

Information Processing Letters 56 (1995) 321-328

Generalized vertex-rankings of trees

Xiao Zhou^{*,1}, Nobuaki Nagai¹, Takao Nishizeki²

Department of System Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai 980-77, Japan

> Received 9 November 1994; revised 6 September 1995 Communicated by T. Lengauer

Abstract

We newly define a generalized vertex-ranking of a graph G as follows: for a positive integer c, a c-vertex-ranking of G is a labeling (ranking) of the vertices of G with integers such that, for any label i, every connected component of the graph obtained from G by deleting the vertices with label > i has at most c vertices with label i. Clearly an ordinary vertex-ranking is a 1-vertex-ranking and vice-versa. We present an algorithm to find a c-vertex-ranking of a given tree T using the minimum number of ranks in time O(cn) where n is the number of vertices in T.

Keywords: Algorithms; Generalized ranking; Graphs; Trees; Lexicographical order; Visible vertices

1. Introduction

A vertex-ranking of a graph G is a labeling (ranking) of vertices of G with integers such that any path between two vertices with the same label *i* contains a vertex with label j > i. The vertex-ranking problem is to find a vertex-ranking of a given graph G using the minimum number of ranks (labels). The vertexranking problem is NP-hard in general [1,7]. On the other hand Schäffer has given a linear algorithm to solve the vertex-ranking problem for trees [8]. Very recently Bodlaender et al. have given a polynomialtime algorithm to solve the vertex-ranking problem for graphs with bounded treewidth [1]. The vertexranking of a graph G has applications in VLSI layout and in scheduling the manufacture of complex multipart products [8,5]; it is equivalent to finding the minimum height vertex separator tree of G.

In this paper we newly define a generalization of an ordinary vertex-ranking. For a positive integer c, a *c*-vertex-ranking (or a *c*-ranking for short) of a graph G is a labeling of the vertices of G with integers such that, for any label *i*, every connected component of the graph obtained from G by deleting the vertices with label > i has at most c vertices with label i. Clearly an ordinary vertex-ranking is a 1-vertex-ranking and vice-versa. The integer label of a vertex is called the rank of the vertex. The minimum number of ranks needed for a c-vertex-ranking of G is called the cvertex-ranking number (or the c-ranking number for short) and denoted by $r_c(G)$. A *c*-ranking of G using $r_c(G)$ ranks is called an *optimal c-ranking* of G. The *c*-ranking problem is to find an optimal *c*-ranking of a given graph G. The problem is NP-hard in general since the ordinary vertex-ranking problem is NP-hard [1,7]. Fig. 1 depicts an optimal 3-ranking of a tree

^{*} Corresponding author.

¹ Email:{zhou,nishi}@ecip.tohoku.ac.jp.

² Email: nagai@anakin.nishizeki.ecei.tohoku.ac.jp.

using three ranks, where vertex numbers are drawn in circles and ranks next to circles.

Consider the process of starting with a connected graph and partitioning it recursively by removing at most *c* vertices and incident edges from each of the remaining connected subgraphs until the graph becomes empty. The tree representing the recursive decomposition is called a *c*-vertex separator tree. Thus a *c*vertex separator tree corresponds to a parallel computation scheme based on the process above. The *c*vertex-ranking problem is equivalent to finding a *c*vertex separator tree of the minimum height. Fig. 2 illustrates a 3-vertex separator tree of the tree depicted in Fig. 1, where deleted vertex numbers are drawn in ovals.

Let M be a sparse symmetric matrix. Let M' be a matrix obtained from M by replacing each non-zero element by 1. Let G be a graph with adjacency matrix M'. Then an optimal c-vertex ranking of G corresponds to a generalized Cholesky factorization of M having the minimum recursive depth [2,4,6].

In this paper we give an algorithm to solve the *c*-ranking problem on trees T in time O(cn) for any positive integer c where n is the number of vertices in T. Our algorithm uses techniques employed by Schäffer [8] and Iyer et al. [5] for the ordinary vertex-ranking problem as well as new techniques specific to the *c*-ranking problem.

