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Letters 

Abstract 

We newly define a generalized vertex-ranking of a graph G as follows: for a positive integer c, a c-vertex-ranking of 
G is a labeling (ranking) of the vertices of C with integers such that, for any label i, every connected component of the 
graph obtained from G by deleting the vertices with label > i has at most c vertices with label i. Clearly an ordinary 
vertex-ranking is a l-vertex-ranking and vice-versa. We present an algorithm to find a c-vertex-ranking of a given tree T 
using the minimum number of ranks in time O(cn) where n is the number of vertices in T. 
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1. Introduction 

A vertex-ranking of a graph G is a labeling (rank- 
ing) of vertices of G with integers such that any path 
between two vertices with the same label i contains a 
vertex with label j > i. The vertex-ranking problem 

is to find a vertex-ranking of a given graph G using 
the minimum number of ranks (labels). The vertex- 
ranking problem is NP-hard in general [ 1,7]. On the 
other hand Schaffer has given a linear algorithm to 
solve the vertex-ranking problem for trees [ 81. Very 
recently Bodlaender et al. have given a polynomial- 
time algorithm to solve the vertex-ranking problem 
for graphs with bounded treewidth [ 11. The vertex- 
ranking of a graph G has applications in VLSI layout 
and in scheduling the manufacture of complex multi- 
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part products [ 8,5] ; it is equivalent to finding the min- 
imum height vertex separator tree of G. 

In this paper we newly define a generalization of 
an ordinary vertex-ranking. For a positive integer c, a 
c-vertex-ranking (or a c-ranking for short) of a graph 
G is a labeling of the vertices of G with integers such 
that, for any label i, every connected component of the 

graph obtained from G by deleting the vertices with 
label > i has at most c vertices with label i. Clearly 
an ordinary vertex-ranking is a l-vertex-ranking and 
vice-versa. The integer label of a vertex is called the 
rank of the vertex. The minimum number of ranks 
needed for a c-vertex-ranking of G is called the c- 
vertex-ranking number (or the c-ranking number for 
short) and denoted by r,.(G) . A c-ranking of G using 
rC (G) ranks is called an optimal c-ranking of G. The 
c-ranking problem is to find an optimal c-ranking of 
a given graph G. The problem is NP-hard in general 
since the ordinary vertex-ranking problem is NP-hard 
[ 1,7]. Fig. 1 depicts an optimal 3-ranking of a tree 
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using three ranks, where vertex numbers are drawn in 
circles and ranks next to circles. 

Consider the process of starting with a connected 
graph and partitioning it recursively by removing at 

most c vertices and incident edges from each of the re- 

maining connected subgraphs until the graph becomes 
empty. The tree representing the recursive decompo- 
sition is called a c-vertex separator tree. Thus a c- 

vertex separator tree corresponds to a parallel com- 
putation scheme based on the process above. The c- 

vertex-ranking problem is equivalent to finding a c- 
vertex separator tree of the minimum height. Fig. 2 
illustrates a 3-vertex separator tree of the tree depicted 
in Fig. I, where deleted vertex numbers are drawn in 

ovals. 
Let M be a sparse symmetric matrix. Let M’ be a 

matrix obtained from M by replacing each non-zero 
element by 1. Let G be a graph with adjacency ma- 

trix M’. Then an optimal c-vertex ranking of G corre- 
sponds to a generalized Cholesky factorization of M 

having the minimum recursive depth [ 2,4,6]. 
In this paper we give an algorithm to solve the c- 

ranking problem on trees T in time 0( cn) for any pos- 
itive integer c where n is the number of vertices in T. 

Our algorithm uses techniques employed by Schaffer 
[ 81 and Iyer et al. [ 51 for the ordinary vertex-ranking 
problem as well as new techniques specific to the c- 
ranking problem. 

