ELSEVIER

Generalized vertex-rankings of trees

Xiao Zhou ${ }^{*, 1}$, Nobuaki Nagai ${ }^{1}$, Takao Nishizeki ${ }^{2}$
Department of System Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai 980-77, Japan

Received 9 November 1994; revised 6 September 1995
Communicated by T. Lengauer

Abstract

We newly define a generalized vertex-ranking of a graph G as follows: for a positive integer c, a c-vertex-ranking of G is a labeling (ranking) of the vertices of G with integers such that, for any label i, every connected component of the graph obtained from G by deleting the vertices with label $>i$ has at most c vertices with label i. Clearly an ordinary vertex-ranking is a 1 -vertex-ranking and vice-versa. We present an algorithm to find a c-vertex-ranking of a given tree T using the minimum number of ranks in time $\mathrm{O}(c n)$ where n is the number of vertices in T.

Keywords: Algorithms; Generalized ranking; Graphs; Trees; Lexicographical order; Visible vertices

1. Introduction

A vertex-ranking of a graph G is a labeling (ranking) of vertices of G with integers such that any path between two vertices with the same label i contains a vertex with label $j>i$. The vertex-ranking problem is to find a vertex-ranking of a given graph G using the minimum number of ranks (labels). The vertexranking problem is NP-hard in general [1,7]. On the other hand Schäffer has given a linear algorithm to solve the vertex-ranking problem for trees [8]. Very recently Bodlaender et al. have given a polynomialtime algorithm to solve the vertex-ranking problem for graphs with bounded treewidth [1]. The vertexranking of a graph G has applications in VLSI layout and in scheduling the manufacture of complex multi-

[^0]part products [8,5]; it is equivalent to finding the minimum height vertex separator tree of G.

In this paper we newly define a generalization of an ordinary vertex-ranking. For a positive integer c, a c-vertex-ranking (or a c-ranking for short) of a graph G is a labeling of the vertices of G with integers such that, for any label i, every connected component of the graph obtained from G by deleting the vertices with label $>i$ has at most c vertices with label i. Clearly an ordinary vertex-ranking is a 1 -vertex-ranking and vice-versa. The integer label of a vertex is called the rank of the vertex. The minimum number of ranks needed for a c-vertex-ranking of G is called the c -vertex-ranking number (or the c-ranking number for short) and denoted by $r_{c}(G)$. A c-ranking of G using $r_{c}(G)$ ranks is called an optimal c-ranking of G. The c-ranking problem is to find an optimal c-ranking of a given graph G. The problem is NP-hard in general since the ordinary vertex-ranking problem is NP-hard [1,7]. Fig. 1 depicts an optimal 3-ranking of a tree
using three ranks, where vertex numbers are drawn in circles and ranks next to circles.

Consider the process of starting with a connected graph and partitioning it recursively by removing at most c vertices and incident edges from each of the remaining connected subgraphs until the graph becomes empty. The tree representing the recursive decomposition is called a c-vertex separator tree. Thus a c vertex separator tree corresponds to a parallel computation scheme based on the process above. The c -vertex-ranking problem is equivalent to finding a c vertex separator tree of the minimum height. Fig. 2 illustrates a 3-vertex separator tree of the tree depicted in Fig. 1, where deleted vertex numbers are drawn in ovals.

Let M be a sparse symmetric matrix. Let M^{\prime} be a matrix obtained from M by replacing each non-zero element by 1 . Let G be a graph with adjacency matrix M^{\prime}. Then an optimal c-vertex ranking of G corresponds to a generalized Cholesky factorization of M having the minimum recursive depth $[2,4,6]$.

In this paper we give an algorithm to solve the c ranking problem on trecs T in time $\mathrm{O}(c n)$ for any positive integer c where n is the number of vertices in T. Our algorithm uses techniques employed by Schäffer [8] and Iyer et al. [5] for the ordinary vertex-ranking problem as well as new techniques specific to the c ranking problem.