2. Preliminaries

In this section we define some terms and present easy observations. Let T = (V, E) denote a tree with vertex set V and edge set E. We often denote by V(T)and E(T) the vertex set and the edge set of T, respectively. We denote by n the number of vertices in T. Tis a "free tree", but we regard T as a "rooted tree" for convenience sake: an arbitrary vertex of tree T is designated as the root of T. We will use notions as: root, internal vertex, child and leaf in their usual meaning. An edge joining vertices u and v is denoted by (u, v). The maximal subtree of T rooted at vertex v is denoted by T(v). For a *c*-ranking φ of tree T and a subtree T' of T, we denote by $\varphi|T'$ a restriction of φ to V(T'): let $\varphi' = \varphi | T'$, then $\varphi'(v) = \varphi(v)$ for $v \in V(T')$. The definition of a *c*-ranking immediately implies that a *c*ranking of a connected graph labels at most c vertices with the largest rank.

The number of ranks used by a *c*-ranking φ of tree T is denoted by $\#\varphi$. One may assume without loss of generality that φ uses the consecutive integers 1, 2, ..., $\#\varphi$ as the ranks. A vertex v of T and its rank $\varphi(v)$ are visible (from the root under φ) if all the vertices in the path from the root to v have ranks $\leq \varphi(v)$. Thus the root of T and $\#\varphi$ are visible. Denote by $L(\varphi)$ the list of ranks of all visible vertices, and call $L(\varphi)$ the list of a c-ranking φ of the rooted tree T. For an integer γ we denote by $count(L(\varphi), \gamma)$ the number of γ 's contained in $L(\varphi)$, i.e., the number of visible vertices with rank γ . The ranks in the list $L(\varphi)$ are sorted in non-increasing order. Thus the *c*-ranking φ in Fig. 1 has the list $L(\varphi) = \{3, 3, 1\},\$ and hence $count(L(\varphi), 3) = 2$, $count(L(\varphi), 2) = 0$ and $count(L(\varphi), 1) = 1$. One can easily observe that $count(L(\varphi), \gamma) \leq c$ for each rank γ .

We define the *lexicographical order* \prec on the set of non-increasing sequences (lists) of positive integers as follows: let $A = \{a_1, \ldots, a_p\}$ and $B = \{b_1, \ldots, b_q\}$ be two sets (lists) of positive integers such that $a_1 \ge \cdots \ge a_p$ and $b_1 \ge \cdots \ge b_q$, then $A \prec B$ if there exists an integer *i* such that

- (a) $a_j = b_j$ for all $1 \le j < i$, and
- (b) either $a_i < b_i$ or $p < i \leq q$.

We write $A \leq B$ if A = B or $A \prec B$. A *c*-ranking φ of *T* is *critical* if $L(\varphi) \leq L(\eta)$ for any *c*-ranking η of *T*. The optimal *c*-ranking depicted in Fig. 1 is indeed critical.

For a list A and an integer α , we define a sublist $[\alpha \leq A]$ of A as follows:

$$[\alpha \leqslant A] = \{x \in A \mid \alpha \leqslant x\}.$$

Similarly we define sublists $[\alpha < A]$, $[A \le \alpha]$ and $[A < \alpha]$ of A. Obviously if $A \preceq B$ then $[\alpha < A] \preceq [\alpha < B]$ for any $\alpha \ge 1$. For lists A and B we use $A \subseteq B$ and $A \cup B$ in their usual meaning in which we regard A, B and $A \cup B$ as multi-sets.

3. Optimal c-ranking

The main result of the paper is the following theorem.

Theorem 1. An optimal c-ranking of a tree T having n vertices can be found in time O(cn) for any positive

Fig. 2. A 3-vertex separator tree of the tree in Fig. 1.

integer c.

In the remainder of this section we give an algorithm to find a critical c-ranking of a tree T in time O(cn). Our algorithm uses the technique of "bottom-up tree computation". For each internal vertex u of a tree T, we construct a critical c-ranking of T(u) from those of the subtrees rooted at u's children.

