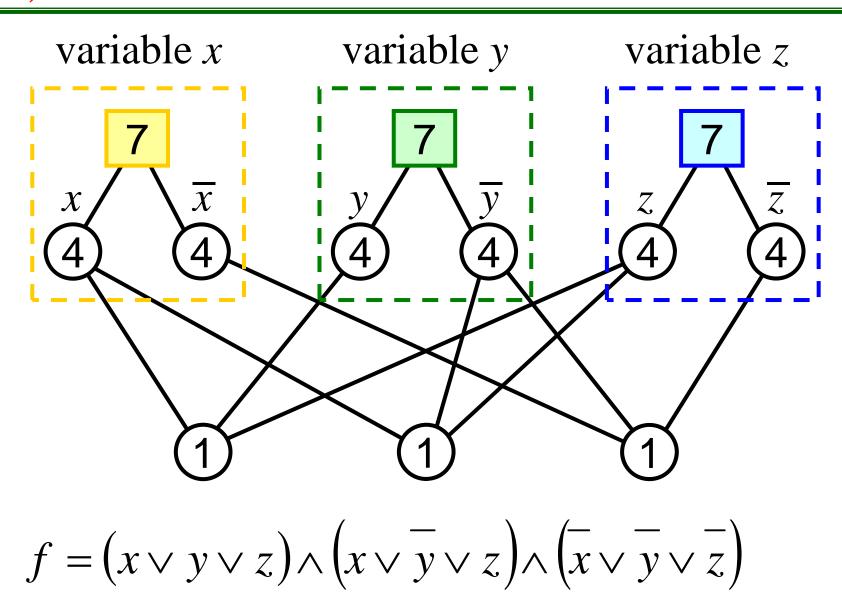
variable z

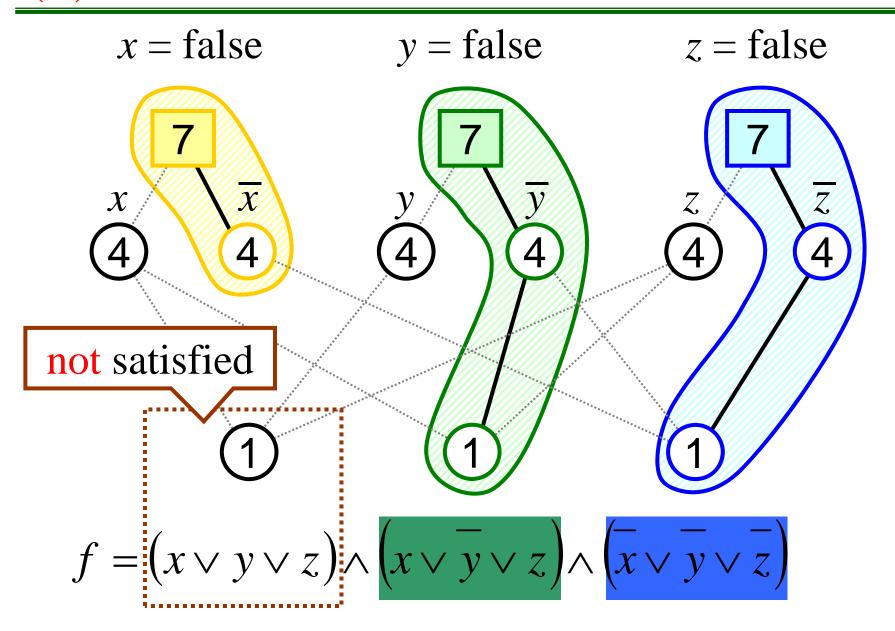


at most 3

$$f = (x \lor y \lor z) \land (x \lor y \lor z) \land (x \lor y \lor z)$$







Max PP is MAXSNP-hard for bipartite graphs.

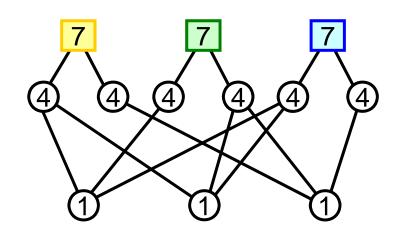
L-reduction: preserves approximability

3-occurrence MAX3SAT

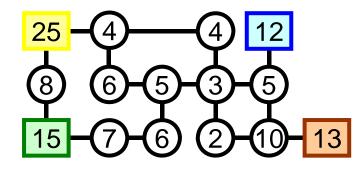
Max PP for bipartite graphs

each variable appears at most 3 times

$$f = (x \lor y \lor z) \land (x \lor y \lor z) \land (x \lor y \lor z)$$



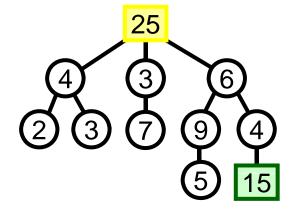
General graphs



(1) MAXSNP-hard (APX-hard)

No PTAS unless P=NP

Trees



NP-hard

(2) FPTAS

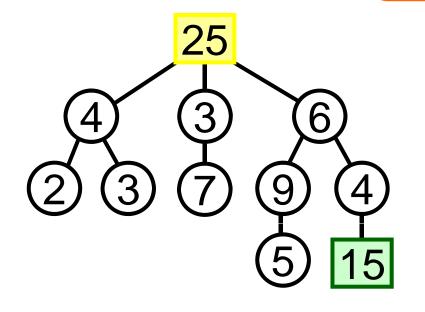
Pseudo-poly.-time algorithm

Pseudo-Polynomial-Time Algorithm

Max PP is NP-hard even for trees.

Max PP can be solved for a tree T in time $O(F^2n)$ if the supplies and demands are integers.

$$F = \min \begin{cases} \bullet \text{ sum of all demands} \\ \bullet \text{ sum of all supplies} \end{cases}$$