2. Preliminaries

In this section we define some terms and present easy observations. Let $T=(V, E)$ denote a tree with vertex set V and edge set E. We often denote by $V(T)$ and $E(T)$ the vertex set and the edge set of T, respectively. We denote by n the number of vertices in T. T is a "free tree", but we regard T as a "rooted tree" for convenience sake: an arbitrary vertex of tree T is designated as the root of T. We will use notions as: root, internal vertex, child and leaf in their usual meaning. An edge joining vertices u and v is denoted by (u, v). The maximal subtree of T rooted at vertex v is denoted by $T(v)$. For a c-ranking φ of tree T and a subtree T^{\prime} of T, we denote by $\varphi \mid T^{\prime}$ a restriction of φ to $V\left(T^{\prime}\right)$: let $\varphi^{\prime}=\varphi \mid T^{\prime}$, then $\varphi^{\prime}(v)=\varphi(v)$ for $v \in V\left(T^{\prime}\right)$. The definition of a c-ranking immediately implies that a c ranking of a connected graph labels at most c vertices
with the largest rank.
The number of ranks used by a c-ranking φ of tree T is denoted by $\# \varphi$. One may assume without loss of generality that φ uses the consecutive integers $1,2, \ldots, \# \varphi$ as the ranks. A vertex v of T and its rank $\varphi(v)$ are visible (from the root under φ) if all the vertices in the path from the root to v have ranks $\leqslant \varphi(v)$. Thus the root of T and \# φ are visible. Denote by $L(\varphi)$ the list of ranks of all visible vertices, and call $L(\varphi)$ the list of a c-ranking φ of the rooted tree T. For an integer γ we denote by $\operatorname{count}(L(\varphi), \gamma)$ the number of γ 's contained in $L(\varphi)$, i.e., the number of visible vertices with rank γ. The ranks in the list $L(\varphi)$ are sorted in non-increasing order. Thus the c-ranking φ in Fig. 1 has the list $L(\varphi)=\{3,3,1\}$, and hence $\operatorname{count}(L(\varphi), 3)=2, \operatorname{count}(L(\varphi), 2)=0$ and $\operatorname{count}(L(\varphi), 1)=1$. One can easily observe that $\operatorname{count}(L(\varphi), \gamma) \leqslant c$ for each rank γ.

We define the lexicographical order \prec on the set of non-increasing sequences (lists) of positive integers as follows: let $A=\left\{a_{1}, \ldots, a_{p}\right\}$ and $B=\left\{b_{1}, \ldots, b_{q}\right\}$ be two sets (lists) of positive integers such that $a_{1} \geqslant$ $\cdots \geqslant a_{p}$ and $b_{1} \geqslant \cdots \geqslant b_{q}$, then $A \prec B$ if there exists an integer i such that
(a) $a_{j}=b_{j}$ for all $1 \leqslant j<i$, and
(b) either $a_{i}<b_{i}$ or $p<i \leqslant q$.

We write $A \preceq B$ if $A=B$ or $A \prec B$. A c-ranking φ of T is critical if $L(\varphi) \preceq L(\eta)$ for any c-ranking η of T. The optimal c-ranking depicted in Fig. 1 is indeed critical.

For a list A and an integer α, we define a sublist [$\alpha \leqslant A$] of A as follows:

$$
[\alpha \leqslant A]=\{x \in A \mid \alpha \leqslant x\} .
$$

Similarly we define sublists $[\alpha<A],[A \leqslant \alpha]$ and [$A<\alpha$] of A. Obviously if $A \preceq B$ then $[\alpha<A] \preceq$ [$\alpha<B$] for any $\alpha \geqslant 1$. For lists A and B we use $A \subseteq B$ and $A \cup B$ in their usual meaning in which we regard A, B and $A \cup B$ as multi-sets.

3. Optimal c-ranking

The main result of the paper is the following theorem.

Theorem 1. An optimal c-ranking of a tree T having n vertices can be found in time $\mathrm{O}(\mathrm{cn})$ for any positive

Fig. 1. An optimal 3-vertex-ranking φ of a tree T.

Fig. 2. A 3-vertex separator tree of the tree in Fig. 1.
integer c.
In the remainder of this section we give an algorithm to find a critical c-ranking of a tree T in time $\mathrm{O}(c n)$. Our algorithm uses the technique of "bottom-up tree computation". For each internal vertex u of a tree T, we construct a critical c-ranking of $T(u)$ from those of the subtrees rooted at u 's children.

One can easily prove the following lemma by induction on n.

Lemma 2. Every tree T of n vertices has a vertex whose removal leaves subtrees each having no more than $n / 2$ vertices.

Using Lemma 2, we have the following lemma.
Lemma 3. For any positive integer c, every tree T of n vertices has at most c vertices whose removal leaves subtrees each having no more than n / q vertices, where $q=2^{\left\lfloor\log _{2}(c+3)\right\rfloor-1}>(c+3) / 4$ and hence $q \geqslant 2$.