2. Preliminaries 

In this section we define some terms and present 
easy observations. Let T = (YE) denote a tree with 
vertex set V and edge set E. We often denote by V(T) 

and E(T) the vertex set and the edge set of T, respec- 
tively. We denote by n the number of vertices in T. T 

is a “free tree”, but we regard T as a “rooted tree” for 
convenience sake: an arbitrary vertex of tree T is des- 
ignated as the root of T. We will use notions as: root, 
internal vertex, child and leaf in their usual meaning. 
An edge joining vertices u and u is denoted by (u, U) . 
The maximal subtree of T rooted at vertex u is denoted 
by T(u) . For a c-ranking p of tree T and a subtree T’ 

of T, we denote by PIT’ a restriction of 40 to V(T’): 
let SD’ = (PIT’, then p’(u) = q(u) for u E V(T’). The 
definition of a c-ranking immediately implies that a c- 
ranking of a connected graph labels at most c vertices 

with the largest rank. 
The number of ranks used by a c-ranking 40 of 

tree T is denoted by ##p. One may assume without 
loss of generality that q uses the consecutive inte- 

gers 1,2,. . . ,#q as the ranks. A vertex u of T and its 

rank p(u) are visible (from the root under cp) if all 
the vertices in the path from the root to u have ranks 

< q(u). Thus the root of T and #v are visible. De- 

note by f.( 90) the list of ranks of all visible vertices, 
and call L( 9) the list of a c-ranking C,O of the rooted 

tree T. For an integer y we denote by count( L( C,IY) , y) 
the number of y’s contained in L( (p), i.e., the num- 
ber of visible vertices with rank y. The ranks in the 
list L( VP) are sorted in non-increasing order. Thus the 
c-ranking cp in Fig. 1 has the list L( ~0) = {3,3,1}, 
and hence count( L( q), 3) = 2, count( L( q), 2) = 0 
and count( L( cp) , 1) = 1. One can easily observe that 
count( L( 9) , y) < c for each rank y. 

We define the lexicographical order 4 on the set of 
non-increasing sequences (lists) of positive integers 
asfollows:letA={a~,...,a,}andB={bi,...,b,} 
be two sets (lists) of positive integers such that al 3 
. . . > a,, and 61 3 ... > b,, then A 4 B if there 
exists an integer i such that 
(a) aj=bjforalll <j<i,and 
(b) either a; < b; or p < i 6 q. 
We write A 3 B if A = B or A 4 B. A c-ranking p of 
T is critical if L(q) 3 L(v) for any c-ranking 77 of 
T. The optimal c-ranking depicted in Fig. 1 is indeed 
critical. 

For a list A and an integer CK, we define a sublist 
[a < A] of A as follows: 

[a < A] = {x E A 1 (Y < x}. 

Similarly we define sublists [ LY < A], [A < a] and 
[A<a]ofA.ObviouslyifAdBthen[c~<A] 3 
[a < B] for any Q 3 1. For lists A and B we use 
A C B and A U B in their usual meaning in which we 

regard A, B and A U B as multi-sets. 

3. Optimal c-ranking 

The main result of the paper is the following theo- 
rem. 

Theorem 1. An optimal c-ranking of a tree T having 
n vertices can be found in time 0( cn) for any positive 
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Fig. I. An optimal Svertex-ranking cp of a tree T. 

Fig. 2. A Svertex separator tree of the tree in Fig. 1. 

integer c. 

In the remainder of this section we give an algorithm 
to find a critical c-ranking of a tree T in time 0( cn). 
Our algorithm uses the technique of “bottom-up tree 
computation”. For each internal vertex u of a tree T, 

we construct a critical c-ranking of T(u) from those 
of the subtrees rooted at u’s children. 

One can easily prove the following lemma by in- 
duction on n. 

Lemma 2. Every tree T of n vertices has a vertex 

whose removal leaves subtrees each having no more 
than n/2 vertices. 

Using Lemma 2, we have the following lemma. 

Lemma 3. For any positive integer c, every tree T of 

n vertices has at most c vertices whose removal leaves 

subtrees each having no more than n/q vertices, where 
q = 2llos,(c+3)J-I > (c+3)/4andhenceq>2. 

Proof. By Lemma 2 tree T has a vertex whose removal 

leaves subtrees each having no more than n/2 vertices. 
Clearly the number of subtrees having n/2* or more 
vertices does not exceed 

n-l L-J n/2* 
<22-l. 

