
Information
Processing

ELSEVIER Information Processing Letters 56 (1995) 321-328

Generalized vertex-rankings of trees

Xiao Zhou *,I, Nobuaki Nagai I, Takao Nishizeki 2
Department of System Information Sciences, Graduate School of Informarion Sciences,

Tohoku University, Sendai 980-77, Japan

Received 9 November 1994; revised 6 September 1995

Communicated by T. Lengauer

Letters

Abstract

We newly define a generalized vertex-ranking of a graph G as follows: for a positive integer c, a c-vertex-ranking of
G is a labeling (ranking) of the vertices of C with integers such that, for any label i, every connected component of the
graph obtained from G by deleting the vertices with label > i has at most c vertices with label i. Clearly an ordinary
vertex-ranking is a l-vertex-ranking and vice-versa. We present an algorithm to find a c-vertex-ranking of a given tree T
using the minimum number of ranks in time O(cn) where n is the number of vertices in T.

Keywords: Algorithms; Generalized ranking; Graphs; Trees; Lexicographical order; Visible vertices

1. Introduction

A vertex-ranking of a graph G is a labeling (rank-
ing) of vertices of G with integers such that any path
between two vertices with the same label i contains a
vertex with label j > i. The vertex-ranking problem

is to find a vertex-ranking of a given graph G using
the minimum number of ranks (labels). The vertex-
ranking problem is NP-hard in general [1,7]. On the
other hand Schaffer has given a linear algorithm to
solve the vertex-ranking problem for trees [81. Very
recently Bodlaender et al. have given a polynomial-
time algorithm to solve the vertex-ranking problem
for graphs with bounded treewidth [11. The vertex-
ranking of a graph G has applications in VLSI layout
and in scheduling the manufacture of complex multi-

* Corresponding author.

’ Email:{zhou,nishi}@ecip.tohoku.ac.jp.

2 Email: nagai@anakin.nishizeki.ecei.tohoku.ac.jp.

Elsevier Science B.V.

SSDI 0020-0190(95)00172-7

part products [8,5] ; it is equivalent to finding the min-
imum height vertex separator tree of G.

In this paper we newly define a generalization of
an ordinary vertex-ranking. For a positive integer c, a
c-vertex-ranking (or a c-ranking for short) of a graph
G is a labeling of the vertices of G with integers such
that, for any label i, every connected component of the

graph obtained from G by deleting the vertices with
label > i has at most c vertices with label i. Clearly
an ordinary vertex-ranking is a l-vertex-ranking and
vice-versa. The integer label of a vertex is called the
rank of the vertex. The minimum number of ranks
needed for a c-vertex-ranking of G is called the c-
vertex-ranking number (or the c-ranking number for
short) and denoted by r,.(G) . A c-ranking of G using
rC (G) ranks is called an optimal c-ranking of G. The
c-ranking problem is to find an optimal c-ranking of
a given graph G. The problem is NP-hard in general
since the ordinary vertex-ranking problem is NP-hard
[1,7]. Fig. 1 depicts an optimal 3-ranking of a tree

322 X. Zhou et al. I Information Processing Letters 56 (1995) 321-328

using three ranks, where vertex numbers are drawn in
circles and ranks next to circles.

Consider the process of starting with a connected
graph and partitioning it recursively by removing at

most c vertices and incident edges from each of the re-

maining connected subgraphs until the graph becomes
empty. The tree representing the recursive decompo-
sition is called a c-vertex separator tree. Thus a c-

vertex separator tree corresponds to a parallel com-
putation scheme based on the process above. The c-

vertex-ranking problem is equivalent to finding a c-
vertex separator tree of the minimum height. Fig. 2
illustrates a 3-vertex separator tree of the tree depicted
in Fig. I, where deleted vertex numbers are drawn in

ovals.
Let M be a sparse symmetric matrix. Let M’ be a

matrix obtained from M by replacing each non-zero
element by 1. Let G be a graph with adjacency ma-

trix M’. Then an optimal c-vertex ranking of G corre-
sponds to a generalized Cholesky factorization of M

having the minimum recursive depth [2,4,6].
In this paper we give an algorithm to solve the c-

ranking problem on trees T in time 0(cn) for any pos-
itive integer c where n is the number of vertices in T.