Proof. By Lemma 2 tree T has a vertex whose removal leaves subtrees each having no more than $n / 2$ vertices. Clearly the number of subtrees having $n / 2^{2}$ or more vertices does not exceed
$\left\lfloor\frac{n-1}{n / 2^{2}}\right\rfloor \leqslant 2^{2}-1$.
By Lemma 2 each of these subtrees has a vertex whose removal leaves subtrees each having no more than $n / 2^{2}$. Therefore T has at most $1+\left(2^{2}-1\right)$ vertices whose removal leaves subtrees each having no more than $n / 2^{2}$. Clearly the number of subtrees having $n / 2^{3}$ or more vertices does not exceed

$$
\left\lfloor\frac{n-1}{n / 2^{3}}\right\rfloor \leqslant 2^{3}-1 .
$$

Repeating this operation $p(\geqslant 1)$ times, one can know that T has at most

$$
\begin{aligned}
& 1+\left(2^{2}-1\right)+\left(2^{3}-1\right)+\cdots+\left(2^{\prime \prime}-1\right) \\
& \quad=2^{p+1}-p-2
\end{aligned}
$$

vertices whose removal leaves subtrees each having vertices no more than $n / 2^{p}$. Choose $p=\left\lfloor\log _{2}(c+\right.$ $3)\rfloor-1$ so that $2^{p+1}-p-2 \leqslant c$. Then T has at most c vertices whose removal leaves subtrees each having vertices no more than $n / 2^{p}=n / q$. Note that $q=2^{p}>$ $(c+3) / 4$ and hence $q \geqslant 2$ for any $c \geqslant 1$.

Lemma 2 is a special case of Lemma 3 with $c=1$. By Lemma 3 we have the following lemma.

Lemma 4. Every tree T of n vertices satisfies $r_{c}(T) \leqslant 1+\operatorname{rank} n$.

Proof. Recursively applying Lemma 3, one can construct a c-vertex separator tree of height $h(n)$ satisfying the following recurrence relation
$h(n) \leqslant 1+h\left(\left\lfloor\frac{n}{q}\right\rfloor\right)$.
Solving the recurrence, we have $h(n) \leqslant$ rank n. Note that $h(1)=0$. Hence $r_{c}(\Gamma) \leqslant 1+h(n) \leqslant 1+$ rank n.

Let $d(u)$ be the number of children of vertex u in T, and let $v_{1}, v_{2}, \ldots, v_{d(u)}$ be the children of u. Our idea is to construct a critical c-ranking of $T(u)$ from critical c-rankings φ_{i} of $T\left(v_{i}\right), i=1,2, \ldots, d(u)$. One can easily observe the following lemma.

Lemma 5. Λ vertex-labeling η of $T(u)$ is a c-ranking of $T(u)$ if and only if $\eta \mid T\left(v_{i}\right)$ is a c-ranking of $T\left(v_{i}\right)$ for every $i, 1 \leqslant i \leqslant d(u)$, and there are no more than c visible vertices of the same rank under η, that is, $\operatorname{count}(L(\eta), \gamma) \leqslant c$ for every rank $\gamma \in L(\eta)$.

We then have the following lemma.
Lemma 6. Let φ_{i} be an arbitrary critical c-ranking of $T\left(v_{i}\right), i=1,2, \ldots, d(u)$. Then $T(u)$ has a critical c-ranking η such that $\eta \mid T\left(v_{i}\right)=\varphi_{i}$ for every $i, 1 \leqslant$ $i \leqslant d(u)$.

Proof. Let ψ be an arbitrary critical c-ranking of $T(u)$. Since φ_{i} is critical but $\psi \mid T\left(v_{i}\right)$ is not always critical, we have $L\left(\varphi_{i}\right) \preceq L\left(\psi \mid T\left(v_{i}\right)\right)$ for each i, $1 \leqslant i \leqslant d(u)$. If $L\left(\varphi_{i}\right) \prec L\left(\psi \mid T\left(v_{i}\right)\right)$, then let γ_{i} be an integer such that
(a) $\left[\gamma_{i}<L\left(\varphi_{i}\right)\right]=\left[\gamma_{i}<L\left(\psi \mid T\left(v_{i}\right)\right)\right]$, and
(b) $\operatorname{count}\left(L\left(\varphi_{i}\right), \gamma_{i}\right)<\operatorname{count}\left(L\left(\psi \mid T\left(v_{i}\right)\right), \gamma_{i}\right)$.