One can easily prove the following lemma by induction on n.

Lemma 2. Every tree T of n vertices has a vertex whose removal leaves subtrees each having no more than n/2 vertices.

Using Lemma 2, we have the following lemma.

Lemma 3. For any positive integer c, every tree T of n vertices has at most c vertices whose removal leaves subtrees each having no more than n/q vertices, where $q = 2^{\lfloor \log_2(c+3) \rfloor - 1} > (c+3)/4$ and hence $q \ge 2$.

Proof. By Lemma 2 tree *T* has a vertex whose removal leaves subtrees each having no more than n/2 vertices. Clearly the number of subtrees having $n/2^2$ or more vertices does not exceed

$$\left\lfloor \frac{n-1}{n/2^2} \right\rfloor \leqslant 2^2 - 1.$$

By Lemma 2 each of these subtrees has a vertex whose removal leaves subtrees each having no more than $n/2^2$. Therefore T has at most $1 + (2^2 - 1)$ vertices whose removal leaves subtrees each having no more than $n/2^2$. Clearly the number of subtrees having $n/2^3$ or more vertices does not exceed

$$\left\lfloor\frac{n-1}{n/2^3}\right\rfloor \leqslant 2^3 - 1.$$

Repeating this operation $p \ (\ge 1)$ times, one can know that T has at most

$$1 + (2^{2} - 1) + (2^{3} - 1) + \dots + (2^{p} - 1)$$
$$= 2^{p+1} - p - 2$$

vertices whose removal leaves subtrees each having vertices no more than $n/2^p$. Choose $p = \lfloor \log_2(c + 3) \rfloor - 1$ so that $2^{p+1} - p - 2 \le c$. Then *T* has at most *c* vertices whose removal leaves subtrees each having vertices no more than $n/2^p = n/q$. Note that $q = 2^p > (c + 3)/4$ and hence $q \ge 2$ for any $c \ge 1$. \Box

Lemma 2 is a special case of Lemma 3 with c = 1. By Lemma 3 we have the following lemma.

Lemma 4. Every tree T of n vertices satisfies $r_c(T) \leq 1 + \operatorname{rank} n$.

Proof. Recursively applying Lemma 3, one can construct a *c*-vertex separator tree of height h(n) satisfying the following recurrence relation

 $h(n) \leq 1 + h\left(\left\lfloor \frac{n}{q} \right\rfloor\right).$

Solving the recurrence, we have $h(n) \leq \operatorname{rank} n$. Note that h(1) = 0. Hence $r_c(T) \leq 1 + h(n) \leq 1 + \operatorname{rank} n$. \Box

Let d(u) be the number of children of vertex u in T, and let $v_1, v_2, \ldots, v_{d(u)}$ be the children of u. Our idea is to construct a critical c-ranking of T(u) from critical c-rankings φ_i of $T(v_i), i = 1, 2, \ldots, d(u)$. One can easily observe the following lemma.

Lemma 5. A vertex-labeling η of T(u) is a *c*-ranking of T(u) if and only if $\eta | T(v_i)$ is a *c*-ranking of $T(v_i)$ for every $i, 1 \leq i \leq d(u)$, and there are no more than *c* visible vertices of the same rank under η , that is, count $(L(\eta), \gamma) \leq c$ for every rank $\gamma \in L(\eta)$.

We then have the following lemma.

Lemma 6. Let φ_i be an arbitrary critical *c*-ranking of $T(v_i)$, i = 1, 2, ..., d(u). Then T(u) has a critical *c*-ranking η such that $\eta | T(v_i) = \varphi_i$ for every $i, 1 \leq i \leq d(u)$.