$$\bigcirc 2+3+4+\cdots+4+5=43$$

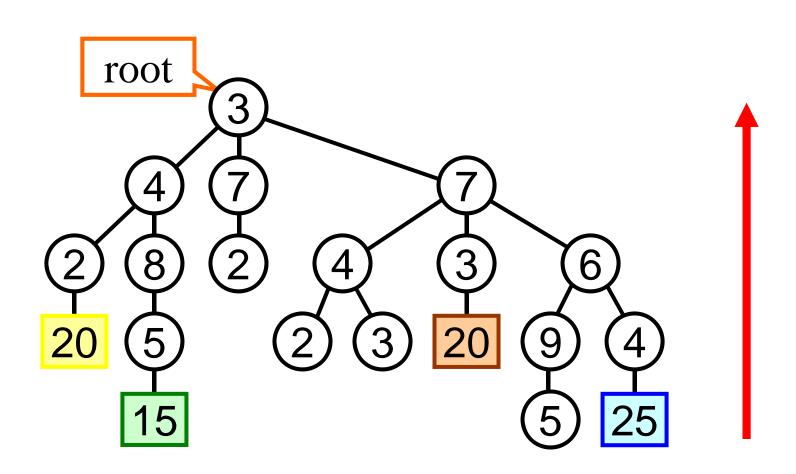
$$15+25=40$$

$$F = \min\{43,40\} = 40$$

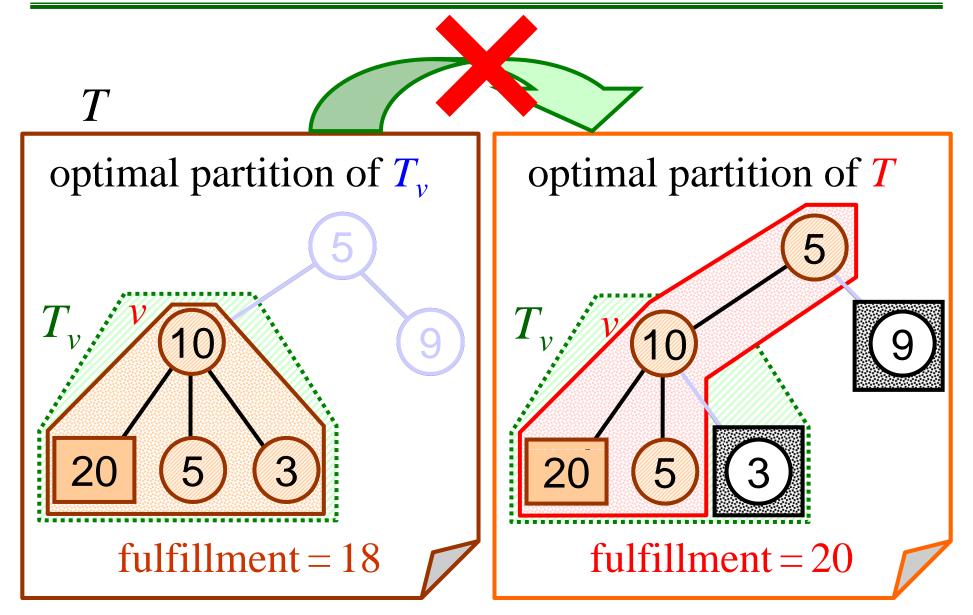
 $\max fulfillment \leq F$

Pseudo-Polynomial-Time Algorithm

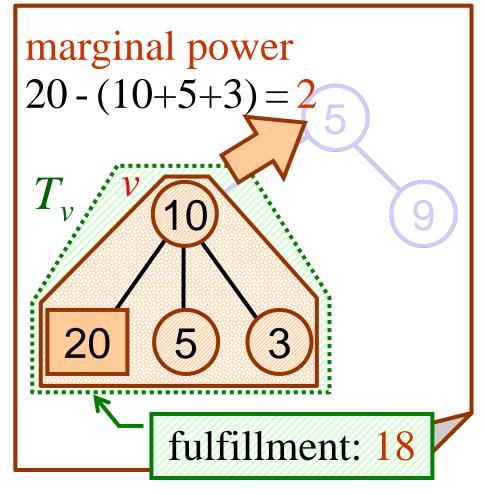
Dynamic Programming

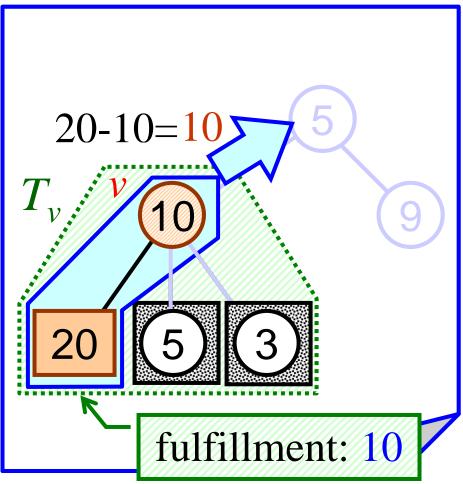


Pseudo-Polynomial-Time Algorithm

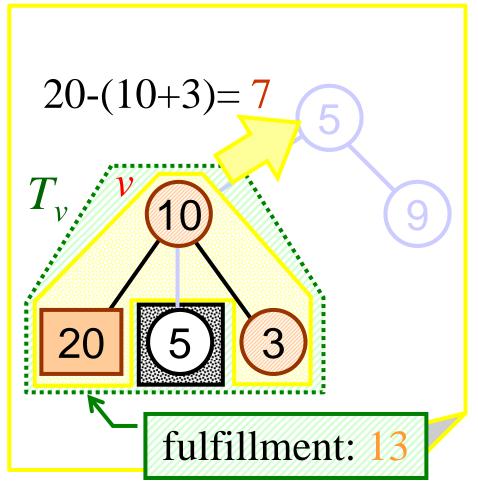


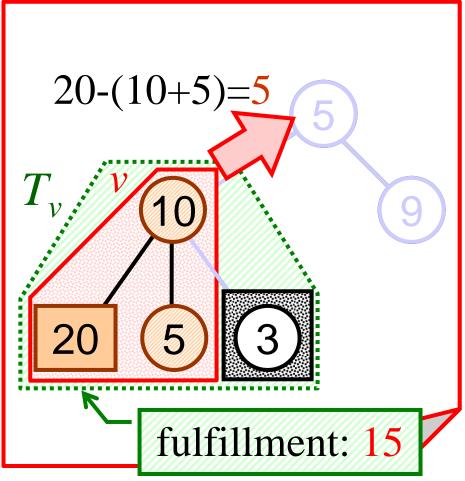
Dynamic Programming

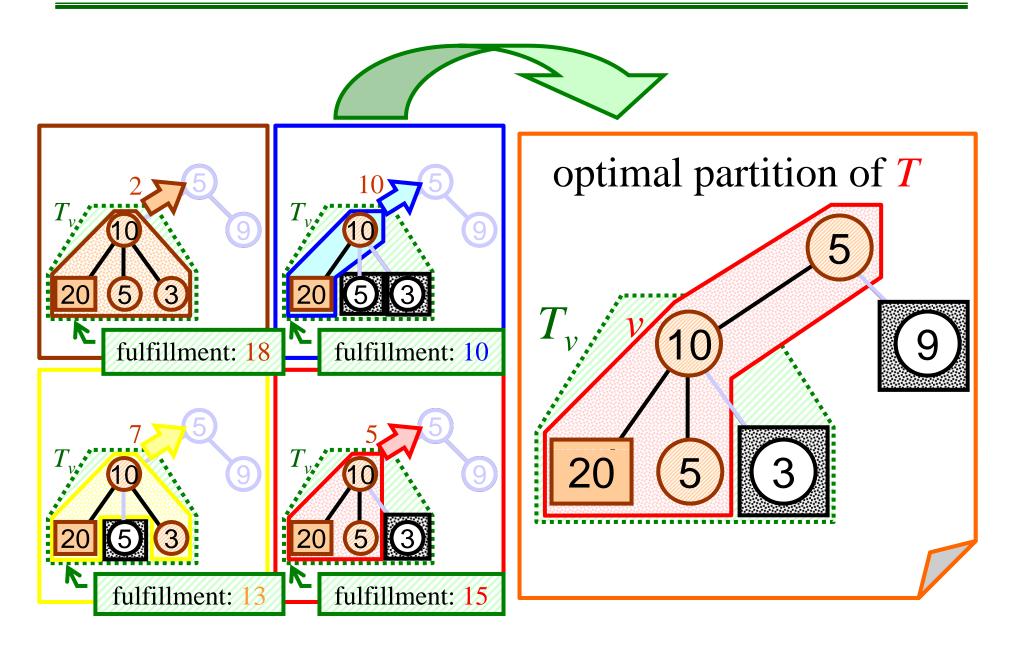




Dynamic Programming

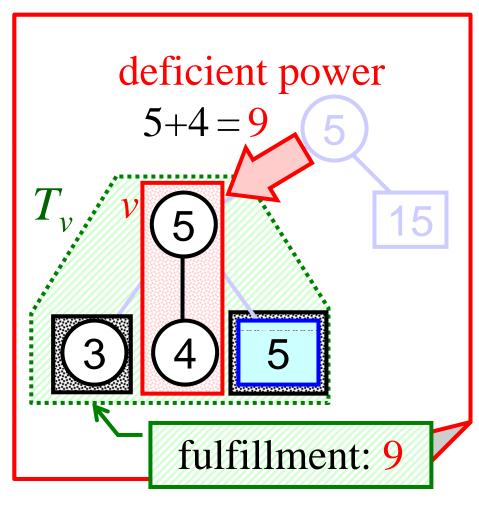


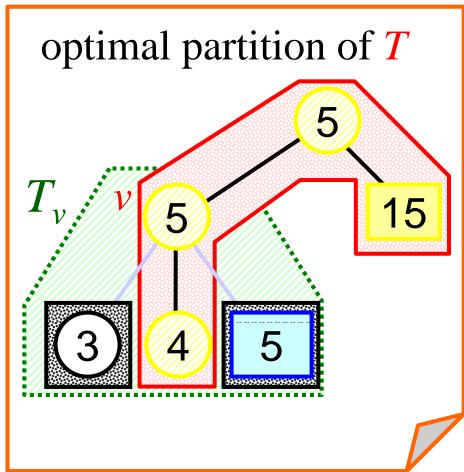


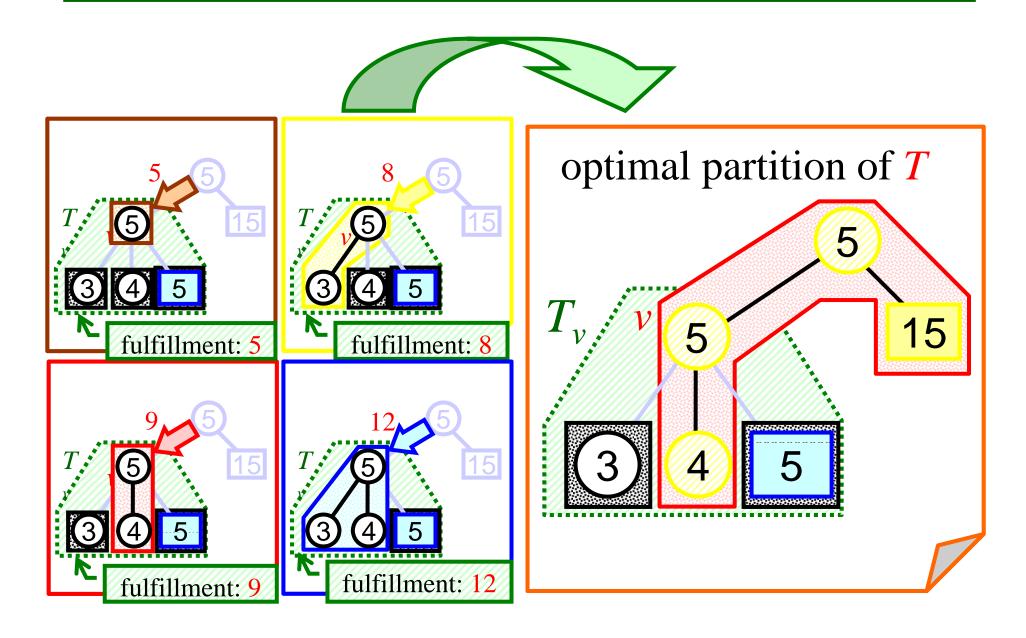


staircase, non-increasing

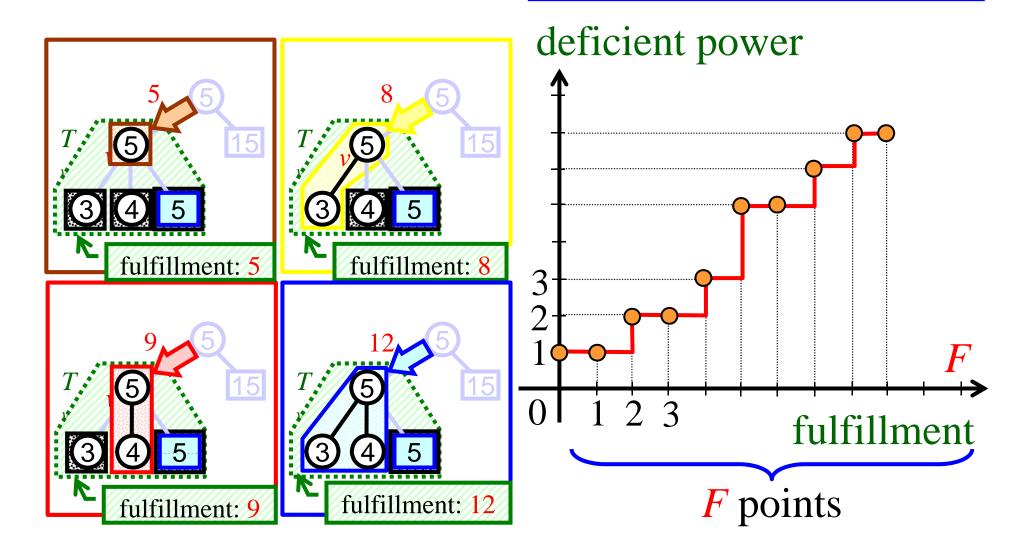
marginal power fulfillment: 18 fulfillment: 10 1 2 3 fulfillment F points fulfillment: fulfillment: 15

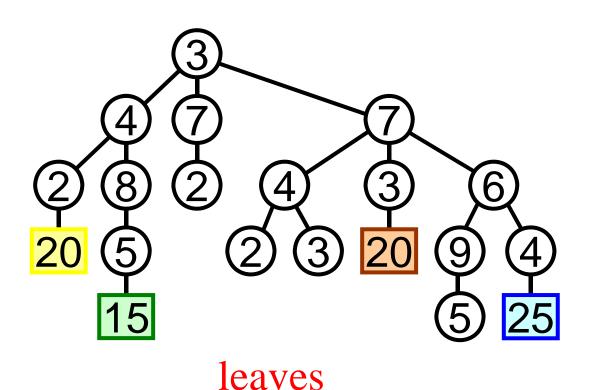




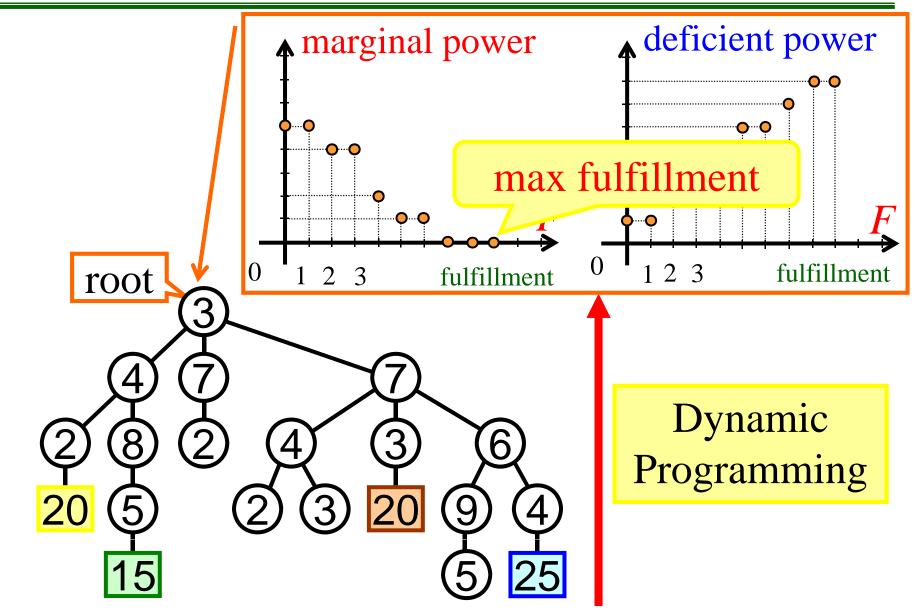


staircase, non-decreasing





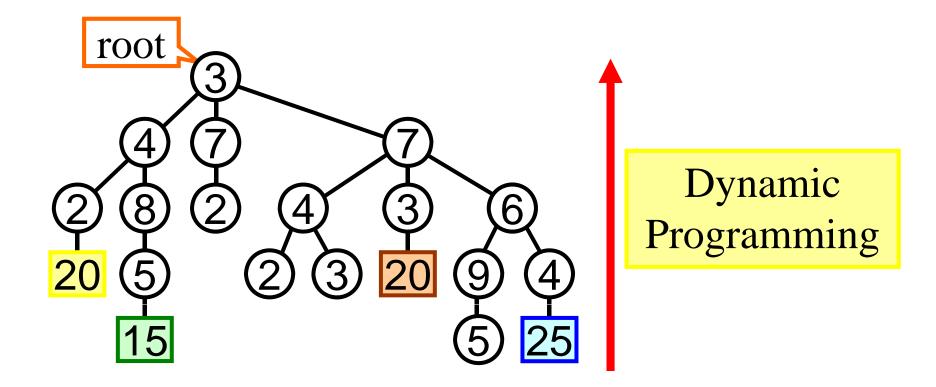
Pseudo-Polynomial-Time Algorithm marginal power deficient power 0 123 fulfillment 0 123 fulfillment $O(F^2)$ time marginal power marginal power deficient power deficient power 0 123 fulfillment 0 fulfillment 123 fulfillment fulfillment



Computation time

for each vertex $O(F^2)$

There are *n* vertices.