Otherwise let $\gamma_{i}=0$. Let $\gamma_{\text {max }}=\max \left\{\gamma_{i} \mid 1 \leqslant i \leqslant\right.$ $d(u)\}$. Construct a vertex-labeling η of $T(u)$ from ψ and φ_{i} as follows:
$\eta(v)= \begin{cases}\max \left\{\psi(u), \gamma_{\max }\right\} & \text { if } v=u, \\ \varphi_{i}(v) & \text { if } v \in V\left(T\left(v_{i}\right)\right), \\ & 1 \leqslant i \leqslant d(u) .\end{cases}$
Then $\eta \mid T\left(v_{i}\right)=\varphi_{i}$ for all $i, 1 \leqslant i \leqslant d(u)$.
We now claim that $L(\eta) \subseteq L(\psi)$. Clearly we have

$$
\begin{equation*}
L(\eta)=\{\eta(u)\} \cup\left[\eta(u) \leqslant \bigcup_{i=1}^{d(u)} L\left(\varphi_{i}\right)\right] \tag{1}
\end{equation*}
$$

and
$L(\psi)=\{\psi(u)\} \cup\left[\psi(u) \leqslant \bigcup_{i=1}^{d(u)} L\left(\psi \mid T\left(v_{i}\right)\right)\right]$.
Consider first the case $\psi(u)>\gamma_{\text {max }}$. In this case we have $\eta(u)=\psi(u)$. Since $\gamma_{i}<\eta(u)$, we have
$\left[\eta(u) \leqslant L\left(\varphi_{i}\right)\right]=\left[\eta(u) \leqslant L\left(\psi \mid T\left(v_{i}\right)\right)\right]$
for every $i, 1 \leqslant i \leqslant d(u)$. By (1)-(3) we have $L(\eta)=L(\psi)$. Consider next the case $\psi(u) \leqslant \gamma_{\text {max }}$. In this case $\eta(u)=\gamma_{\max } \geqslant \psi(u)$. For every $i, 1 \leqslant i \leqslant$ $d(u)$, such that $\gamma_{i}=\gamma_{\text {max }}$, by (a) and (b) we have

$$
\begin{align*}
& \{\eta(u)\} \cup\left[\eta(u) \leqslant L\left(\varphi_{i}\right)\right] \\
& \quad \subseteq\left[\eta(u) \leqslant L\left(\psi \mid T\left(v_{i}\right)\right)\right] \\
& \quad \subseteq\left[\psi(u) \leqslant L\left(\psi \mid T\left(v_{i}\right)\right)\right] . \tag{4}
\end{align*}
$$

For every i such that $\gamma_{i}<\gamma_{\text {max }}=\eta(u)$, by (a) we have

$$
\begin{align*}
{\left[\eta(u) \leqslant L\left(\varphi_{i}\right)\right] } & =\left[\eta(u) \leqslant L\left(\psi \mid T\left(v_{i}\right)\right)\right] \\
& \subseteq\left[\psi(u) \leqslant L\left(\psi \mid T\left(v_{i}\right)\right)\right] . \tag{5}
\end{align*}
$$

By (1), (2), (4) and (5) we have $L(\eta) \subseteq L(\psi)$ as desired.

Since $L(\eta) \subseteq L(\psi)$ and ψ is a c-ranking, by Lemma 5η is a c-ranking. Since $L(\eta) \subseteq L(\psi)$, $L(\eta) \preceq L(\psi)$. Therefore η is critical since ψ is critical.

Let $m=\max \left\{\# \varphi_{i} \mid 1 \leqslant i \leqslant d(u)\right\}$. Then we have the following lemma.

Lemma 7. $\quad r_{c}(T(u))=m$ or $m+1$.

Proof. Clearly $m \leqslant r_{c}(T(u))$. Therefore it suffices to prove that $r_{c}(T(u)) \leqslant m+1$. One can extend φ_{i}, $1 \leqslant i \leqslant d(u)$, to a c-ranking η of $T(u)$ as follows:
$\eta(v)= \begin{cases}m+1 & \text { if } v=u, \\ \varphi_{i}(v) & \text { if } v \in V\left(T\left(v_{i}\right)\right), 1 \leqslant i \leqslant d(u) .\end{cases}$
Thus $r_{c}(T(u)) \leqslant \# \eta=m+1$.
The following lemma gives a necessary and sufficient condition for $r_{c}(T(u))=m$.

Lemma 8. $r_{c}(T(u))=m$ if and only if there is a rank $\alpha, 1 \leqslant \alpha \leqslant m$, such that
(a) $\sum_{i=1}^{d(u)} \operatorname{count}\left(L\left(\varphi_{i}\right), \alpha\right) \leqslant c-1$ and
(b) $\sum_{i=1}^{d(u)} \operatorname{count}\left(L\left(\varphi_{i}\right), \gamma\right) \leqslant c$ for every rank γ, $\alpha+1 \leqslant \gamma \leqslant m$.