Proof. Let ψ be an arbitrary critical *c*-ranking of T(u). Since φ_i is critical but $\psi|T(v_i)$ is not always critical, we have $L(\varphi_i) \leq L(\psi|T(v_i))$ for each *i*, $1 \leq i \leq d(u)$. If $L(\varphi_i) \prec L(\psi|T(v_i))$, then let γ_i be an integer such that

(a) $[\gamma_i < L(\varphi_i)] = [\gamma_i < L(\psi | T(v_i))],$ and

(b) $count(L(\varphi_i), \gamma_i) < count(L(\psi|T(v_i)), \gamma_i)$. Otherwise let $\gamma_i = 0$. Let $\gamma_{max} = max\{\gamma_i \mid 1 \le i \le d(u)\}$. Construct a vertex-labeling η of T(u) from ψ and φ_i as follows:

$$\eta(v) = \begin{cases} \max\{\psi(u), \gamma_{\max}\} & \text{if } v = u, \\ \varphi_i(v) & \text{if } v \in V(T(v_i)), \\ & 1 \leq i \leq d(u). \end{cases}$$

Then $\eta | T(v_i) = \varphi_i$ for all $i, 1 \leq i \leq d(u)$.

We now claim that $L(\eta) \subseteq L(\psi)$. Clearly we have

$$L(\eta) = \{\eta(u)\} \cup \left[\eta(u) \leqslant \bigcup_{i=1}^{d(u)} L(\varphi_i)\right]$$
(1)

and

$$L(\psi) = \{\psi(u)\} \cup \left[\psi(u) \leqslant \bigcup_{i=1}^{d(u)} L(\psi|T(v_i))\right].$$
(2)

Consider first the case $\psi(u) > \gamma_{max}$. In this case we have $\eta(u) = \psi(u)$. Since $\gamma_i < \eta(u)$, we have

$$[\eta(u) \leq L(\varphi_i)] = [\eta(u) \leq L(\psi|T(v_i))]$$
(3)

for every *i*, $1 \le i \le d(u)$. By (1)–(3) we have $L(\eta) = L(\psi)$. Consider next the case $\psi(u) \le \gamma_{\text{max}}$. In this case $\eta(u) = \gamma_{\text{max}} \ge \psi(u)$. For every *i*, $1 \le i \le d(u)$, such that $\gamma_i = \gamma_{\text{max}}$, by (a) and (b) we have

$$\{\eta(u)\} \cup [\eta(u) \leq L(\varphi_i)] \\ \subseteq [\eta(u) \leq L(\psi|T(v_i))] \\ \subseteq [\psi(u) \leq L(\psi|T(v_i))].$$
(4)

For every *i* such that $\gamma_i < \gamma_{max} = \eta(u)$, by (a) we have

$$[\eta(u) \leq L(\varphi_i)] = [\eta(u) \leq L(\psi|T(v_i))]$$
$$\subseteq [\psi(u) \leq L(\psi|T(v_i))].$$
(5)

By (1), (2), (4) and (5) we have $L(\eta) \subseteq L(\psi)$ as desired.

Since $L(\eta) \subseteq L(\psi)$ and ψ is a *c*-ranking, by Lemma 5 η is a *c*-ranking. Since $L(\eta) \subseteq L(\psi)$, $L(\eta) \preceq L(\psi)$. Therefore η is critical since ψ is critical. \Box

Let $m = \max\{\#\varphi_i \mid 1 \le i \le d(u)\}$. Then we have the following lemma.

Lemma 7. $r_c(T(u)) = m \text{ or } m + 1.$

Proof. Clearly $m \leq r_c(T(u))$. Therefore it suffices to prove that $r_c(T(u)) \leq m+1$. One can extend φ_i , $1 \leq i \leq d(u)$, to a *c*-ranking η of T(u) as follows:

$$\eta(v) = \begin{cases} m+1 & \text{if } v = u, \\ \varphi_i(v) & \text{if } v \in V(T(v_i)), \ 1 \leq i \leq d(u). \end{cases}$$

Thus $r_c(T(u)) \leq \#\eta = m+1$. \Box

The following lemma gives a necessary and sufficient condition for $r_c(T(u)) = m$.

Lemma 8. $r_c(T(u)) = m$ if and only if there is a rank α , $1 \leq \alpha \leq m$, such that (a) $\sum_{i=1}^{d(u)} count(L(\varphi_i), \alpha) \leq c - 1$ and

- (b) $\sum_{i=1}^{d(u)} count(L(\varphi_i), \gamma) \leq c$ for every rank γ , $\alpha + 1 \leq \gamma \leq m$.