Computation time

for each vertex $O(F^2)$

There are n vertices.

Computation time $O(F^2n)$

The algorithm takes polynomial time if *F* is bounded by a polynomial in *n*.

Let all demands and supply be positive real numbers.

For any ε , $0 < \varepsilon < 1$, the algorithm finds a partition of a tree T such that

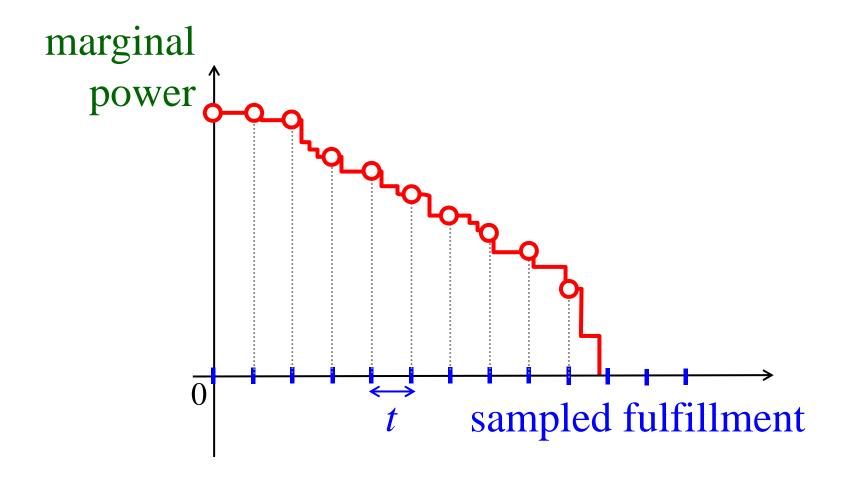
$$OPT - APPRO < \varepsilon OPT$$

in time polynomial in both n and $1/\varepsilon$.

$$O\left(\frac{n^5}{arepsilon^2}\right)$$

n: # of vertices

The algorithm is similar to the previous algorithm.



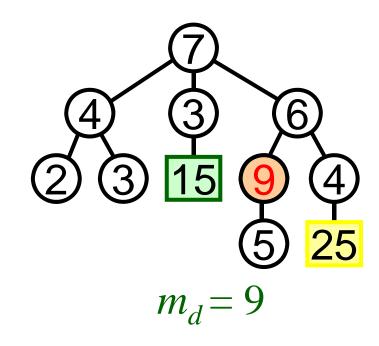
total error < error/merge × # of merge The alg 2*t* n marginal OPT - APPRO < 2ntpower **OPT** fulfillment

Error

OPT - APPRO < 2nt

 m_d : max demand

$$t = \frac{\varepsilon m_d}{2n}$$



Error

 m_d : max demand

$$\begin{array}{ccc}
\text{OPT} - \text{APPRO} < 2nt & & t = \frac{\varepsilon m_d}{2n} \\
& = \varepsilon m_d & & \\
& \leq \varepsilon \text{OPT} & & \\
\end{array}$$

 $OPT - APPRO < \varepsilon OPT$

$$\frac{\text{error}}{\text{ratio}} \frac{\text{OPT} - \text{APPRO}}{\text{OPT}} < \varepsilon$$

Error

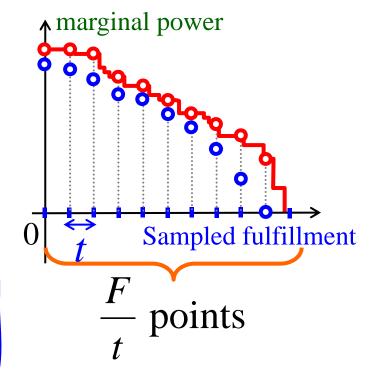
 m_d : max demand

$OPT - APPRO < \varepsilon OPT$

Computation time

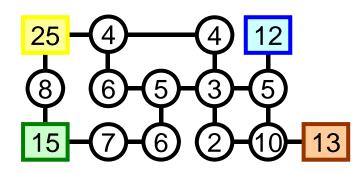
$$O\left(\left(\frac{F}{t}\right)^2 n\right) = O\left(\frac{n^5}{\varepsilon^2}\right)$$

$$t = \frac{\varepsilon m_d}{2n}, \quad F \le nm_d$$



Conclusions

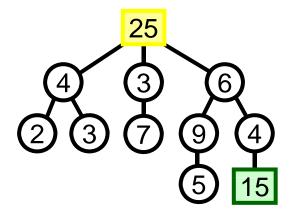
General graphs



(1) MAXSNP-hard (APX-hard)

No PTAS unless P=NP

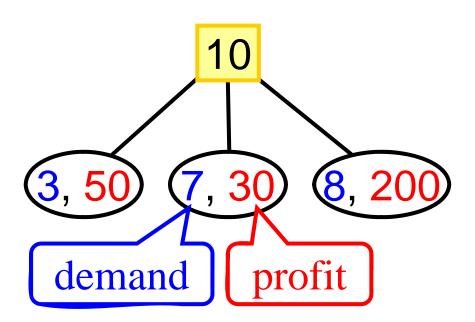
Trees



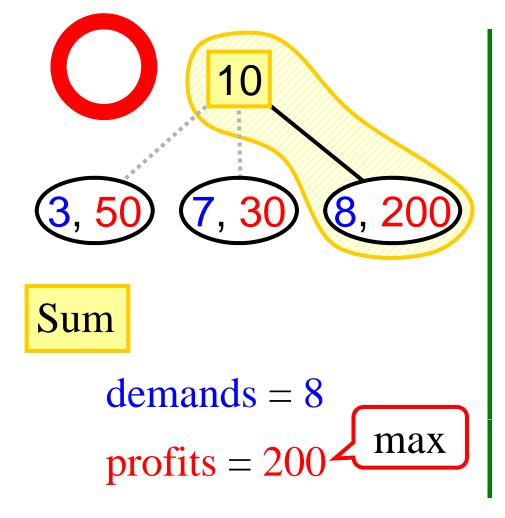
NP-hard

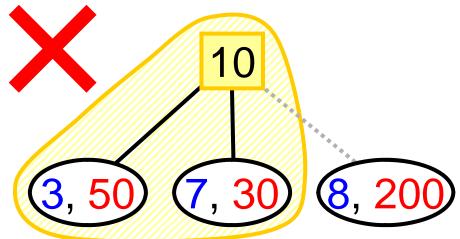
(2) FPTAS

find a partition which maximizes sum of profits of all demand vertices that are supplied power.



find a partition which maximizes sum of profits of all demand vertices that are supplied power.



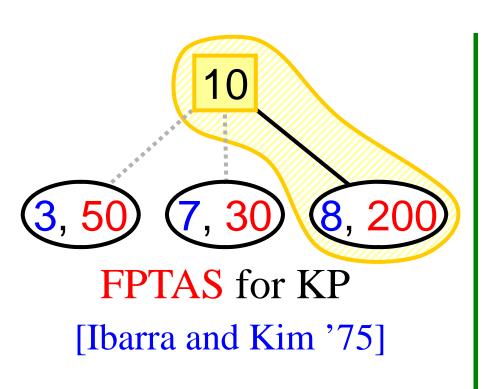


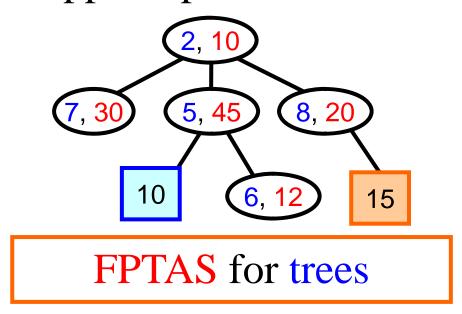
Sum

demands =
$$3+7 = 10$$

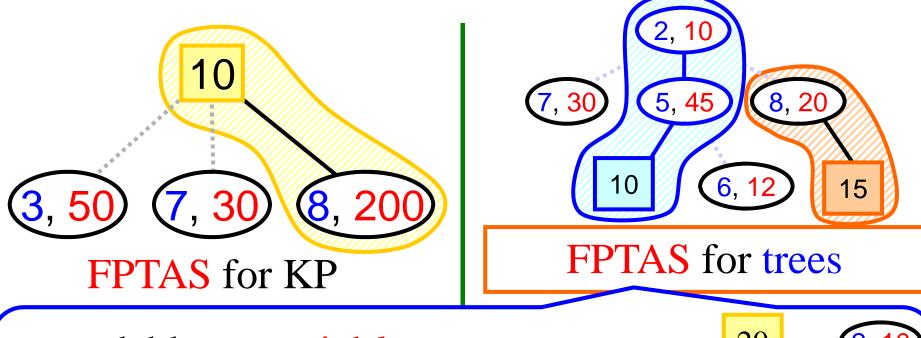
profits =
$$50+30 = 80$$

find a partition which maximizes sum of profits of all demand vertices that are supplied power.