Proof. (\Longleftrightarrow) One can easily extend the critical c rankings φ_{i} to a c-ranking η of $T(u)$ with $\# \eta=m$ as follows:
$\eta(v)= \begin{cases}\alpha & \text { if } v=u, \\ \varphi_{i}(v) & \text { if } v \in V\left(T\left(v_{i}\right)\right), 1 \leqslant i \leqslant d(u) .\end{cases}$
Therefore $r_{\mathrm{c}}(T(u)) \leqslant \# \eta=m$, and hence by Lemma $7 r_{c}(T(u))=m$.
(\Longrightarrow) Suppose that $r_{c}(T(u))=m$. By Lemma 6 there is a c-ranking η of $T(u)$ such that $\# \eta=m$ and $\eta \mid T\left(v_{i}\right)=\varphi_{i}$ for each $i, 1 \leqslant i \leqslant d(u)$. Let $\alpha=\eta(u)$, then (a) and (b) above hold since η is a c-ranking of $T(u)$.

In order to find a critical c-ranking η of $T(u)$ from $\varphi_{i}, i=1,2, \ldots, d(u)$, we need the following two lemmas.

Lemma 9. If $r_{c}(T(u))=m+1$, then
$\eta(v)= \begin{cases}m+1 & \text { if } v=u, \\ \varphi_{i}(v) & \text { if } v \in V\left(T\left(v_{i}\right)\right), 1 \leqslant i \leqslant d(u)\end{cases}$ is a critical c-ranking of $T(u)$ and $L(\eta)=\{m+1\}$.

Proof. immediate.
Lemma 10. If $r_{c}(T(u))=m$, then
$\eta(v)= \begin{cases}\alpha & \text { if } v=u, \\ \varphi_{i}(v) & \text { if } v \in V\left(T\left(v_{i}\right)\right), 1 \leqslant i \leqslant d(u)\end{cases}$

```
    Procedure Ranking( \(T(u)\) );
    begin
    if \(u\) is a leaf
        then return a trivial \(c\)-ranking: \(u \rightarrow 1\)
        else
            begin
                let \(v_{1}, v_{2}, \cdots, v_{d(u)}\) be the children of \(u\);
                for \(i:=1\) to \(d(u)\) do \(\operatorname{Ranking}\left(T\left(v_{i}\right)\right)\) :
                find a critical \(c\)-ranking of \(T(u)\) from critical
                \(c\)-rankings of \(T\left(v_{i}\right), i=1,2, \ldots, d(u)\), by
                Lemmas 9 and 10 ;
        return a critical \(c\)-ranking of \(T(u)\)
        end
    end.
```

Fig. 3.
is a critical c-ranking of $T(u)$, where α is the minimum rank such that
(a) $\sum_{i=1}^{d(u)} \operatorname{count}\left(L\left(\varphi_{i}\right), \alpha\right) \leqslant c-1$ and
(b) $\sum_{i=1}^{d(u)} \operatorname{count}\left(L\left(\varphi_{i}\right), \gamma\right) \leqslant c$ for every rank γ, $\alpha+1 \leqslant \gamma \leqslant m$.
Furthermore, $L(\eta)=\{\alpha\} \cup\left[\alpha \leqslant \bigcup_{i=1}^{d(u)} L\left(\varphi_{i}\right)\right]$.
Proof. By Lemma 6 there is a critical c-ranking ψ of $T(u)$ such that $L\left(\psi \mid T\left(v_{i}\right)\right)=L\left(\varphi_{i}\right)$ for every i, $1 \leqslant i \leqslant d(u)$. Since $\alpha=\eta(u)$ is the minimum rank satisfying (a) and (b) above, $L(\eta) \preceq L(\psi)$ and hence η is a critical c-ranking of $T(u)$. Clearly
$L(\eta)=\{\alpha\} \cup\left[\alpha \leqslant \bigcup_{i=1}^{d(u)} L\left(\varphi_{i}\right)\right]$.
By Lemmas 8, 9 and 10 above we have the recursive algorithm in Fig. 3 to find a critical c-ranking of $T(u)$.

Clearly one can correctly find a critical c-ranking of a tree T by calling Procedure Ranking $(T(r)$) for the root r of T. Therefore it suffices to verify the time-complexity of the algorithm. Let $\varphi_{i}, i=$ $1,2, \ldots, d(u)$, be a critical c-ranking of $T\left(v_{i}\right)$. Assume without loss of generality that $\# \varphi_{1}$ and $\# \varphi_{2}$ are the two largest, possibly equal, numbers among $\# \varphi_{i}$, $i=1,2, \cdots, d(u)$, and that $\# \varphi_{1} \geqslant \# \varphi_{2}$. Let $\# \varphi_{2}=0$ if $d(u)=1$. Let η be a critical c-ranking of $T(u)$ obtained from $\varphi_{i}, i=1,2, \ldots, d(u)$, at line 6 . Then the following lemma holds, which will be proved later.