Our algorithm uses techniques employed by Schaffer
[81 and Iyer et al. [51 for the ordinary vertex-ranking
problem as well as new techniques specific to the c-
ranking problem.

2. Preliminaries

In this section we define some terms and present
easy observations. Let T = (YE) denote a tree with
vertex set V and edge set E. We often denote by V(T)

and E(T) the vertex set and the edge set of T, respec-
tively. We denote by n the number of vertices in T. T

is a “free tree”, but we regard T as a “rooted tree” for
convenience sake: an arbitrary vertex of tree T is des-
ignated as the root of T. We will use notions as: root,
internal vertex, child and leaf in their usual meaning.
An edge joining vertices u and u is denoted by (u, U) .
The maximal subtree of T rooted at vertex u is denoted
by T(u) . For a c-ranking p of tree T and a subtree T’

of T, we denote by PIT’ a restriction of 40 to V(T’):
let SD’ = (PIT’, then p’(u) = q(u) for u E V(T’). The
definition of a c-ranking immediately implies that a c-
ranking of a connected graph labels at most c vertices

with the largest rank.
The number of ranks used by a c-ranking 40 of

tree T is denoted by ##p. One may assume without
loss of generality that q uses the consecutive inte-

gers 1,2,. . . ,#q as the ranks. A vertex u of T and its

rank p(u) are visible (from the root under cp) if all
the vertices in the path from the root to u have ranks

< q(u). Thus the root of T and #v are visible. De-

note by f.(90) the list of ranks of all visible vertices,
and call L(9) the list of a c-ranking C,O of the rooted

tree T. For an integer y we denote by count(L(C,IY) , y)
the number of y’s contained in L((p), i.e., the num-
ber of visible vertices with rank y. The ranks in the
list L(VP) are sorted in non-increasing order. Thus the
c-ranking cp in Fig. 1 has the list L(~0) = {3,3,1},
and hence count(L(q), 3) = 2, count(L(q), 2) = 0
and count(L(cp) , 1) = 1. One can easily observe that
count(L(9) , y) < c for each rank y.

We define the lexicographical order 4 on the set of
non-increasing sequences (lists) of positive integers
asfollows:letA={a~,...,a,}andB={bi,...,b,}
be two sets (lists) of positive integers such that al 3
. . . > a,, and 61 3 ... > b,, then A 4 B if there
exists an integer i such that
(a) aj=bjforalll <j<i,and
(b) either a; < b; or p < i 6 q.
We write A 3 B if A = B or A 4 B. A c-ranking p of
T is critical if L(q) 3 L(v) for any c-ranking 77 of
T. The optimal c-ranking depicted in Fig. 1 is indeed
critical.

For a list A and an integer CK, we define a sublist
[a < A] of A as follows:

[a < A] = {x E A 1 (Y < x}.

Similarly we define sublists [LY < A], [A < a] and
[A<a]ofA.ObviouslyifAdBthen[c~<A] 3
[a < B] for any Q 3 1. For lists A and B we use
A C B and A U B in their usual meaning in which we

regard A, B and A U B as multi-sets.

3. Optimal c-ranking

The main result of the paper is the following theo-
rem.

Theorem 1. An optimal c-ranking of a tree T having
n vertices can be found in time 0(cn) for any positive

X. Zhou et al. lInjimnation Processing Letters 56 (1995) 321-328 323

I II I I I I

Fig. I. An optimal Svertex-ranking cp of a tree T.

Fig. 2. A Svertex separator tree of the tree in Fig. 1.

integer c.