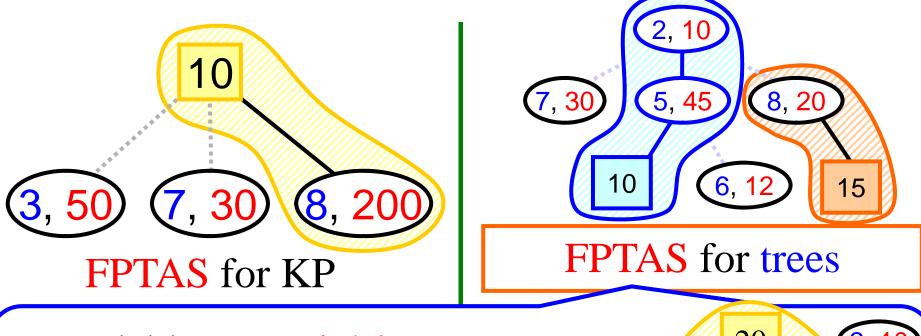


find a partition which maximizes sum of profits of all demand vertices that are supplied power.



extendable to partial k-trees (graphs with bounded treewidth) 7, 8, 6, 12 6, 12 6, 12 if there is exactly one supply 3, 5 8, 13

find a partition which maximizes sum of profits of all demand vertices that are supplied power.



extendable to partial *k*-trees

(graphs with bounded treewidth) 7, 8, 6, 12 5, 25

if there is exactly one supply

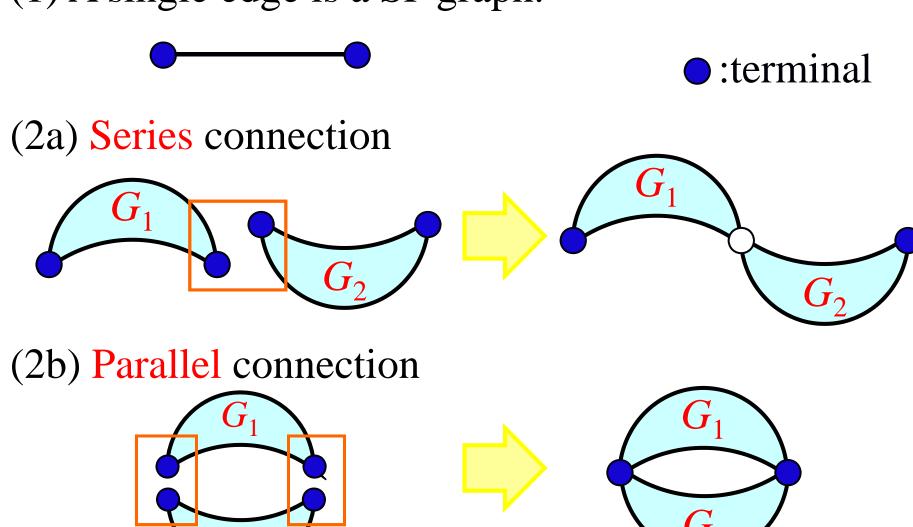
3, 5

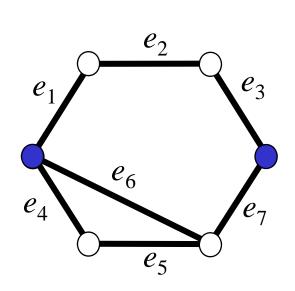
8, 3

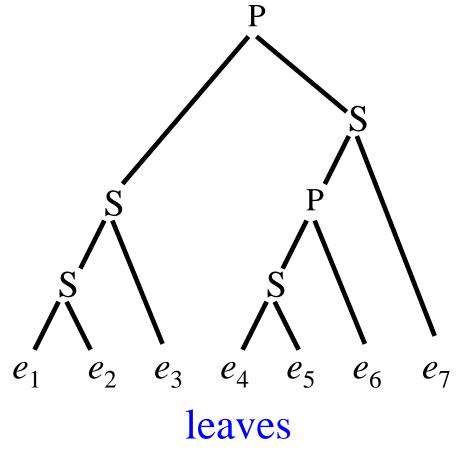
Thank You!

Series-Parallel Graphs (recursively)

(1) A single edge is a SP graph.