Lemma 11. One execution of line 6 can be done in time $\mathrm{O}\left(x_{u}+d(u)+c \cdot \# \varphi_{2}\right)$, where x_{u} is the number of vertices which were visible in $T\left(v_{i}\right)$ under $\varphi_{i}, 1 \leqslant$
$i \leqslant d(u)$, but are not visible in $T(u)$ under η.
Once a vertex becomes invisible, it will never become visible again. Furthermore, $\sum d(u) \leqslant n$ where the summation is taken over all internal vertices. Therefore the total time counted by the first term x_{u} and the second term $d(u)$ is $\mathrm{O}(n)$ when Procedure Ranking is recursively called for all vertices. Let $n_{u_{2}}$ be the number of vertices in the second largest tree $T\left(v_{u_{2}}\right)$ among $T\left(v_{i}\right), i=1,2, \cdots, d(u)$, if $d(u) \geqslant 2$. Then by Lemma 4 we have $\# \varphi_{2} \leqslant 1+\operatorname{rank} n_{u_{2}}$. Note that $\# \varphi_{2}$ is not always the c-ranking number of $T\left(v_{u_{2}}\right)$. The following lemma implies that the total time counted by the third term $c \cdot \# \varphi_{2}$ is also $O(c n)$. Thus the total running time of Ranking is $\mathrm{O}(c n)$. This completes the proof of Theorem 1.

Lemma 12. Let $V_{2}=\{u \in V \mid d(u) \geqslant 2\}$, then
$\sum_{u \in V_{2}}\left(1+\log _{q} n_{u_{2}}\right)=O(n)$.
Proof. For a tree T, let
$S(T)=\sum_{u \in V_{2}}\left(1+\log _{q} n_{u_{2}}\right)$.
We now prove by induction on n that
$S(T) \leqslant 2 n-\left(1+\log _{q} n\right)$.
Trivially (6) holds when $n=1$. Now assume that $n \geqslant 2$ and (6) holds for any tree having at most $n-1$ vertices.

Let T be a tree with n vertices rooted at vertex u. One may assume that $d(u) \geqslant 2$. Let $v_{1}, v_{2}, \ldots, v_{d(u)}$ be the children of u, and let $n_{i}, i=1,2, \ldots, d(u)$, be the number of vertices of $T\left(v_{i}\right)$, respectively. Then
$\sum_{i=1}^{d(u)} n_{i}=n-1$.
Assume without loss of generality that $n_{1} \geqslant n_{2} \geqslant$ $\cdots \geqslant n_{d(u)}$, then $n_{u_{2}}=n_{2}$. By (7), the definition of $S(T)$ and the inductive hypothesis we have
$S(T(u))=1+\log _{q} n_{2}+\sum_{i=1}^{d(u)} S\left(T\left(v_{i}\right)\right)$

$$
\begin{align*}
& \leqslant 1+\log _{q} n_{2}+\sum_{i=1}^{d(u)}\left\{2 n_{i}-\left(1+\log _{q} n_{i}\right)\right\} \\
& =2 n-\{1+d(u) \\
& \left.\quad 1 \log _{q} n_{1}+\sum_{i=3}^{d(u)} \log _{q} n_{i}\right\} \tag{8}
\end{align*}
$$

Since $q \geqslant 2$ and $2^{d(u)} \geqslant d(u)+1$, we have

$$
\begin{align*}
1+ & d(u)+\log _{q} n_{1}+\sum_{i=3}^{d(u)} \log _{q} n_{i} \\
& \geqslant 1+\log _{q} 2^{d(u)} \mid \log _{q}\left\{n_{1} n_{3} n_{4} \cdots n_{d(u)}\right\} \\
& =1+\log _{q}\left\{2^{d(u)} n_{1} n_{3} n_{4} \cdots n_{d(u)}\right\} \\
& \geqslant 1+\log _{q}\left\{(d(u)+1) n_{1}\right\} \\
& \geqslant 1+\log _{q}\left\{\sum_{i=1}^{d(u)} n_{i}+1\right\} \\
& =1+\log _{q} n . \tag{9}
\end{align*}
$$

Substituting (9) to (8), we have $S(T(u)) \leqslant 2 n-$ $\left(1+\log _{q} n\right)$.

We finally give in Fig. 4 an implementation of line 6 of Procedure Ranking, which finds a critical c-ranking η of $T(u)$ from the critical c-rankings φ_{i}, $i=1,2, \ldots, d(u)$.