In the remainder of this section we give an algorithm
to find a critical c-ranking of a tree T in time 0(cn).
Our algorithm uses the technique of “bottom-up tree
computation”. For each internal vertex u of a tree T,

we construct a critical c-ranking of T(u) from those
of the subtrees rooted at u’s children.

One can easily prove the following lemma by in-
duction on n.

Lemma 2. Every tree T of n vertices has a vertex

whose removal leaves subtrees each having no more
than n/2 vertices.

Using Lemma 2, we have the following lemma.

Lemma 3. For any positive integer c, every tree T of

n vertices has at most c vertices whose removal leaves

subtrees each having no more than n/q vertices, where
q = 2llos,(c+3)J-I > (c+3)/4andhenceq>2.

Proof. By Lemma 2 tree T has a vertex whose removal

leaves subtrees each having no more than n/2 vertices.
Clearly the number of subtrees having n/2* or more
vertices does not exceed

n-l L-J n/2*
<22-l.

By Lemma 2 each of these subtrees has a vertex whose
removal leaves subtrees each having no more than
n/2*. Therefore T has at most 1 + (2* - 1) vertices
whose removal leaves subtrees each having no more
than n/2*. Clearly the number of subtrees having n/2”

or more vertices does not exceed

n-l

L-J n/2’
< 2” - 1.

Repeating this operation p (3 1) times, one can know
that T has at most

l+(2*-l)+(23-1)+...+(2P-1)

= 2”+’ -p-2

324 X. Zhou et al. I tnformation Processing Letters 56 (1995) 321-328

vertices whose removal leaves subtrees each having
vertices no more than n/2”. Choose p = [log, (c +
3)j - 1 so that 2”+’ - p - 2 < c. Then T has at most

c vertices whose removal leaves subtrees each having
vertices no more than n/2” = n/q. Note that q = 2” >

(c+3)/4andhenceq>2foranyc> 1. 0

Lemma 2 is a special case of Lemma 3 with c = 1.

By Lemma 3 we have the following lemma.

Lemma 4. Every tree T of n vertices satisfies

r,(T) < 1 +rankn.

Proof. Recursively applying Lemma 3, one can con-
struct a c-vertex separator tree of height h(n) satisfy-
ing the following recurrence relation

Solving the recurrence, we have h(n) < rankn. Note

that h(1) = 0. Hence r,(T) < I + h(n) < 1 +
rankn. 0

Let d(u) be the number of children of vertex u in
T, and let ul, ~2,. . . ,uJ(,,) be the children of U. Our
idea is to construct a critical c-ranking of T(u) from
critical c-rankings rpj of T(u;), i = 1,2, . . _ , d(u). One
can easily observe the following lemma.

Consider first the case G(u) > ymax. In this case we
have q(u) =$(u). Since yi < T(U), we have

[r](U) G t(~;>l = [‘Q(U) < L(fiIT(~i)>l (3)

for every i, 1 < i < d(u). By (l)-(3) we have
L(v) = L($). Consider next the case +(u) < ymax.
In thiscase T(U) = yrnax > ccl(u). Forevery i, 1 < i <
d(u) , such that yi = ymax, by (a) and (b) we have

(0)) u [V(U) < L(R)1
Lemma 5. A vertex-labeling v ofT(u) is a c-ranking

ofT(u) ifundonly ifnIT is a c-ranking ofT(ui)

for every i, 1 < i < d(u) , and there are no more than

c visible vertices of the same rank under 7, that is,
count(L(~),y) < cfor every rank y E L(n).

C [v(u) < UrcllT(ui))l

C [G(u) < UrCIIT(ui)) I. (4)

For every i such that yi < yrnax = n(u) , by (a) we
have

We then have the following lemma.

Lemma 6. Let pi be an arbitrary critical c-ranking
ofT(ui),i= I,2 ,..., d(u). Then T(u) has a critical

c-ranking n such that vlT(ui) = vi for every i, 1 6
i<d(u).