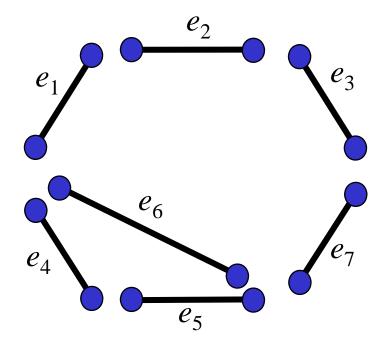






Decomposition tree

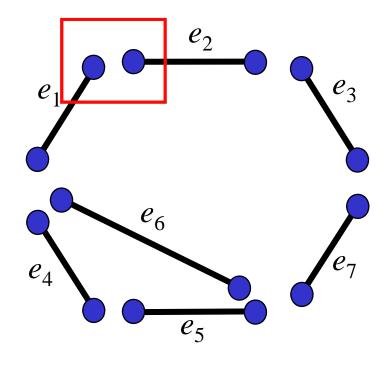
•:terminal



 e_1 e_2 e_3 e_4 e_5 e_6 e_7 leaves

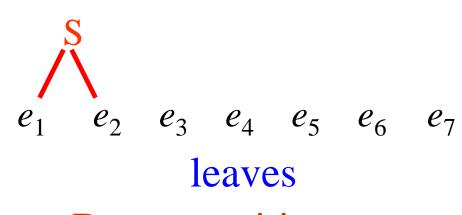
Decomposition tree

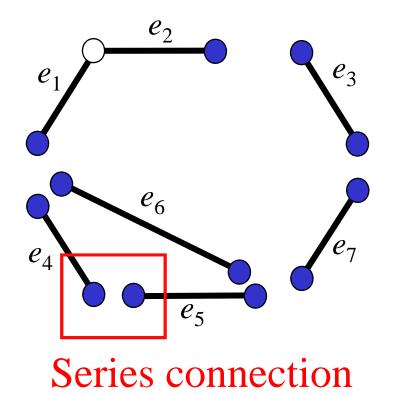
•:terminal



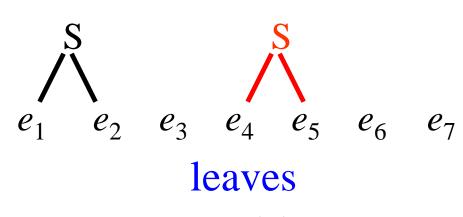
Series connection

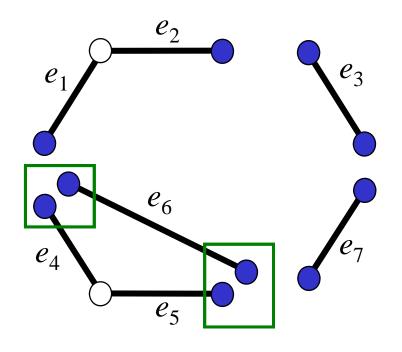
•:terminal





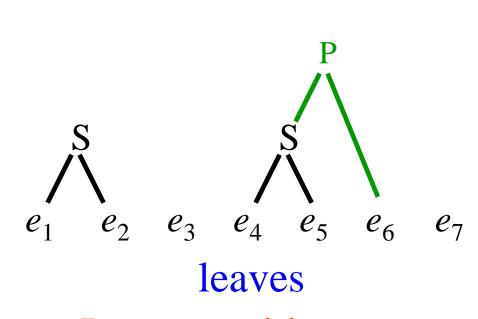
•:terminal

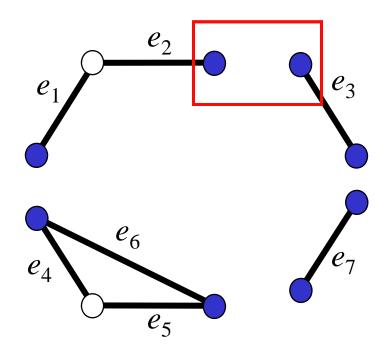




Parallel connection

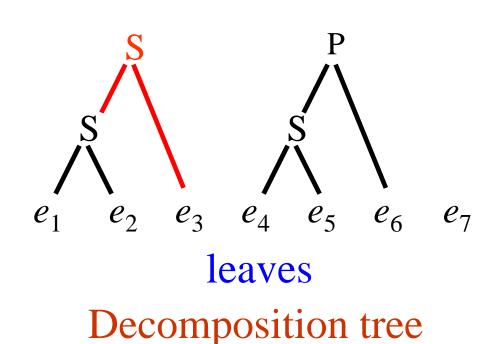
•:terminal

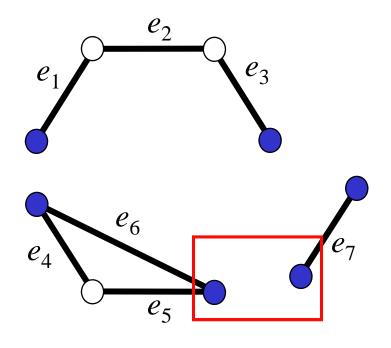




Series connection

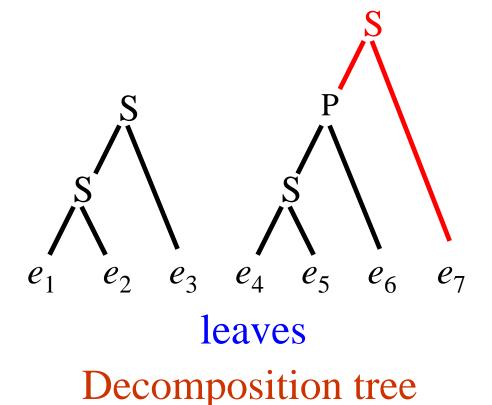
•:terminal

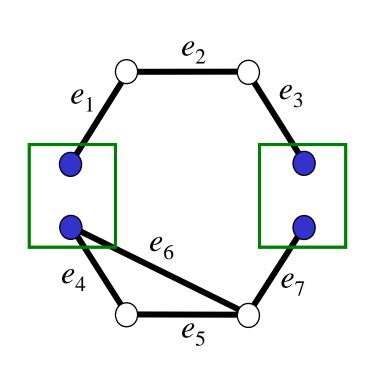




Series connection

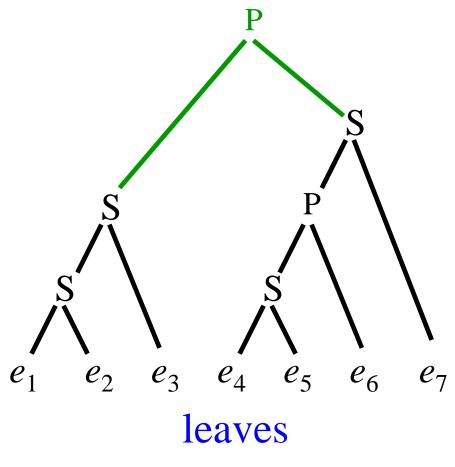
•:terminal

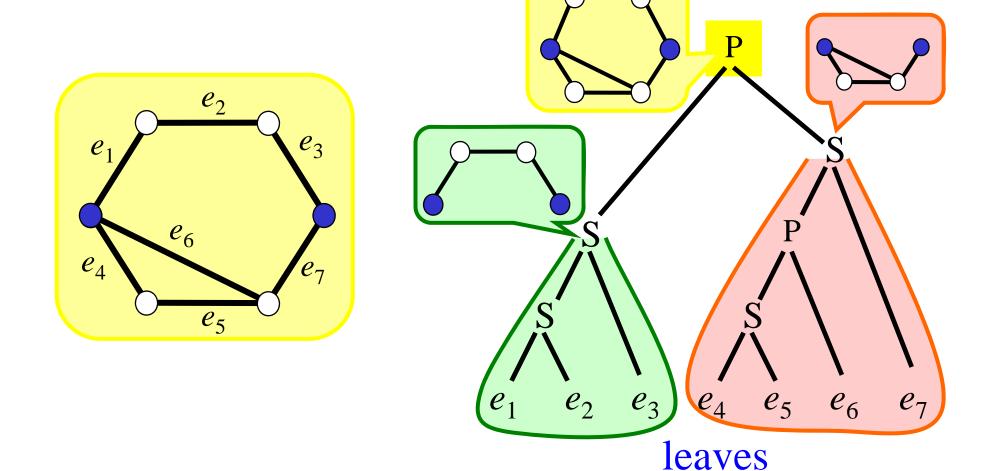




Parallel connection

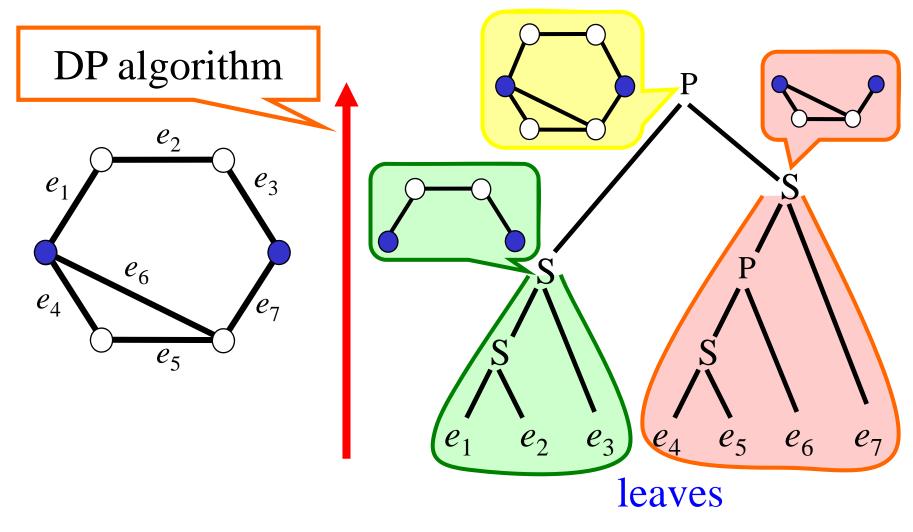
•:terminal





•:terminal

SP Graph & Decomposition Tree



•:terminal

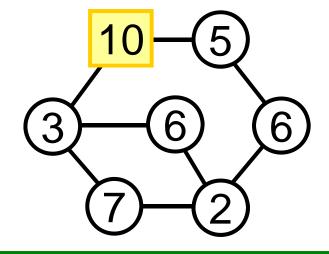
Decomposition tree

Suppose that a SP graph has exactly one supply.

Max PP for such a SP graph can be solved in time $O(F^2n)$ if the demands and the supply are integers.

F: sum of all demands

n: # of vertices

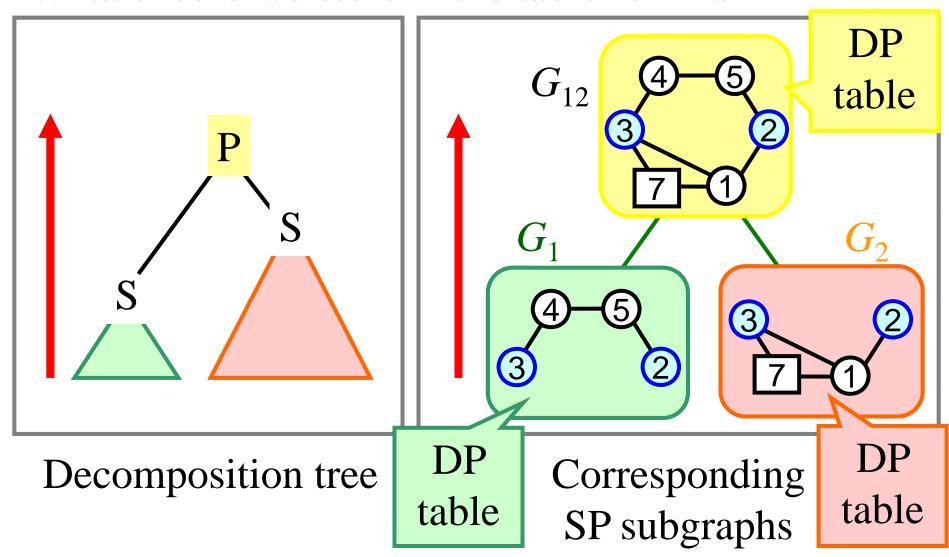


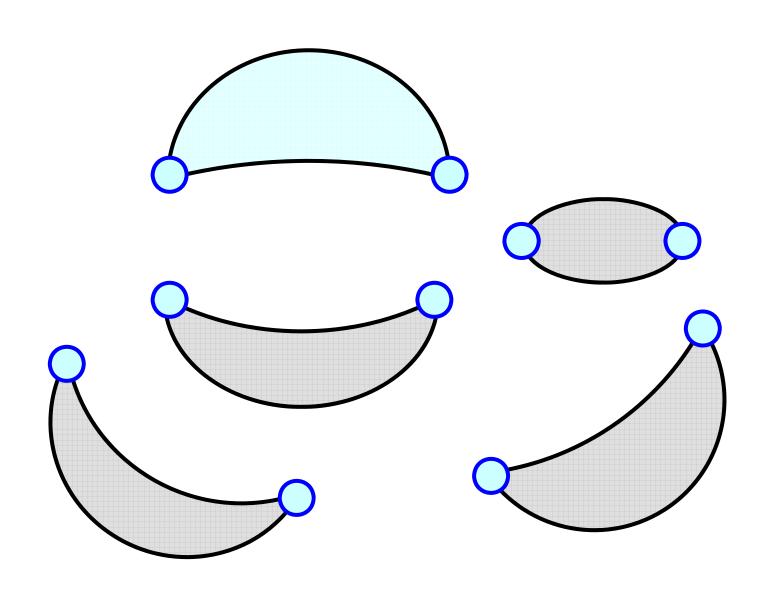
 $\max \text{ fulfillment } \leq F$

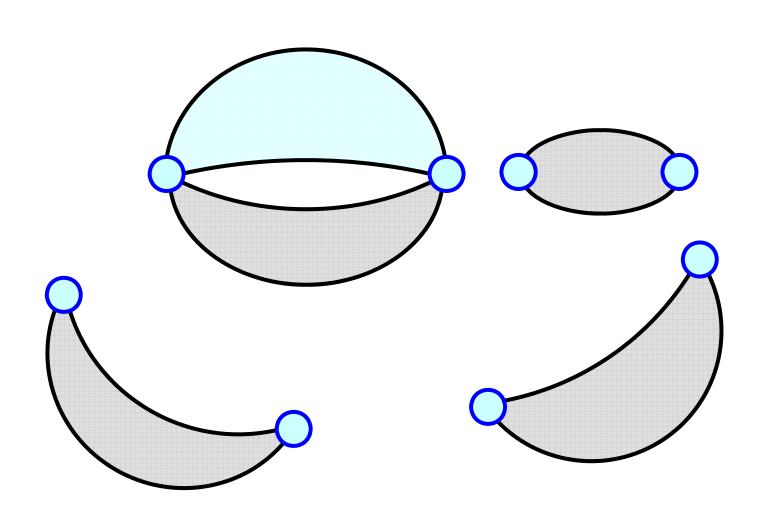
pseudo-polynomialtime algorithm

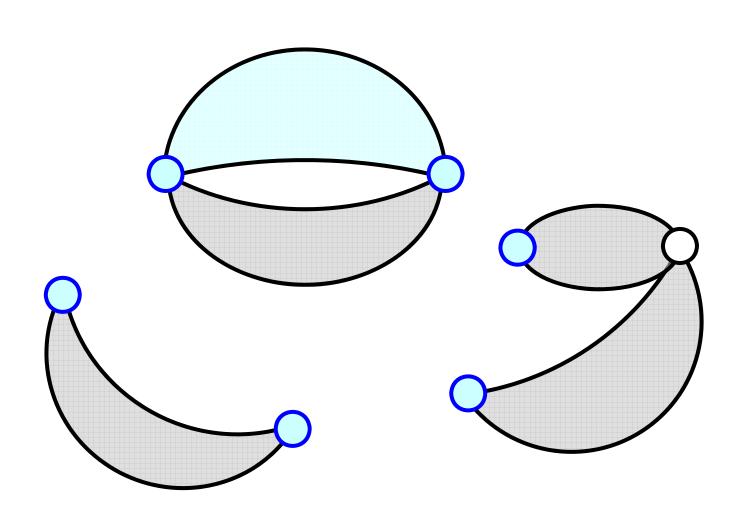
(2) FPTAS

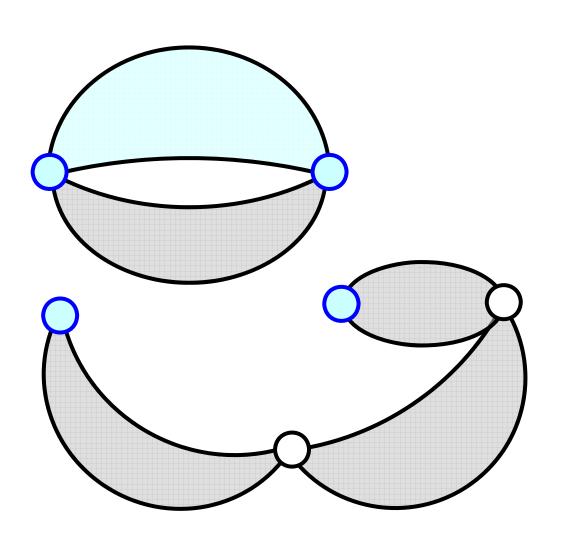
What should we store in the table for Max PP?



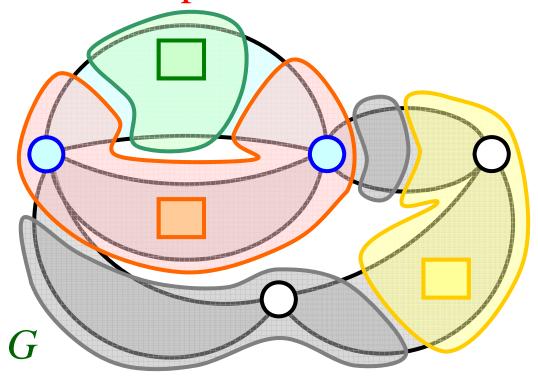




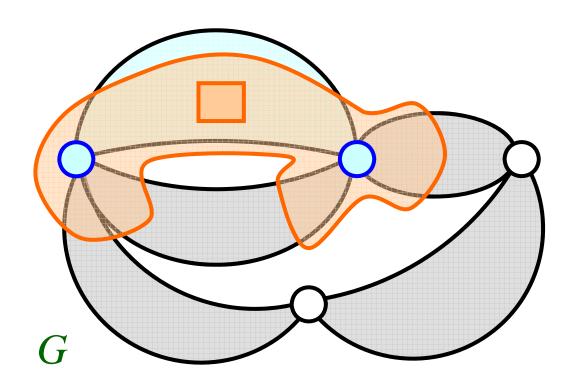




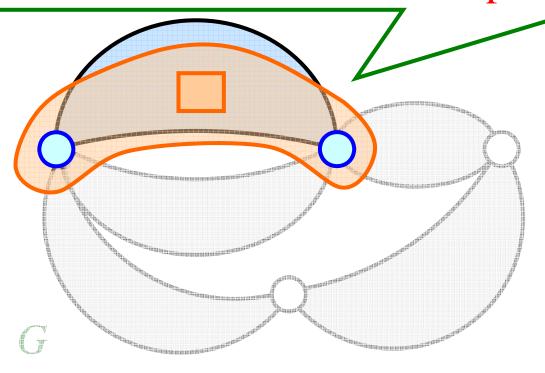
If *G* had more than one supply, Max PP would find a partition.