Proof. (\Leftarrow) One can easily extend the critical *c*rankings φ_i to a *c*-ranking η of T(u) with $\#\eta = m$ as follows:

$$\eta(v) = \begin{cases} \alpha & \text{if } v = u, \\ \varphi_i(v) & \text{if } v \in V(T(v_i)), 1 \leq i \leq d(u). \end{cases}$$

Therefore $r_c(T(u)) \leq \#\eta = m$, and hence by Lemma 7 $r_c(T(u)) = m$.

 (\Longrightarrow) Suppose that $r_c(T(u)) = m$. By Lemma 6 there is a *c*-ranking η of T(u) such that $\#\eta = m$ and $\eta | T(v_i) = \varphi_i$ for each $i, 1 \leq i \leq d(u)$. Let $\alpha = \eta(u)$, then (a) and (b) above hold since η is a *c*-ranking of T(u).

In order to find a critical *c*-ranking η of T(u) from φ_i , $i = 1, 2, \dots, d(u)$, we need the following two lemmas.

Lemma 9. If
$$r_c(T(u)) = m + 1$$
, then

$$\eta(v) = \begin{cases} m+1 & \text{if } v = u, \\ \varphi_i(v) & \text{if } v \in V(T(v_i)), 1 \leq i \leq d(u) \end{cases}$$

is a critical c-ranking of T(u) and $L(\eta) = \{m+1\}$.

Proof. immediate.

Lemma 10. If $r_c(T(u)) = m$, then

$$\eta(v) = \begin{cases} \alpha & \text{if } v = u, \\ \varphi_i(v) & \text{if } v \in V(T(v_i)), \ 1 \leq i \leq d(u) \end{cases}$$

Procedure Ranking(T(u)); begin 1 if u is a leaf then return a trivial c-ranking: $u \rightarrow 1$ 2 else 3 begin 4 let $v_1, v_2, \dots, v_{d(u)}$ be the children of u; 5 for i := 1 to d(u) do Ranking $(T(v_i))$; 6 find a critical c-ranking of T(u) from critical *c*-rankings of $T(v_i)$, $i = 1, 2, \ldots, d(u)$, by Lemmas 9 and 10; 7 **return** a critical *c*-ranking of T(u)8 end

Fig. 3.

end.

is a critical c-ranking of T(u), where α is the minimum rank such that

- (a) $\sum_{i=1}^{d(u)} count(L(\varphi_i), \alpha) \leq c-1$ and
- (b) $\sum_{i=1}^{d(u)} count(L(\varphi_i), \gamma) \leq c$ for every rank γ , $\alpha + 1 \leq \gamma \leq m$.

Furthermore, $L(\eta) = \{\alpha\} \cup [\alpha \leq \bigcup_{i=1}^{d(u)} L(\varphi_i)].$

Proof. By Lemma 6 there is a critical c-ranking ψ of T(u) such that $L(\psi|T(v_i)) = L(\varphi_i)$ for every *i*, $1 \leq i \leq d(u)$. Since $\alpha = \eta(u)$ is the minimum rank satisfying (a) and (b) above, $L(\eta) \leq L(\psi)$ and hence η is a critical *c*-ranking of T(u). Clearly

$$L(\eta) = \{\alpha\} \cup \Big[\alpha \leqslant \bigcup_{i=1}^{d(u)} L(\varphi_i)\Big].$$

By Lemmas 8, 9 and 10 above we have the recursive algorithm in Fig. 3 to find a critical c-ranking of T(u).

Clearly one can correctly find a critical *c*-ranking of a tree T by calling Procedure $\operatorname{Ranking}(T(r))$ for the root r of T. Therefore it suffices to verify the time-complexity of the algorithm. Let φ_i , i =1, 2, ..., d(u), be a critical *c*-ranking of $T(v_i)$. Assume without loss of generality that $\#\varphi_1$ and $\#\varphi_2$ are the two largest, possibly equal, numbers among $\#\varphi_i$, $i = 1, 2, \dots, d(u)$, and that $\#\varphi_1 \ge \#\varphi_2$. Let $\#\varphi_2 = 0$ if d(u) = 1. Let η be a critical *c*-ranking of T(u) obtained from φ_i , $i = 1, 2, \dots, d(u)$, at line 6. Then the following lemma holds, which will be proved later.