We are now ready to prove Lemma 11.
Proof of Lemma 11. As a data-structure to represent a list $L(\varphi)$ of a c-ranking φ, we use a linked list L_{φ} consisting of records. Each record contains two items of data: rank $\gamma, 1 \leqslant \gamma \leqslant \# \varphi$ and $\operatorname{count}(L(\varphi), \gamma)$ such that $\operatorname{count}(L(\varphi), \gamma) \geqslant 1$.

If $d(u)=1$, then using linked list $L_{\varphi_{1}}$ one can easily find α at line 4 in $O\left(x_{u}\right)$ time where $x_{u}=$ $\left|\left[L\left(\varphi_{1}\right)<\alpha\right]\right|$. It should be noted that all the x_{u} vertices of ranks in [$L\left(\varphi_{1}\right)<\alpha$] were visible but they become invisible after lines 5 and 6 are executed. Thus lines 3-7 can be done total in time $O\left(x_{u}\right)$. Similarly, if lines 20-23 are executed, then at line 21 one can easily find α in $\mathrm{O}\left(x_{u}\right)$ time, and hence lines 20-23 can be done in time $\mathrm{O}\left(x_{u}\right)$ time.

We now claim that if $d(u) \geqslant 2$ then lines $10-12$ and 15-16 can be done total in time $\mathrm{O}(d(u)+c$. $\# \varphi_{2}$). We construct a linked list L_{s} as follows. First set L_{s} as an empty list. For each $i, 1 \leqslant i \leqslant d(u)$, add

```
Procedure Line- \(6\left(\varphi_{1}, \ldots, \varphi_{d(u)}, \eta\right)\);
begin
\(\eta \mid T\left(v_{i}\right):=\varphi_{i}\) for each \(i, i:=1,2, \ldots, d(u) ; \quad\{\) determine the rank of \(u\) as follows. \}
    if \(d(u)=1\) then
            begin
                find a smallest integer \(\alpha \geqslant 1\) such that \(\operatorname{count}\left(L\left(\varphi_{1}\right), \alpha\right) \leqslant c-1\);
                \(\eta(u):=\alpha\);
                \(L(\eta):=\{\alpha\} \cup\left[\alpha \leqslant L\left(\varphi_{1}\right)\right]\)
            end
        else \(\{d(u) \geqslant 2\}\)
            begin
                find the two largest, possibly equal, numbers among \(\# \varphi_{i}, i:=1,2, \ldots, d(u)\);
                    \{ assume w.l.o.g. that \(\# \varphi_{1}\) and \(\# \varphi_{2}\) are these largest numbers and \(\left.\# \varphi_{1} \geqslant \# \varphi_{2}.\right\}\)
            let \(L_{s}:=\left[L\left(\varphi_{1}\right) \leqslant \# \varphi_{2}\right] \cup\left(\bigcup_{i=2}^{d(u)} L\left(\varphi_{i}\right)\right)\);
            find a smallest rank \(\alpha\) such that \(1 \leqslant \alpha \leqslant \# \varphi_{2}, \operatorname{count}\left(L_{s}, \alpha\right) \leqslant c-1\) and
                    count \(\left(I_{s}, \gamma\right) \leqslant c\) for all ranks \(\gamma, \alpha+1 \leqslant \gamma \leqslant \# \varphi_{2} ;\)
                if such a rank \(\alpha\) exists then
                    begin
                    \(\eta(u):-\alpha ;\)
                    \(L(\eta):=\{\alpha\} \cup\left[\alpha \leqslant L_{s}\right] \cup\left[\# \varphi_{2}<L\left(\varphi_{1}\right)\right]\)
                    end
            else
                    begin
                        \(L_{s}:=L_{s} \cup\left[\# \varphi_{2}<L\left(\varphi_{1}\right)\right] ; \quad\left\{L_{s}=\bigcup_{i-1}^{d(u)} L\left(\varphi_{i}\right)\right\}\)
                        find a smallest integer \(\alpha\) such that \(\# \varphi_{2}+1 \leqslant \alpha \leqslant \# \varphi_{1}+1\) and \(\operatorname{count}\left(L_{s}, \alpha\right) \leqslant c-1\);
                    \(\eta(u):=\alpha\);
                        \(L(\eta):=\{\alpha\} \cup\left[\alpha \leqslant L_{s}\right] ;\)
                end
        end
end;
```

Fig. 4.
to L_{s} all ranks $\gamma\left(\leqslant \# \varphi_{2}\right)$ in $L_{\varphi_{i}}$ in the decreasing order of γ until either $\operatorname{count}\left(L_{s}, \gamma\right)>c$ or all such ranks γ have been added. Thus line 11 can be done in time $\mathrm{O}\left(c \cdot \# \varphi_{2}\right)$. Clearly line 10 can be done in time $O(d(u))$ and lines 12,15 and 16 in time $O\left(\# \varphi_{2}\right)$. Therefore lines 10-12 and 15-16 can be done total in time $\mathrm{O}\left(d(u)+c \cdot \# \varphi_{2}\right)$.