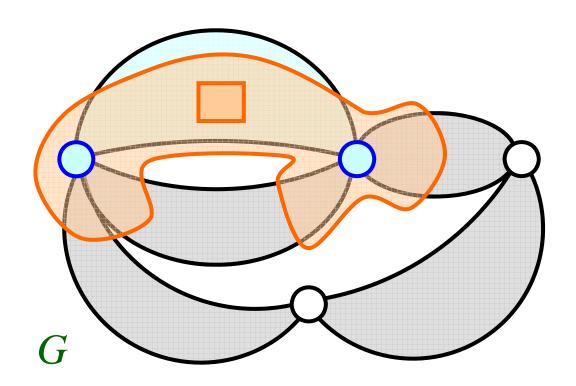
Max PP finds only one component with the supply



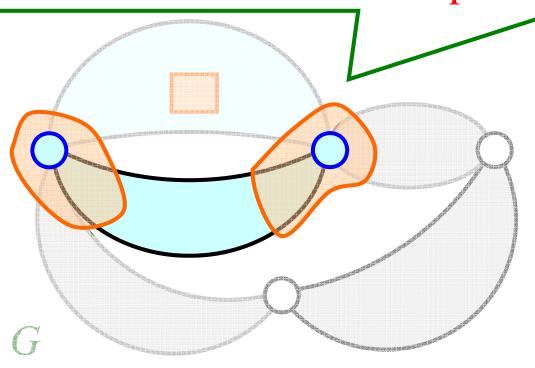
two terminals are supplied power and contained in same component



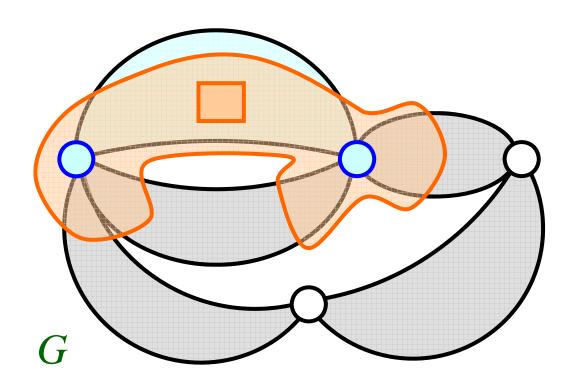
Max PP finds only one component with the supply

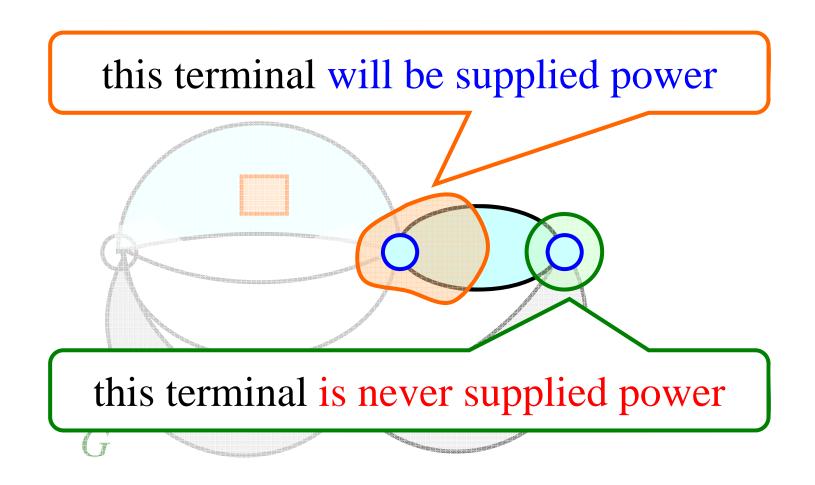


two terminals will be supplied power, but are contained in different components

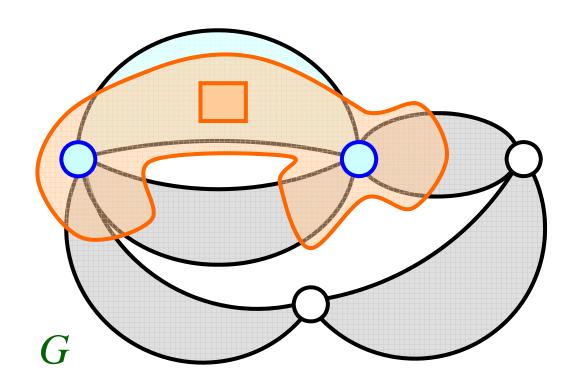


Max PP finds only one component with the supply

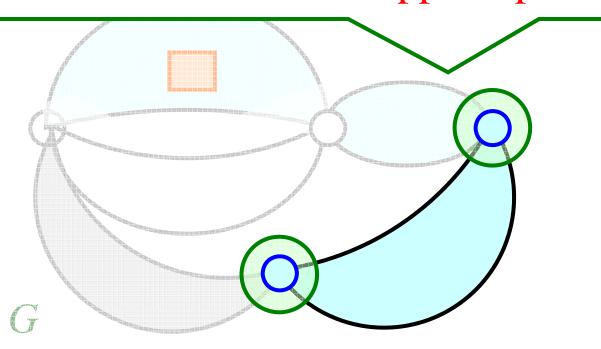




Max PP finds only one component with the supply

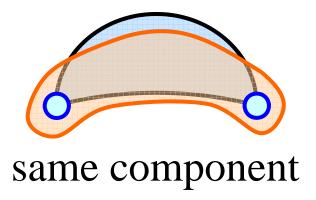


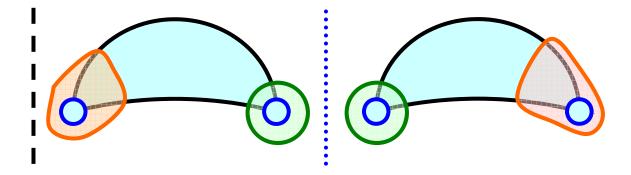
two terminals are never supplied power

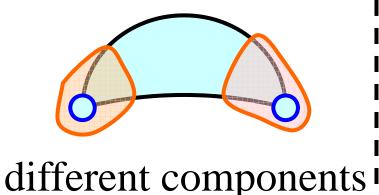


both are/will be supplied power

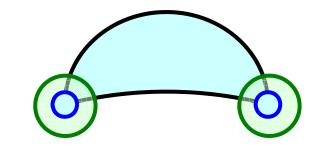
one is/will be supplied, but the other is never supplied



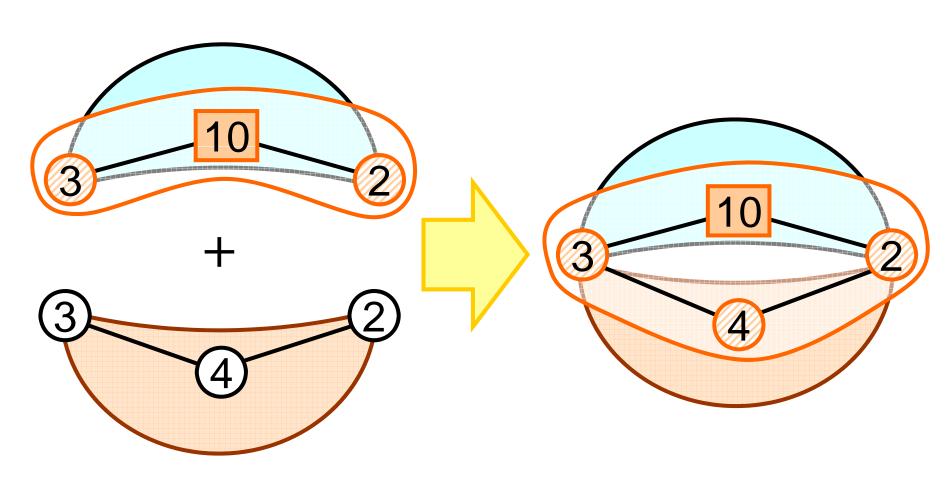




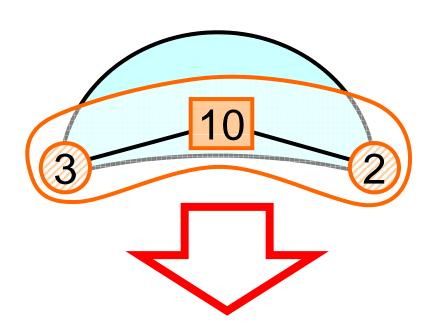
both are never supplied



If the component has the supply vertex, then the component may have the "marginal" power.



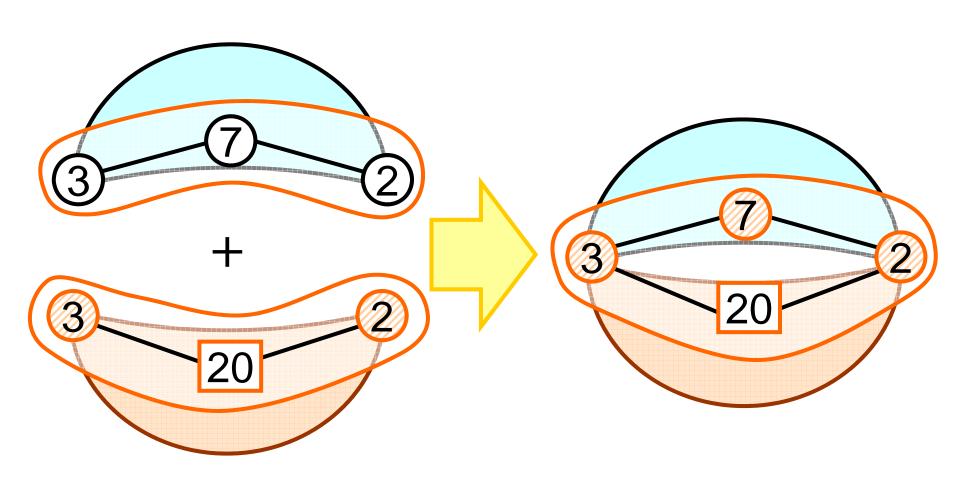
If the component has the supply vertex, then the component may have the "marginal" power.



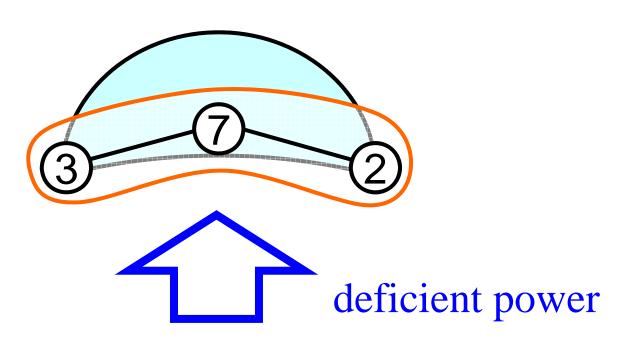
$$10 - (3+2) = 5$$

marginal power

If the component has no supply vertex, the component may have the "deficient" power.



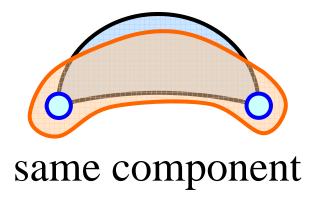
If the component has no supply vertex, the component may have the "deficient" power.