Lemma 11. One execution of line 6 can be done in time $O(x_u + d(u) + c \cdot \#\varphi_2)$, where x_u is the number of vertices which were visible in $T(v_i)$ under φ_i , $1 \leq i$

$i \leq d(u)$, but are not visible in T(u) under η .

Once a vertex becomes invisible, it will never become visible again. Furthermore, $\sum d(u) \leq n$ where the summation is taken over all internal vertices. Therefore the total time counted by the first term x_u and the second term d(u) is O(n) when Procedure Ranking is recursively called for all vertices. Let n_{u_2} be the number of vertices in the second largest tree $T(v_{u_2})$ among $T(v_i)$, $i = 1, 2, \dots, d(u)$, if $d(u) \geq 2$. Then by Lemma 4 we have $\#\varphi_2 \leq 1 + \operatorname{rank} n_{u_2}$. Note that $\#\varphi_2$ is not always the *c*-ranking number of $T(v_{u_2})$. The following lemma implies that the total time counted by the third term $c \cdot \#\varphi_2$ is also O(cn). Thus the total running time of Ranking is O(cn).

Lemma 12. Let $V_2 = \{u \in V \mid d(u) \ge 2\}$, then

$$\sum_{u\in V_2} \left(1+\log_q n_{u_2}\right) = \mathcal{O}(n).$$

Proof. For a tree T, let

$$S(T) = \sum_{u \in V_2} \left(1 + \log_q n_{u_2} \right).$$

We now prove by induction on *n* that

$$S(T) \leq 2n - (1 + \log_a n). \tag{6}$$

Trivially (6) holds when n = 1. Now assume that $n \ge 2$ and (6) holds for any tree having at most n - 1 vertices.

Let *T* be a tree with *n* vertices rooted at vertex *u*. One may assume that $d(u) \ge 2$. Let $v_1, v_2, \ldots, v_{d(u)}$ be the children of *u*, and let $n_i, i = 1, 2, \ldots, d(u)$, be the number of vertices of $T(v_i)$, respectively. Then

$$\sum_{i=1}^{d(u)} n_i = n - 1.$$
 (7)

Assume without loss of generality that $n_1 \ge n_2 \ge \cdots \ge n_{d(u)}$, then $n_{u_2} = n_2$. By (7), the definition of S(T) and the inductive hypothesis we have

$$S(T(u)) = 1 + \log_q n_2 + \sum_{i=1}^{d(u)} S(T(v_i))$$

$$\leq 1 + \log_q n_2 + \sum_{i=1}^{d(u)} \{2n_i - (1 + \log_q n_i)\}$$

= $2n - \{1 + d(u) + \log_q n_1 + \sum_{i=3}^{d(u)} \log_q n_i\}.$ (8)

Since $q \ge 2$ and $2^{d(u)} \ge d(u) + 1$, we have

$$1 + d(u) + \log_{q} n_{1} + \sum_{i=3}^{d(u)} \log_{q} n_{i}$$

$$\geq 1 + \log_{q} 2^{d(u)} + \log_{q} \{n_{1}n_{3}n_{4} \cdots n_{d(u)}\}$$

$$= 1 + \log_{q} \{2^{d(u)}n_{1}n_{3}n_{4} \cdots n_{d(u)}\}$$

$$\geq 1 + \log_{q} \{(d(u) + 1)n_{1}\}$$

$$\geq 1 + \log_{q} \{\sum_{i=1}^{d(u)} n_{i} + 1\}$$

$$= 1 + \log_{q} n.$$
(9)

Substituting (9) to (8), we have $S(T(u)) \leq 2n - (1 + \log_a n)$. \Box

We finally give in Fig. 4 an implementation of line 6 of Procedure Ranking, which finds a critical *c*-ranking η of T(u) from the critical *c*-rankings φ_i , i = 1, 2, ..., d(u).