[T(U) < L(G)] = [v(u) < UJ,W(~~))I

C [fi(u) < L($IT(Ui))l. (5)

By (11, (21, (4) and (5) we have L(n) C L(G) as
desired.

Proof. Let (I, be an arbitrary critical c-ranking of
T(u). Since q; is critical but #/IT(ui) is not always
critical, we have L(9;) 3 L(fijT(ut)) for each i,

1 < i < d(u). If L(qi) 4 L($lT(ui)), then let yi be
an integer such that

Since L(v) C L(4) and Cc, is a c-ranking, by
Lemma 5 7 is a c-ranking. Since L(7) C L(+),
L(7t) 5 L(G). Therefore 71 is critical since fi is crit-
ical. q

Let m = max{#qi I 1 < i < d(u)}. Then we have
the following lemma.

(a) [r; < L(Vi)l = [n < U$IT(~;))l, and Lemma 7. r,(T(u)) = m or m + 1.

(b) count(L(~;),yi) < count(L(cCI(Ttui)),y;).
Otherwise let y; = 0. Let yrnax = max{yi) 1 < i <

d(u)}. Construct a vertex-labeling n of T(u) from Cc,

and tp; as follows:

i

max{$(u),y,,,} ifv=u,

V(U) = Pi(U) if u E V(T(u;)),

1 < i < d(u).

Then vlT(u;) = cp; for all i, 1 f i < d(u).

We now claim that L(q~) C L($). Clearly we have

d(u)

Url) = {v(u)} u [17(u) < u L(q;)] (1)
i=l

and

X. Zhou et al. I Information Processing Letters 56 (1995) 321-328 325

Proof. Clearly m < r,(T(u)). Therefore it suffices
to prove that rC (T(u)) < m + 1. One can extend pi,
1 6 i < d(u), to a c-ranking 7 of T(u) as follows:

i

m+l if u = u,
7?(u) =

pi(U) if u E V(T(Ui)), 1 < i < d(t4.).

ThSr,.(T(u)) <#v=m+ 1. 0

The following lemma gives a necessary and suffi-
cient condition for rC (T(u)) = m.

Lemma 8. r,(T(u)) = m if and only if there is a

rank CY, 1 < cy < m, such that

(a) Cd,',"'cOUTZt(L($0i),CY) < C- 1 Und

(b) Cz,“’ count(L(pi), y) < c for every rank y,

a+1 <r<rn.

Proof. (+=) One can easily extend the critical c-
rankings p; to a c-ranking 7 of T(u) with #‘I = m as

follows:

i

a if u = u,
V(U) =

p;(U) if u E V(T(Ui)), 1 < i < d(U).

Therefore r,(T(u)) < #v = m, and hence by
Lemma 7 r,(T(u)) =m.

(==+) Suppose that r,(T(u)) = m. By Lemma 6
there is a c-ranking 7 of T(u) such that #r] = m and
vjT(ui) = pi for each i, I < i < d(u). Let LY = v(u),
then (a) and (b) above hold since v is a c-ranking of
T(u). 0

In order to find a critical c-ranking 77 of T(u) from
vi, i = 1,2,. . . , d(u), we need the following two

lemmas.

Lemma 9. Ifr,(T(u)) = m + 1, then

1 mfl if u = u,
V(U) =

pi(U) ifU E V(T(Ui)), 1 ,< i < d(u)

is a criticuZ c-ranking of T(u) and L(v) = {m + I}.

Proof. immediate. 13

Lemma 10. JfrC(T(u)) = m, then

ff if u = u,
V(U) =

pi(U) ifU E V(T(Ui)), I < i < d(u)

Procedure Ranking(T(u));

begin

I if ~1 is a leaf

then return a trivial c-ranking: u -) 1
2 else

3 begin

4 let ~‘1, I,*,. , LIP be the children of U;

5 for i := I to d(u) do Ranking(T(c,));

6 find a critical c-ranking of T(U) from critical

c-rankings of T(c;), i = 1.2,. ,d(u), by

Lemmas 9 and IO;

I return a critical c-ranking of T(u)

8 end

end.