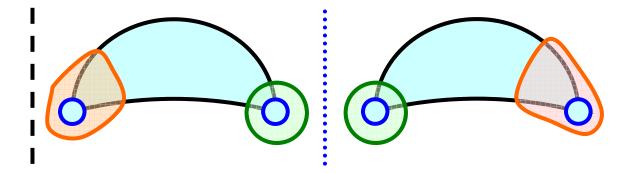


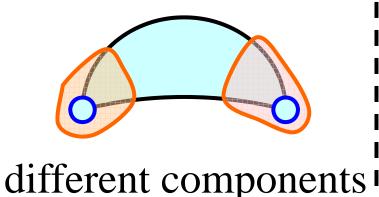
$$3+7+2=12$$

both are/will be supplied power

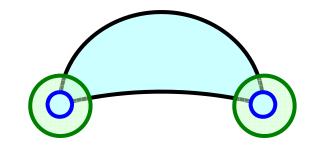
one is/will be supplied, but the other is never supplied







both are never supplied

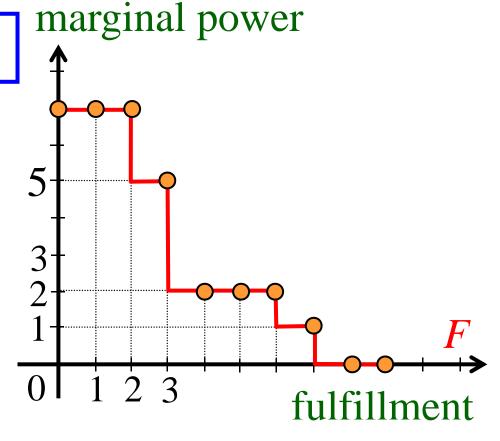


both are/will be supplied power

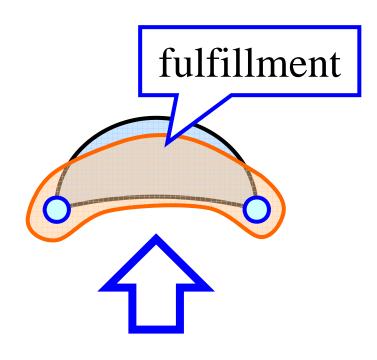
staircase, non-increasing

fulfillment

marginal power



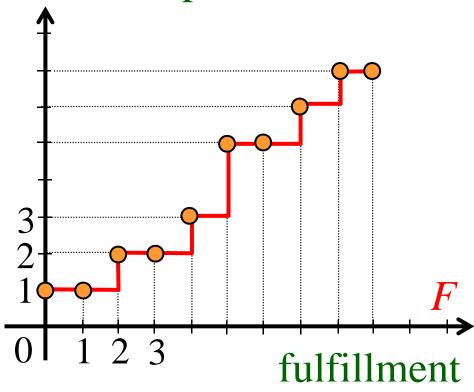
both are/will be supplied power

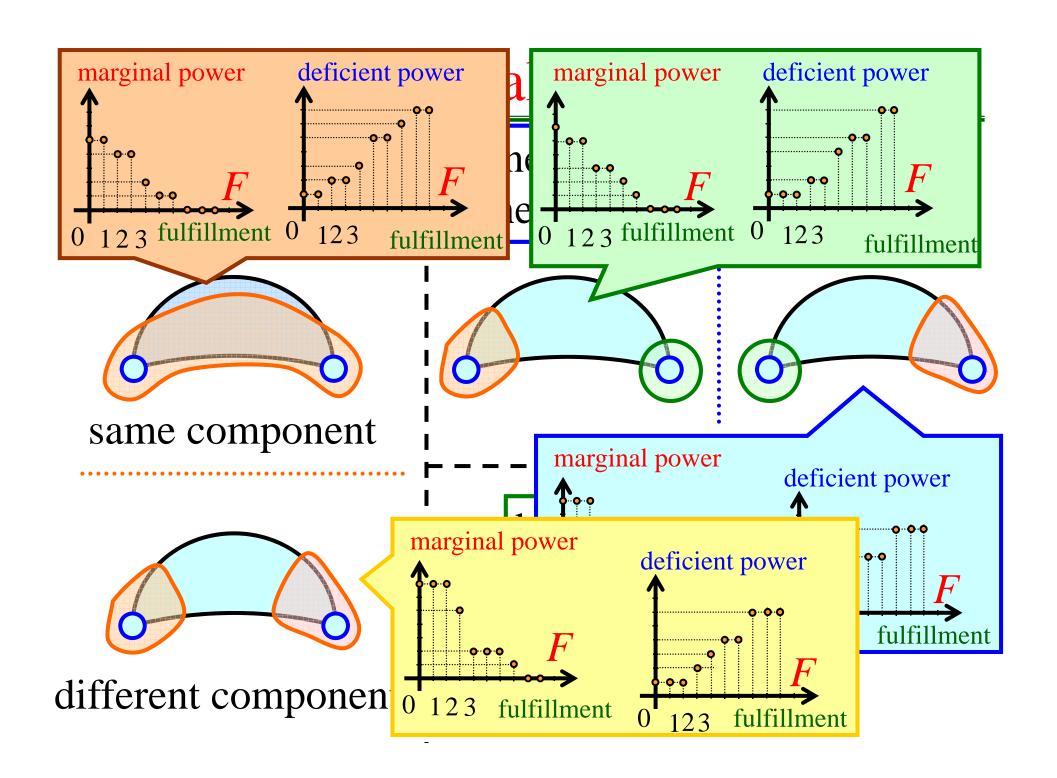


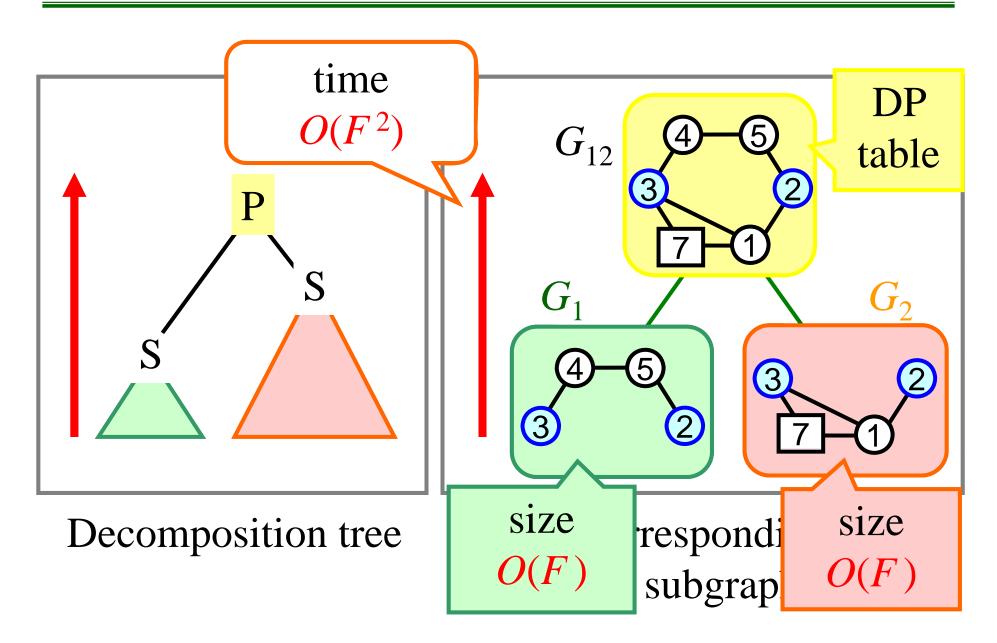
deficient power

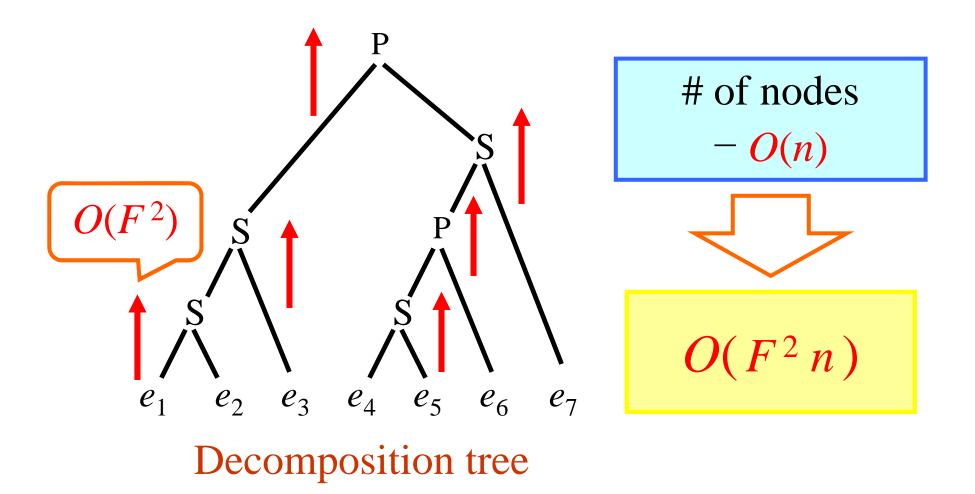
staircase, non-decreasing

deficient power









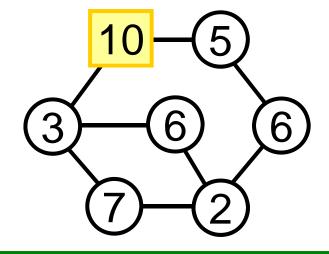
n:# of vertices in a given SP graph

Suppose that a SP graph has exactly one supply.

Max PP for such a SP graph can be solved in time $O(F^2n)$ if the demands and the supply are integers.

F: sum of all demands

n: # of vertices



 $\max \text{ fulfillment } \leq F$

pseudo-polynomialtime algorithm

(2) FPTAS

(2) FPTAS

Let all demands and supply be positive real numbers.

For any ε , $0 < \varepsilon < 1$, the algorithm finds a component with the supply vertex such that

$$APPRO > (1-\varepsilon) OPT$$

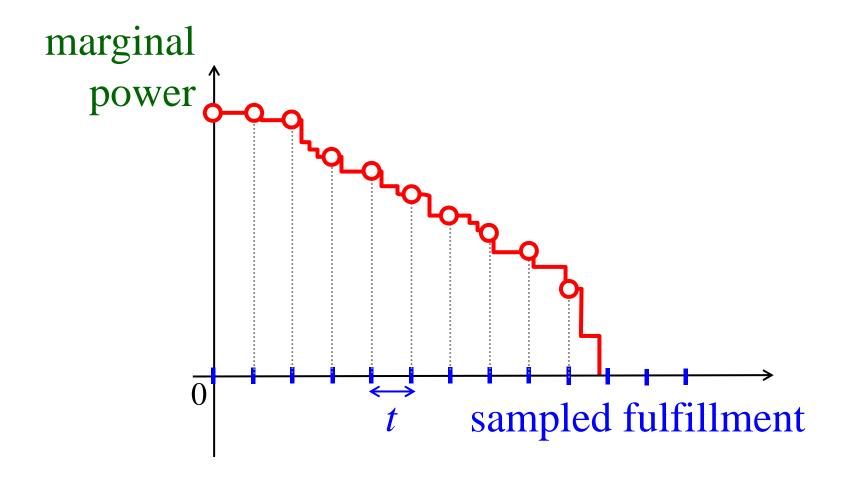
in time polynomial in both n and $1/\varepsilon$.

$$O\left(\frac{n^5}{\varepsilon^2}\right)$$

n: # of vertices

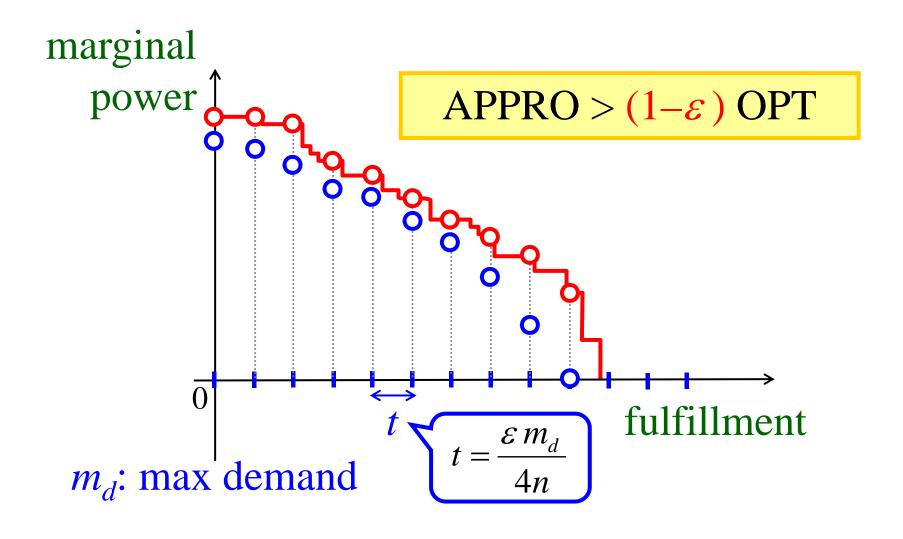
(2) FPTAS

The algorithm is similar to the previous algorithm.