We are now ready to prove Lemma 11.

Proof of Lemma 11. As a data-structure to represent a list $L(\varphi)$ of a *c*-ranking φ , we use a linked list L_{φ} consisting of records. Each record contains two items of data: rank γ , $1 \leq \gamma \leq \#\varphi$ and $count(L(\varphi), \gamma)$ such that $count(L(\varphi), \gamma) \geq 1$.

If d(u) = 1, then using linked list L_{φ_1} one can easily find α at line 4 in $O(x_u)$ time where $x_u = |[L(\varphi_1) < \alpha]|$. It should be noted that all the x_u vertices of ranks in $[L(\varphi_1) < \alpha]$ were visible but they become invisible after lines 5 and 6 are executed. Thus lines 3-7 can be done total in time $O(x_u)$. Similarly, if lines 20-23 are executed, then at line 21 one can easily find α in $O(x_u)$ time, and hence lines 20-23 can be done in time $O(x_u)$ time.

We now claim that if $d(u) \ge 2$ then lines 10-12 and 15-16 can be done total in time $O(d(u) + c \cdot \#\varphi_2)$. We construct a linked list L_s as follows. First set L_s as an empty list. For each $i, 1 \le i \le d(u)$, add

```
Procedure Line-6(\varphi_1, \ldots, \varphi_{d(u)}, \eta);
      begin
       \eta|T(v_i) := \varphi_i \text{ for each } i, i := 1, 2, \dots, d(u);
                                                                          { determine the rank of u as follows. }
l
2
          if d(u) = 1 then
3
             begin
4
                 find a smallest integer \alpha \ge 1 such that count(L(\varphi_1), \alpha) \le c - 1;
5
                 \eta(u) := \alpha;
6
                 L(\eta) := \{\alpha\} \cup [\alpha \leq L(\varphi_1)]
7
             end
8
          else { d(u) \ge 2 }
9
              begin
10
                 find the two largest, possibly equal, numbers among \#\varphi_i, i := 1, 2, ..., d(u);
                     { assume w.l.o.g. that \#\varphi_1 and \#\varphi_2 are these largest numbers and \#\varphi_1 \ge \#\varphi_2. }
                 let L_s := [L(\varphi_1) \leqslant \#\varphi_2] \cup (\bigcup_{i=2}^{d(u)} L(\varphi_i));
11
12
                 find a smallest rank \alpha such that 1 \leq \alpha \leq \#\varphi_2, count(L_s, \alpha) \leq c-1 and
                    count(L_s, \gamma) \leq c for all ranks \gamma, \alpha + 1 \leq \gamma \leq \#\varphi_2;
13
                 if such a rank \alpha exists then
14
                    begin
15
                        \eta(u) := \alpha;
16
                        L(\eta) := \{\alpha\} \cup [\alpha \leq L_s] \cup [\#\varphi_2 < L(\varphi_1)]
17
                    end
18
                 else
19
                    begin
                        L_{s} := L_{s} \cup [\#\varphi_{2} < L(\varphi_{1})]; \quad \{ L_{s} = \bigcup_{i=1}^{d(u)} L(\varphi_{i}) \}
20
21
                        find a smallest integer \alpha such that \#\varphi_2 + 1 \leq \alpha \leq \#\varphi_1 + 1 and count(L_s, \alpha) \leq c - 1;
22
                        \eta(u) := \alpha;
23
                        L(\eta) := \{\alpha\} \cup [\alpha \leqslant L_s];
24
                     end
25
              end
       end;
```

Fig. 4.

to L_s all ranks $\gamma \ (\leq \#\varphi_2)$ in L_{φ_i} in the decreasing order of γ until either $count(L_s, \gamma) > c$ or all such ranks γ have been added. Thus line 11 can be done in time $O(c \cdot \#\varphi_2)$. Clearly line 10 can be done in time O(d(u)) and lines 12, 15 and 16 in time $O(\#\varphi_2)$. Therefore lines 10–12 and 15–16 can be done total in time $O(d(u) + c \cdot \#\varphi_2)$.