By Lemma 2 each of these subtrees has a vertex whose 
removal leaves subtrees each having no more than 
n/2*. Therefore T has at most 1 + (2* - 1) vertices 
whose removal leaves subtrees each having no more 
than n/2*. Clearly the number of subtrees having n/2” 

or more vertices does not exceed 

n-l 

L-J n/2’ 
< 2” - 1. 

Repeating this operation p ( 3 1) times, one can know 
that T has at most 

l+(2*-l)+(23-1)+...+(2P-1) 

= 2”+’ -p-2 



324 X. Zhou et al. I tnformation Processing Letters 56 (1995) 321-328 

vertices whose removal leaves subtrees each having 
vertices no more than n/2”. Choose p = [log, (c + 
3)j - 1 so that 2”+’ - p - 2 < c. Then T has at most 

c vertices whose removal leaves subtrees each having 
vertices no more than n/2” = n/q. Note that q = 2” > 

(c+3)/4andhenceq>2foranyc> 1. 0 

Lemma 2 is a special case of Lemma 3 with c = 1. 

By Lemma 3 we have the following lemma. 

Lemma 4. Every tree T of n vertices satisfies 

r,(T) < 1 +rankn. 

Proof. Recursively applying Lemma 3, one can con- 
struct a c-vertex separator tree of height h(n) satisfy- 
ing the following recurrence relation 

Solving the recurrence, we have h(n) < rankn. Note 

that h(1) = 0. Hence r,(T) < I + h(n) < 1 + 
rankn. 0 

Let d(u) be the number of children of vertex u in 
T, and let ul, ~2,. . . ,uJ(,,) be the children of U. Our 
idea is to construct a critical c-ranking of T(u) from 
critical c-rankings rpj of T( u;), i = 1,2, . . _ , d( u). One 
can easily observe the following lemma. 

Consider first the case G(u) > ymax. In this case we 
have q(u) =$(u). Since yi < T(U), we have 

[r](U) G t(~;>l = [‘Q(U) < L(fiIT(~i)>l (3) 

for every i, 1 < i < d(u). By (l)-(3) we have 
L(v) = L($). Consider next the case +(u) < ymax. 
In thiscase T(U) = yrnax > ccl(u). Forevery i, 1 < i < 
d(u) , such that yi = ymax, by (a) and (b) we have 

(0)) u [V(U) < L(R)1 
Lemma 5. A vertex-labeling v ofT( u) is a c-ranking 

ofT(u) ifundonly ifnIT is a c-ranking ofT(ui) 

for every i, 1 < i < d(u) , and there are no more than 

c visible vertices of the same rank under 7, that is, 
count(L(~),y) < cfor every rank y E L(n). 

C [v(u) < UrcllT(ui))l 

C [G(u) < UrCIIT(ui)) I. (4) 

For every i such that yi < yrnax = n(u) , by (a) we 
have 

We then have the following lemma. 

Lemma 6. Let pi be an arbitrary critical c-ranking 
ofT(ui),i= I,2 ,..., d(u). Then T(u) has a critical 

c-ranking n such that vlT(ui) = vi for every i, 1 6 
i<d(u). 

[T(U) < L(G)] = [v(u) < UJ,W(~~))I 

C [fi(u) < L($IT(Ui))l. (5) 

By (11, (21, (4) and (5) we have L(n) C L(G) as 
desired. 

Proof. Let (I, be an arbitrary critical c-ranking of 
T(u). Since q; is critical but #/IT(ui) is not always 
critical, we have L( 9;) 3 L(fijT(ut)) for each i, 

1 < i < d(u). If L(qi) 4 L($lT(ui)), then let yi be 
an integer such that 

Since L(v) C L(4) and Cc, is a c-ranking, by 
Lemma 5 7 is a c-ranking. Since L( 7) C L(+), 
L(7t) 5 L(G). Therefore 71 is critical since fi is crit- 
ical. q 

Let m = max{#qi I 1 < i < d(u)}. Then we have 
the following lemma. 

(a) [r; < L(Vi)l = [n < U$IT(~;))l, and Lemma 7. r,(T(u)) = m or m + 1. 