Thus Procedure Line-6 can be done total in time $\mathrm{O}\left(x_{u}+d(u)+c \cdot \# \varphi_{2}\right)$.

4. Conclusion

We newly define a generalized vertex-ranking of a graph, called a c-ranking, and give an efficient algorithm to find an optimal c-ranking of a given tree T in time $\mathrm{O}(c n)$ for any $c \geqslant 1$ where n is the number of vertices in T. If c is a bounded integer, then our algorithm takes linear time. If c is not bounded, our algorithm takes time $\mathrm{O}(c n)$. However, if c is large,
say $c=n^{\varepsilon}$ for some $\varepsilon>0$, then by Lemma $4 r_{c}(T)$ is bounded and hence one execution of line 6 can be done in time $\mathrm{O}(d(u))$ and consequently our algorithm takes linear time.

We may replace the positive integer c by a function $f: \mathbb{N} \rightarrow \mathbb{N}$ to define a more generalized vertexranking of a graph as follows: an f-vertex-ranking ${ }^{3}$ of a graph G is a labeling of the vertices of G with integers such that, for any label i, deletion of all vertices with labels $>i$ leaves connected components, each having at most $f(i)$ vertices with label $i \in \mathbb{N}$. By some trivial modifications of our algorithm for the c-vertex-ranking of a tree, we can find an optimal f -vertex-ranking of a given tree in time complexity of $\mathrm{O}\left(n \max _{i} f(i)\right)$, where the maximum is taken over all labels i used by the algorithm.

[^1]A generalized edge-ranking can be defined similarly, and the algorithms for the ordinary edge-ranking of trees [3,10-12] can be extended to find an optimal c-edge-ranking [9].

References

[1] H. Bodlaender, J.S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Müller and Zs. Tuza, Ranking of graphs, in: Proc. Internat. Workshop on Graph-Theoretic Concepts in Computer Science, Herrsching, Bavaria, Germany (1994).
[2] H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson and T. Kloks, Approximating treewidth, pathwidth and minimum elimination tree height, J. Algorithms 18 (1995) 238-255.
[3] P. de la Torre, R. Greenlaw and A. A. Schäffer, Optimal ranking of trees in polynomial time, in: Proc. 4th Ann. ACMSIAM Symp. on Discrete Algorithms, Austin, Texas (1993) 138-144; also in: Algorithmica, to appear.
[4] I.S. Duff and J.K. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM Trans. Math. Software 9 (1983) 302-325.
[5] A.V. Iyer, H.D. Ratliff and G. Vijayan, Optimal node ranking of trees, Inform. Process. Lett. 28 (1988) 225-229.
[6] J.W.H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Analysis and Applications 11 (1990) 134-172.
[7] A. Pothen, The complexity of optimal elimination trees, Tech. Rept. CS-88-13, Pennsylvania State University, 1988.
[8] A.A. Schäffer, Optimal node ranking of trees in linear time, Inform. Process. Lett. 33 (1989) 91-99.
[9] X. Zhou, M.A. Kashem and T. Nishizeki, Generalized edgerankings of trees, Tech. Rept. SIGAL, 95-AL-46-10, 73-80, Inf. Proc. Soc. of Japan, July 1995.
[10] X. Zhou and T. Nishizeki, An efficient algorithm for edgeranking trees, in: Proc. 2nd European Symp. on Algorithms, Lecture Notes in Computer Science 885 (Springer, Berlin, 1994) 118-129.
[11] X. Zhou and T. Nishizeki, Finding optimal edge-rankings of trees, in: Proc. 6th Ann. ACM-SIAM Symp. on Discrete Algorithms (1995) 122-131.
[12] X. Zhou and T. Nishizeki, Finding optimal edge-rankings of trees - A correct algorithm, Tech. Rept. 9501, Dept. of Inf. Eng., Tohoku University, 1995.

[^0]: * Corresponding author.
 ${ }^{1}$ Email:\{zhou,nishi\}@ecip.tohoku.ac.jp.
 ${ }^{2}$ Email: nagai@anakin.nishizeki.ecei.tohoku.ac.jp.

[^1]: ${ }^{3}$ We wish to thank Professor A. Nakayama of Fukushima University for suggesting the f-vertex-ranking of a graph.