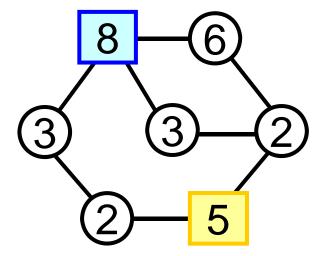
(2) FPTAS

The algorithm is similar to the previous algorithm.



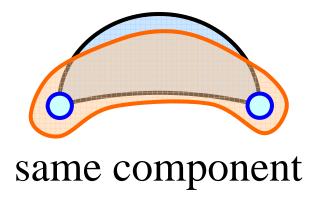
Is there an approximation algorithm for SP graphs having more than one supply?

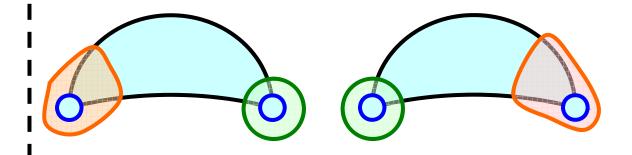
- FPTAS or PTAS?
- constant-factor ?

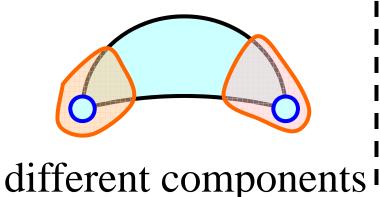


both are/will be supplied power

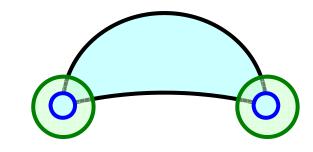
one is/will be supplied, but the other is never supplied





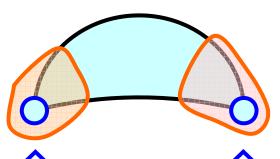


both are never supplied

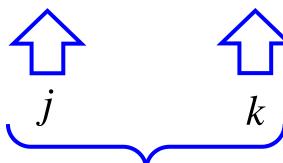


both are/will be supplied power

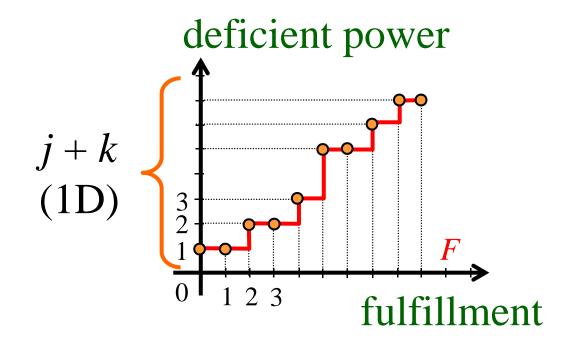
different components



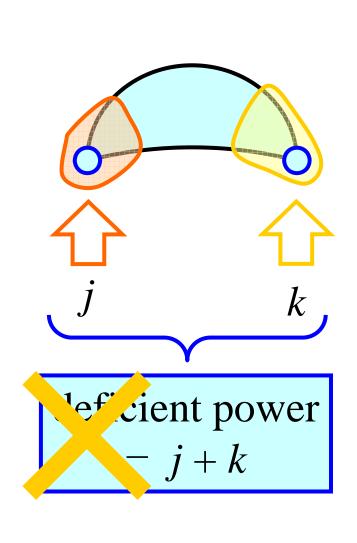
The two components must become **ONE** component.

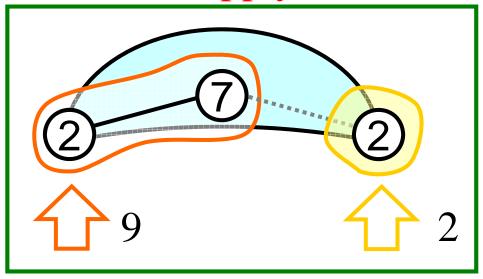


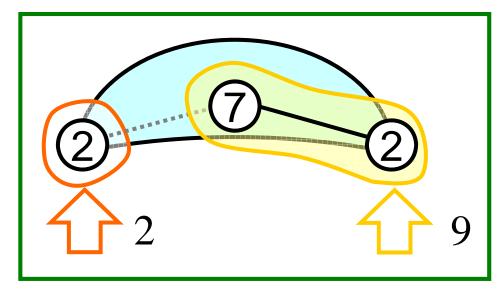
deficient power = j + k



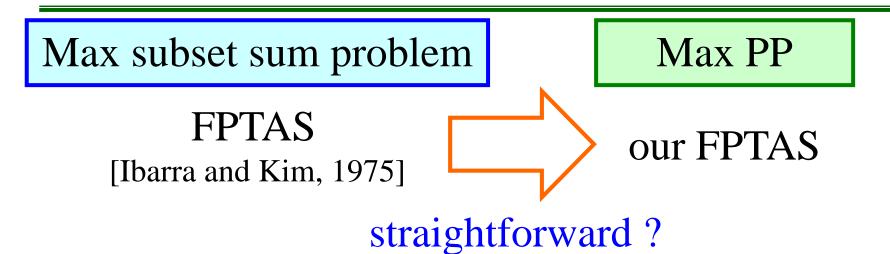
If a given graph has more than one supply.

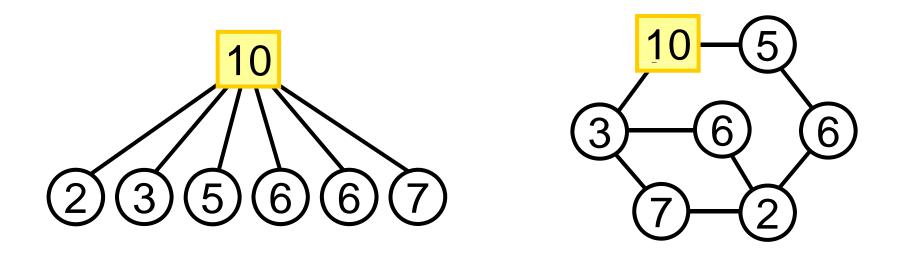




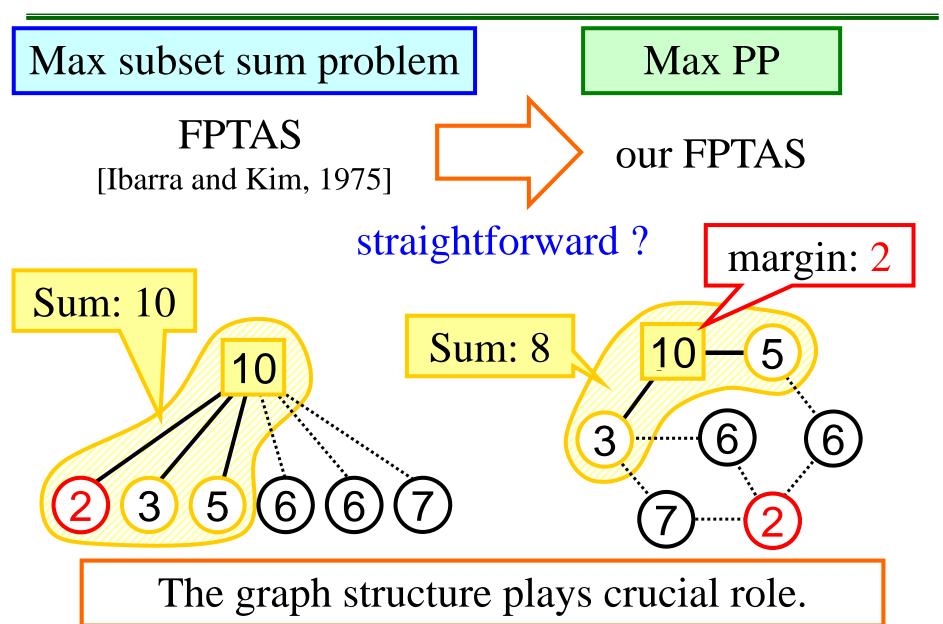


Our Results





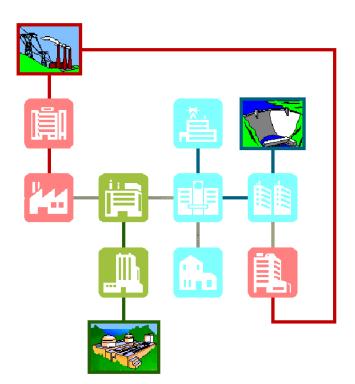
Our Results



Assumption of the Problem

Every demand vertex must be supplied from exactly one supply vertex.

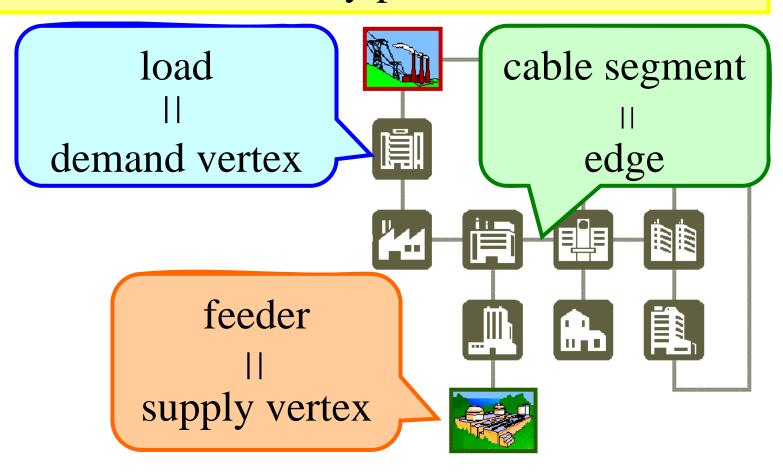
Max PP is applied to Power delivery networks.



It is difficult to synchronize two or more sources.

Application of Max PP

Power delivery problem



Power delivery network

Application of Max PP

Power delivery problem

Determine whether there exists a switching so that all loads can be supplied.

ied, im

If not all loads can be supplied, we want to maximize the sum of loads supplied power.

Max Partition Problem Power delivery network