(b) count(L(~;),yi) < count(L(cCI(Ttui)),y;). 
Otherwise let y; = 0. Let yrnax = max{yi ) 1 < i < 

d(u)}. Construct a vertex-labeling n of T( u) from Cc, 

and tp; as follows: 

i 

max{$(u),y,,,} ifv=u, 

V(U) = Pi(U) if u E V(T(u;)), 

1 < i < d(u). 

Then vlT(u;) = cp; for all i, 1 f i < d(u). 

We now claim that L( q~) C L( $). Clearly we have 

d(u) 

Url) = {v(u)} u [17(u) < u L(q;)] (1) 
i=l 

and 
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Proof. Clearly m < r,(T( u)). Therefore it suffices 
to prove that rC (T( u) ) < m + 1. One can extend pi, 
1 6 i < d(u), to a c-ranking 7 of T(u) as follows: 

i 

m+l if u = u, 
7?(u) = 

pi(U) if u E V(T(Ui)), 1 < i < d(t4.). 

ThSr,.(T(u)) <#v=m+ 1. 0 

The following lemma gives a necessary and suffi- 
cient condition for rC (T( u) ) = m. 

Lemma 8. r,( T( u) ) = m if and only if there is a 

rank CY, 1 < cy < m, such that 

(a) Cd,',"'cOUTZt(L($0i),CY) < C- 1 Und 

(b) Cz,“’ count( L( pi), y) < c for every rank y, 

a+1 <r<rn. 

Proof. (+=) One can easily extend the critical c- 
rankings p; to a c-ranking 7 of T(u) with #‘I = m as 

follows: 

i 

a if u = u, 
V(U) = 

p;(U) if u E V(T(Ui)), 1 < i < d(U). 

Therefore r,(T(u)) < #v = m, and hence by 
Lemma 7 r,(T(u)) =m. 

(==+) Suppose that r,(T(u)) = m. By Lemma 6 
there is a c-ranking 7 of T(u) such that #r] = m and 
vjT(ui) = pi for each i, I < i < d(u). Let LY = v(u), 
then (a) and (b) above hold since v is a c-ranking of 
T(u). 0 

In order to find a critical c-ranking 77 of T(u) from 
vi, i = 1,2,. . . , d(u), we need the following two 

lemmas. 

Lemma 9. Ifr,(T(u)) = m + 1, then 

1 mfl if u = u, 
V(U) = 

pi(U) ifU E V(T(Ui)), 1 ,< i < d(u) 

is a criticuZ c-ranking of T(u) and L(v) = {m + I}. 

Proof. immediate. 13 

Lemma 10. JfrC(T(u)) = m, then 

ff if u = u, 
V(U) = 

pi(U) ifU E V(T(Ui)), I < i < d(u) 

Procedure Ranking(T(u)); 

begin 

I if ~1 is a leaf 

then return a trivial c-ranking: u -) 1 
2 else 

3 begin 

4 let ~‘1, I,*,. , LIP be the children of U; 

5 for i := I to d(u) do Ranking(T(c,)); 

6 find a critical c-ranking of T(U) from critical 

c-rankings of T(c;), i = 1.2,. ,d(u), by 

Lemmas 9 and IO; 

I return a critical c-ranking of T(u) 

8 end 

end. 

Fig. 3. 

is a critical c-ranking of T( u) , where CY is the minimum 

rank such that 
(a) C~,"'count(l(cpi),a) < C- 1 and 

(b) Cz;’ count(l(qi),r) < c for every rank y, 

a+1 <r<rn, 
Furthermore, L(v) = {a} U [a < U:,“’ L(qi)]. 

Proof. By Lemma 6 there is a critical c-ranking $ 
of T(U) such that L($IT(Ui)) = L(pi) for every i, 
1 < i 6 d(u). Since (Y = q(u) is the minimum rank 
satisfying (a) and (b) above, L(T) 5 L(q) and 
hence 7 is a critical c-ranking of T(u). Clearly 

By Lemmas 8,9 and 10 above we have the recursive 
algorithm in Fig. 3 to find a critical c-ranking of T( u). 