Thus Procedure Line-6 can be done total in time $O(x_u + d(u) + c \cdot \#\varphi_2)$. \Box

4. Conclusion

We newly define a generalized vertex-ranking of a graph, called a *c*-ranking, and give an efficient algorithm to find an optimal *c*-ranking of a given tree *T* in time O(cn) for any $c \ge 1$ where *n* is the number of vertices in *T*. If *c* is a bounded integer, then our algorithm takes linear time. If *c* is not bounded, our algorithm takes time O(cn). However, if *c* is large,

say $c = n^{\varepsilon}$ for some $\varepsilon > 0$, then by Lemma 4 $r_c(T)$ is bounded and hence one execution of line 6 can be done in time O(d(u)) and consequently our algorithm takes linear time.

We may replace the positive integer c by a function $f: \mathbb{N} \to \mathbb{N}$ to define a more generalized vertexranking of a graph as follows: an *f*-vertex-ranking³ of a graph G is a labeling of the vertices of G with integers such that, for any label i, deletion of all vertices with labels > i leaves connected components, each having at most f(i) vertices with label $i \in \mathbb{N}$. By some trivial modifications of our algorithm for the *c*-vertex-ranking of a tree, we can find an optimal *f*vertex-ranking of a given tree in time complexity of $O(n \max_i f(i))$, where the maximum is taken over all labels i used by the algorithm.

³ We wish to thank Professor A. Nakayama of Fukushima University for suggesting the f-vertex-ranking of a graph.

A generalized edge-ranking can be defined similarly, and the algorithms for the ordinary edge-ranking of trees [3,10-12] can be extended to find an optimal *c*-edge-ranking [9].

References

- [1] H. Bodlaender, J.S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Müller and Zs. Tuza, Ranking of graphs, in: *Proc. Internat. Workshop on Graph-Theoretic Concepts in Computer Science*, Herrsching, Bavaria, Germany (1994).
- [2] H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson and T. Kloks, Approximating treewidth, pathwidth and minimum elimination tree height, J. Algorithms 18 (1995) 238-255.
- [3] P. de la Torre, R. Greenlaw and A. A. Schäffer, Optimal ranking of trees in polynomial time, in: *Proc. 4th Ann. ACM–SIAM Symp. on Discrete Algorithms*, Austin, Texas (1993) 138-144; also in: *Algorithmica*, to appear.
- [4] I.S. Duff and J.K. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM Trans. Math. Software 9 (1983) 302-325.

- [5] A.V. Iyer, H.D. Ratliff and G. Vijayan, Optimal node ranking of trees, *Inform. Process. Lett.* 28 (1988) 225–229.
- [6] J.W.H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Analysis and Applications 11 (1990) 134–172.
- [7] A. Pothen, The complexity of optimal elimination trees, Tech. Rept. CS-88-13, Pennsylvania State University, 1988.
- [8] A.A. Schäffer, Optimal node ranking of trees in linear time, Inform. Process. Lett. 33 (1989) 91-99.
- [9] X. Zhou, M.A. Kashem and T. Nishizeki, Generalized edgerankings of trees, Tech. Rept. SIGAL, 95-AL-46-10, 73-80, Inf. Proc. Soc. of Japan, July 1995.
- [10] X. Zhou and T. Nishizeki, An efficient algorithm for edgeranking trees, in: *Proc. 2nd European Symp. on Algorithms*, Lecture Notes in Computer Science 885 (Springer, Berlin, 1994) 118-129.
- [11] X. Zhou and T. Nishizeki, Finding optimal edge-rankings of trees, in: Proc. 6th Ann. ACM-SIAM Symp. on Discrete Algorithms (1995) 122-131.
- [12] X. Zhou and T. Nishizeki, Finding optimal edge-rankings of trees – A correct algorithm, Tech. Rept. 9501, Dept. of Inf. Eng., Tohoku University, 1995.