Fig. 3.

is a critical c-ranking of T(u) , where CY is the minimum

rank such that
(a) C~,"'count(l(cpi),a) < C- 1 and

(b) Cz;’ count(l(qi),r) < c for every rank y,

a+1 <r<rn,
Furthermore, L(v) = {a} U [a < U:,“’ L(qi)].

Proof. By Lemma 6 there is a critical c-ranking $
of T(U) such that L($IT(Ui)) = L(pi) for every i,
1 < i 6 d(u). Since (Y = q(u) is the minimum rank
satisfying (a) and (b) above, L(T) 5 L(q) and
hence 7 is a critical c-ranking of T(u). Clearly

By Lemmas 8,9 and 10 above we have the recursive
algorithm in Fig. 3 to find a critical c-ranking of T(u).

Clearly one can correctly find a critical c-ranking
of a tree T by calling Procedure Ranking(T(r))
for the root r of T. Therefore it suffices to verify
the time-complexity of the algorithm. Let pi, i =
1,2,... , d(u), be a critical c-ranking of T(Ui). As-
sume without loss of generality that #PI and #pz are
the two largest, possibly equal, numbers among #vi,
i = 1,2,... ,d(u), and that #pl 2 #pp. Let #Q = 0
if d(u) = 1. Let 7 be a critical c-ranking of T(u) ob-

tained from qi, i = 1,2,. . . , d(u), at line 6. Then the
following lemma holds, which will be proved later.

Lemma 11. One execution of line 6 can be done in

timeO(x,+d(u)+c.#qcq), wherex, isthenumber
of vertices which were visible in T(Ui) under pi, 1 <

326 X. Zhou et al. I Information Processing Letters 56 (1995) 321-328

i 6 d(u), but are not visible in T(u) under v.

Once a vertex becomes invisible, it will never be-

come visible again. Furthermore, C d(u) 6 n where
the summation is taken over all internal vertices.

Therefore the total time counted by the first term xU
and the second term d(u) is O(n) when Procedure
Ranking is recursively called for all vertices. Let nrrz

be the number of vertices in the second largest tree
T(u,,) amongT(ui),i= 1,2;..,d(u),ifd(u) 3 2.
Then by Lemma 4 we have #Q f 1 + rank n,,,.
Note that #q is not always the c-ranking number of
T(u,,). The following lemma implies that the total
time counted by the third term c . #(oz is also 0(cn).

Thus the total running time of Ranking is O(cn).
This completes the proof of Theorem 1.

Lemma 12. Let V2 = {u E V) d(u) > 2}, then

c(1 +log,n,, =0(n).
>

UEV2

Proof. For a tree T, let

S(T) = c (1 + log, n,,,) .
UEV2

We now prove by induction on n that

S(T) < 2n - (1 + log, n). (6) We are now ready to prove Lemma 11.

Trivially (6) holds when n = 1. Now assume that
n 3 2 and (6) holds for any tree having at most n - 1
vertices.

Let T be a tree with n vertices rooted at vertex u.
One may assume that d(u) 3 2. Let UI,UZ,. . . ,udcu)
be the children of u, and let n;, i = 1,2, . . , d(u), be
the number of vertices of T(ui), respectively. Then

Proof of Lemma 11. As a data-structure to represent
a list L(p) of a c-ranking q, we use a linked list L,

consisting of records. Each record contains two items
of data: rank y, 1 < y < #(p and count(L(cp) , y) such
that count(L(p) , y) 3 1.