Clearly one can correctly find a critical c-ranking 
of a tree T by calling Procedure Ranking(T( r)) 
for the root r of T. Therefore it suffices to verify 
the time-complexity of the algorithm. Let pi, i = 
1,2,... , d(u), be a critical c-ranking of T(Ui). As- 
sume without loss of generality that #PI and #pz are 
the two largest, possibly equal, numbers among #vi, 
i = 1,2,... ,d(u), and that #pl 2 #pp. Let #Q = 0 
if d(u) = 1. Let 7 be a critical c-ranking of T(u) ob- 

tained from qi, i = 1,2,. . . , d(u), at line 6. Then the 
following lemma holds, which will be proved later. 

Lemma 11. One execution of line 6 can be done in 

timeO(x,+d(u)+c.#qcq), wherex, isthenumber 
of vertices which were visible in T( Ui) under pi, 1 < 
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i 6 d(u), but are not visible in T(u) under v. 

Once a vertex becomes invisible, it will never be- 

come visible again. Furthermore, C d(u) 6 n where 
the summation is taken over all internal vertices. 

Therefore the total time counted by the first term xU 
and the second term d(u) is O(n) when Procedure 
Ranking is recursively called for all vertices. Let nrrz 

be the number of vertices in the second largest tree 
T(u,,) amongT(ui),i= 1,2;..,d(u),ifd(u) 3 2. 
Then by Lemma 4 we have #Q f 1 + rank n,,,. 
Note that #q is not always the c-ranking number of 
T(u,,). The following lemma implies that the total 
time counted by the third term c . #(oz is also 0( cn). 

Thus the total running time of Ranking is O(cn). 
This completes the proof of Theorem 1. 

Lemma 12. Let V2 = {u E V ) d(u) > 2}, then 

c( 1 +log,n,, =0(n). 
> 

UEV2 

Proof. For a tree T, let 

S(T) = c (1 + log, n,,,) . 
UEV2 

We now prove by induction on n that 

S(T) < 2n - ( 1 + log, n). (6) We are now ready to prove Lemma 11. 

Trivially (6) holds when n = 1. Now assume that 
n 3 2 and (6) holds for any tree having at most n - 1 
vertices. 

Let T be a tree with n vertices rooted at vertex u. 
One may assume that d(u) 3 2. Let UI,UZ,. . . ,udcu) 
be the children of u, and let n;, i = 1,2, . . , d(u), be 
the number of vertices of T( ui), respectively. Then 

Proof of Lemma 11. As a data-structure to represent 
a list L(p) of a c-ranking q, we use a linked list L, 

consisting of records. Each record contains two items 
of data: rank y, 1 < y < #(p and count( L( cp) , y) such 
that count( L( p) , y) 3 1. 

If d(u) = 1, then using linked list L,, one can 
easily find cy at line 4 in 0(x,) time where x,, = 
j [ L( cpI ) < (Y] I. It should be noted that all the xU 
vertices of ranks in [ L( cp, ) < (~1 were visible but they 

become invisible after lines 5 and 6 are executed. Thus 
lines 3-7 can be done total in time 0(x,,). Similarly, 
if lines 20-23 are executed, then at line 21 one can 
easily find cr in 0(x,) time, and hence lines 20-23 

can be done in time 0(x,) time. 

d(u) 

c n; = n - 1. (7) 
i=l 

Assume without loss of generality that nl > n2 > 
... > nd(,,), then nu2 = n2. By (7)) the definition of 

S(T) and the inductive hypothesis we have 

d(u) 

S(T(u)) = 1 +log,nz+CS(T(~i)) 
i=l 

d(u) 

G l + 10&j n2 + C(2n; - (1 + log, ni)} 
i=l 

=2n- 1 +d(u) 
{ 

d(u) 

+ log, ni + C log, ni}. (8) 
i-3 

Since q > 2 and 2d(u) 3 d(u) + 1, we have 

d(o) 

1 + d(u) + log, n1 + clog, n; 
i=3 

3 1 + log,2d’U) +log,{nlnnn4...nd(,,,} 

= 1 + log,{2d’u)n~n~n~~~ .ndcrrj} 

3 1 + log,{(d(u) + l)nl} 
d(u) 

3 1 +log,(Cni+ l} 
i=I 

= 1 + log, n. (9) 

Substituting (9) to (8), we have S(T(u)) < 2n - 
(1 +log,n). 0 

We finally give in Fig. 4 an implementation of 
line 6 of Procedure Ranking, which finds a critical 
c-ranking q of T(u) from the critical c-rankings q;, 
i= 1,2 ,..., d(u). 

We now claim that if d(u) 2 2 then lines 10-l 2 
and 15-16 can be done total in time O(d(u) + c. 
#c,Q). We construct a linked list L, as follows. First 
set L,y as an empty list. For each i, 1 < i < d(u), add 
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Procedure Line-6(cpt,. , cpd(u).v); 
begin 
nlT(~i) := pi for each i, i := 1,2,. ,d(u); { determine the rank of u as follows. } 

if d(u) = I then 

begin 

find a smallest integer (Y 3 I such that count( L( cp~ ) , a) < c - I ; 
7](u) := a; 
L(v) := {a) u [a < Ucpl )I 

end 

else { d(n) 3 2 } 

begin 

find the two largest, possibly equal, numbers among #cpi, i := I, 2, , d(u); 
{ assume w.1.o.g. that #ppl and #qpz are these largest numbers and #cpt 3 #cpz. } 

let LX:= 1Ucp1) 6 tb21U (IJ~_~'L((P;)); 

find a smallest rank a such that I < a Q #(p2, counr( L,. a) < c - I and 

counr( L,, , y) < c for all ranks y. (Y + I < y < #(02; 
if such a rank a exists then 

begin 

n(u) := a; 

L(q) := {a) u [a 6 LSI lJ L&J2 < .ucpl)l 
end 

else 
begin 

LS:=L,UI#(DZ<L(cDI)I; { LS=lJzr)L(Cpi)} 
find a smallest integer (Y such that #Q + I 6 a < #cpl + I and rount( L,, n) < c - I; 

v(u) :-a; 

L(7)) := {a} U [a 6 L,l; 
end 

end 
end, 

Fig. 4. 

to L,s all ranks y (< #(pz) in L, in the decreasing 
order of y until either counr( L,, y) > c or all such 
ranks y have been added. Thus line 11 can be done in 
time 0( c . #qzp2). Clearly line 10 can be done in time 
O(d(u)) and lines 12, 15 and 16 in time O(#~Z). 
Therefore lines 1 O-l 2 and 15-l 6 can be done total in 

time O(d(u) + c .#(Dz). 
Thus Procedure Line-6 can be done total in time 

O(x,,+d(u) +c.#(p2). 0 

4. Conclusion 

We newly define a generalized vertex-ranking of a 
graph, called a c-ranking, and give an efficient algo- 
rithm to find an optimal c-ranking of a given tree T 
in time O(cn) for any c > 1 where n is the number 
of vertices in T. If c is a bounded integer, then our 
algorithm takes linear time. If c is not bounded, our 
algorithm takes time O(cn). However, if c is large, 

say c = nc for some E > 0, then by Lemma 4 rc (T) 

is bounded and hence one execution of line 6 can be 
done in time 0( d( U) ) and consequently our algorithm 
takes linear time. 

We may replace the positive integer c by a func- 
tion f : N -+ N to define a more generalized vertex- 
ranking of a graph as follows: an f-vertex-ranking 3 

of a graph G is a labeling of the vertices of G with 
integers such that, for any label i, deletion of all ver- 
tices with labels > i leaves connected components, 
each having at most f(i) vertices with label i E R?. 

By some trivial modifications of our algorithm for the 
c-vertex-ranking of a tree, we can find an optimal f- 
vertex-ranking of a given tree in time complexity of 
0( n maxi f(i) ) , where the maximum is taken over all 
labels i used by the algorithm. 

3 We wish to thank Professor A. Nakayama of Fukushima Uni- 

versity for suggesting the f-vertex-ranking of a graph. 
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A generalized edge-ranking can be defined simi- 
larly, and the algorithms for the ordinary edge-ranking 
of trees [3,10-l 21 can be extended to find an optimal 
c-edge-ranking [ 91. 
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