If d(u) = 1, then using linked list L,, one can
easily find cy at line 4 in 0(x,) time where x,, =
j [L(cpI) < (Y] I. It should be noted that all the xU
vertices of ranks in [L(cp,) < (~1 were visible but they

become invisible after lines 5 and 6 are executed. Thus
lines 3-7 can be done total in time 0(x,,). Similarly,
if lines 20-23 are executed, then at line 21 one can
easily find cr in 0(x,) time, and hence lines 20-23

can be done in time 0(x,) time.

d(u)

c n; = n - 1. (7)
i=l

Assume without loss of generality that nl > n2 >
... > nd(,,), then nu2 = n2. By (7)) the definition of

S(T) and the inductive hypothesis we have

d(u)

S(T(u)) = 1 +log,nz+CS(T(~i))
i=l

d(u)

G l + 10&j n2 + C(2n; - (1 + log, ni)}
i=l

=2n- 1 +d(u)
{

d(u)

+ log, ni + C log, ni}. (8)
i-3

Since q > 2 and 2d(u) 3 d(u) + 1, we have

d(o)

1 + d(u) + log, n1 + clog, n;
i=3

3 1 + log,2d’U) +log,{nlnnn4...nd(,,,}

= 1 + log,{2d’u)n~n~n~~~ .ndcrrj}

3 1 + log,{(d(u) + l)nl}
d(u)

3 1 +log,(Cni+ l}
i=I

= 1 + log, n. (9)

Substituting (9) to (8), we have S(T(u)) < 2n -
(1 +log,n). 0

We finally give in Fig. 4 an implementation of
line 6 of Procedure Ranking, which finds a critical
c-ranking q of T(u) from the critical c-rankings q;,
i= 1,2 ,..., d(u).

We now claim that if d(u) 2 2 then lines 10-l 2
and 15-16 can be done total in time O(d(u) + c.
#c,Q). We construct a linked list L, as follows. First
set L,y as an empty list. For each i, 1 < i < d(u), add

I

2

3

4

5

6

7

8

9

IO

11

12

13

14
15

16

17

18

19

20

21

22

23

24

2.5

X. Zhou et al. Ilnformation Processing Letters 56 (1995) 321-328 327

Procedure Line-6(cpt,. , cpd(u).v);
begin
nlT(~i) := pi for each i, i := 1,2,. ,d(u); { determine the rank of u as follows. }

if d(u) = I then

begin

find a smallest integer (Y 3 I such that count(L(cp~) , a) < c - I ;
7](u) := a;
L(v) := {a) u [a < Ucpl)I

end

else { d(n) 3 2 }

begin

find the two largest, possibly equal, numbers among #cpi, i := I, 2, , d(u);
{ assume w.1.o.g. that #ppl and #qpz are these largest numbers and #cpt 3 #cpz. }

let LX:= 1Ucp1) 6 tb21U (IJ~_~'L((P;));

find a smallest rank a such that I < a Q #(p2, counr(L,. a) < c - I and

counr(L,, , y) < c for all ranks y. (Y + I < y < #(02;
if such a rank a exists then

begin

n(u) := a;

L(q) := {a) u [a 6 LSI lJ L&J2 < .ucpl)l
end

else
begin

LS:=L,UI#(DZ<L(cDI)I; { LS=lJzr)L(Cpi)}
find a smallest integer (Y such that #Q + I 6 a < #cpl + I and rount(L,, n) < c - I;

v(u) :-a;

L(7)) := {a} U [a 6 L,l;
end

end
end,

Fig. 4.

to L,s all ranks y (< #(pz) in L, in the decreasing
order of y until either counr(L,, y) > c or all such
ranks y have been added. Thus line 11 can be done in
time 0(c . #qzp2). Clearly line 10 can be done in time
O(d(u)) and lines 12, 15 and 16 in time O(#~Z).
Therefore lines 1 O-l 2 and 15-l 6 can be done total in

time O(d(u) + c .#(Dz).
Thus Procedure Line-6 can be done total in time

O(x,,+d(u) +c.#(p2). 0

4. Conclusion

We newly define a generalized vertex-ranking of a
graph, called a c-ranking, and give an efficient algo-
rithm to find an optimal c-ranking of a given tree T
in time O(cn) for any c > 1 where n is the number
of vertices in T. If c is a bounded integer, then our
algorithm takes linear time. If c is not bounded, our
algorithm takes time O(cn). However, if c is large,

say c = nc for some E > 0, then by Lemma 4 rc (T)

is bounded and hence one execution of line 6 can be
done in time 0(d(U)) and consequently our algorithm
takes linear time.

We may replace the positive integer c by a func-
tion f : N -+ N to define a more generalized vertex-
ranking of a graph as follows: an f-vertex-ranking 3

of a graph G is a labeling of the vertices of G with
integers such that, for any label i, deletion of all ver-
tices with labels > i leaves connected components,
each having at most f(i) vertices with label i E R?.

By some trivial modifications of our algorithm for the
c-vertex-ranking of a tree, we can find an optimal f-
vertex-ranking of a given tree in time complexity of
0(n maxi f(i)) , where the maximum is taken over all
labels i used by the algorithm.

3 We wish to thank Professor A. Nakayama of Fukushima Uni-

versity for suggesting the f-vertex-ranking of a graph.

328 X. Zhou et al. ! Information Processing Letters 56 (1995) 321-328

A generalized edge-ranking can be defined simi-
larly, and the algorithms for the ordinary edge-ranking
of trees [3,10-l 21 can be extended to find an optimal
c-edge-ranking [91.

References

[II

[21

131

141

H. Bodlaender, J.S. Dcogun, K. Jansen, T. Kloks, D.

Kratsch, H. Mtiller and Zs. Tuza, Ranking of graphs, in:

Proc. Internat. Workshop on Graph-Theoretic Concepts in

Computer Science, Herrsching, Bavaria, Germany (1994).

H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson and T.

Kloks, Approximating treewidth, pathwidth and minimum

elimination tree height, J. Algorithms 18 (1995) 238-255.

P de la Terre, R. Greenlaw and A. A. Schaffer, Optimal

ranking of trees in polynomial time, in: Proc. 4th Ann. ACM-

SIAM Symp. on Discrete Algorithms, Austin, Texas (1993)

138- 144, also in: Algorithmica, to appear.

IS. Duff and J.K. Reid, The multifrontal solution of

indefinite sparse symmetric linear equations, ACM Trans.

Math. Sofrware 9 (1983) 302-325.

[51 A.V. lyer, H.D. Ratliff and G. Vijayan, Optimal node ranking
of trees, fnjtirm. Process. Lett. 28 (1988) 225-229.

[6] J.W.H. Liu, The role of elimination trees in sparse

factorization, SIAM J. Matrix Analysis and Applications 11

(1990) 134172.

[7] A. Pothen, The complexity of optimal elimination trees,

Tech. Rept. CS-88- 13, Pennsylvania State University, 1988.

[81 A.A. Schaffer, Optimal node ranking of trees in linear time,

Inform. Process. Lett. 33 (1989) 91-99.

[9] X. Zhou, M.A. Kashem and T. Nishizeki, Generalized edge-

rankings of trees, Tech. Rept. SIGAL, 95-AL-46 IO, 73-80,

Inf. Proc. Sot. of Japan, July 1995.

[IO] X. Zhou and T. Nishizeki, An efficient algorithm for edge-
ranking trees, in: Proc. 2nd European Symp. on Algorithms,

Lecture Notes in Computer Science 885 (Springer, Berlin,
1994) 118-129.

[I I] X. Zhou and T. Nishizeki, Finding optimal edge-rankings
of trees, in: Proc. 6th Ann. ACM-SIAM Symp. on Discrete

Algorithms (1995) 122- I3 I.

[121 X. Zhou and T. Nishizeki, Finding optimal edge-rankings of

trees - A correct algorithm, Tech. Rept. 9501, Dept. of Inf.

Eng., Tohoku University, 1995.

