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Asynchronous Domino Logic Pipeline Design
Based on Constructed Critical Data Path

Zhengfan Xia, Masanori Hariyama, and Michitaka Kameyama

Abstract—This paper presents a high-throughput and
ultralow-power asynchronous domino logic pipeline design
method, targeting to latch-free and extremely fine-grain or
gate-level design. The data paths are composed of a mixture
of dual-rail and single-rail domino gates. Dual-rail domino gates
are limited to construct a stable critical data path. Based on this
critical data path, the handshake circuits are greatly simplified,
which offers the pipeline high throughput as well as low power
consumption. Moreover, the stable critical data path enables the
adoption of single-rail domino gates in the noncritical data paths.
This further saves a lot of power by reducing the overhead
of logic circuits. An 8 x 8 array style multiplier is used for
evaluating the proposed pipeline method. Compared with a
bundled-data asynchronous domino logic pipeline, the proposed
pipeline, respectively, saves up to 60.2% and 24.5% of energy in
the best case and the worst case when processing different data
patterns.

Index Terms— Asynchronous pipeline, critical data path,
dual-rail domino gate, single-rail domino gate.

1. INTRODUCTION

URING the last decade, there has been a revival in

research on asynchronous technology. Along with the
continued CMOS technology scaling, VLSI systems become
more and more complex. The physical design issues, such as
global clock tree synthesis and top-level timing optimization,
become serious problems. Even if technology scaling offers
more integration possibilities, modularity and scalability are
difficult to be realized at the physical level. Asynchronous
design is considered as a promising solution for dealing with
these issues that relate to the global clock, because it uses local
handshake instead of externally supplied global clock [1]-[4].
The attractive properties are listed as follows:

1) low power consumption;
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2) high operating speed;

3) no clock distribution and clock skew problems;

4) better composability and modularity;

5) less emission of electromagnetic noise;

6) robustness toward variations in supply voltage, temper-
ature, and fabrication process parameters.

In asynchronous design, the choice of handshake proto-
cols affects the circuit implementation (area, speed, power,
robustness, etc.). The four-phase bundled-data protocol and
the four-phase dual-rail protocol are two popular protocols
that are used in most practical asynchronous circuits. The four-
phase bundled-data protocol design most closely resembles the
design of synchronous circuits. Handshake circuits generate
local clock pulses and use delay matching to indicate valid
signal. It normally leads to the most efficient circuits due to
the extensive use of timing assumptions. On the other hand,
the four-phase dual-rail protocol design is implemented in an
elaborate way that the handshake signal is combined with the
dual-rail encoding of data. Handshake circuits are aware of the
arrival of valid data by detecting the encoded handshake signal,
which allows correct operation in the presence of arbitrary
data path delays. This feature is very useful for dealing with
data path delay variations in advanced VLSI systems, such as
asynchronous field-programmable gate arrays (FPGAs) [5]-[7]
and system-on-chip [3], [4]. However, such attractive feature
is realized at the expense of encoding and detection overheads.
These overheads cause low circuit efficiency and restrict the
application area of the four-phase dual-rail protocol design.

This paper presents a novel design method of asynchronous
domino logic pipeline, which focuses on improving the circuit
efficiency and making asynchronous domino logic pipeline
design more practical for a wide range of applications. The
novel design method combines the benefits of the four-phase
dual-rail protocol and the four-phase bundled-data protocol,
which achieves an area-efficient and ultralow-power asynchro-
nous domino logic pipeline.

Asynchronous domino logic pipeline is an interesting
pipeline style that can entirely avoid explicit storage elements
between stages by exploiting the implicit latching functionality
of domino logic gates. The latchless feature provides the
benefits of reduced critical delays, smaller silicon area, and
lower power consumption.

However, asynchronous domino logic pipeline has a com-
mon problem that dual-rail domino logic has to be used
to compose the domino data path. Single-rail domino logic
cannot be used because it would break the domino data path
since only noninverting logic can be implemented [13]. As a
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result, the domino data path has a dual-rail encoding overhead
that consumes a lot of silicon area and power consumption.
Such overhead almost cancels out the area and power benefits
provided by the latchless feature.

Another problem is the overhead of handshake control logic.
Conventional designs of asynchronous domino logic pipeline
based on the four-phase dual-rail protocol rely on domino data
path to transfer data and encoded handshake signal, and use
completion detectors to detect and collect the handshake signal
throughout the entire data paths [8]-[11]. Such design method
is very robust for delay variations in data paths. However, it
causes a serious detection overhead. The detection overhead
is growing with the width of data paths, which impedes its
application in the design of a large function block with a
considerable data path width. On the other hand, asynchronous
domino logic pipeline based on the four-phase bundled-data
protocol avoids the detection overhead by implementing a
single extra bundling signal, to match the worst case block
delay, which serves as a completion signal. The problem is that
this design method completely loses the good properties in the
four-phase dual-rail protocol design. Besides, it does not solve
the dual-rail encoding overhead problem in data paths [12].

In this paper, our proposed pipeline reduces both the
dual-rail encoding overhead in data paths and the detection
overhead in handshake control logic by designing based
on a constructed critical data path. A stable critical data
path is constructed using redesigned dual-rail domino gates.
By detecting the stable critical data path, a 1-bit completion
detector is enough to get the correct handshake signal regard-
less of the data path width. Such design does not only greatly
reduce the detection overhead but also partially maintains the
good properties in the four-phase dual-rail protocol design.
Moreover, the stable critical data path serves as a matching
delay to solve the dual-rail encoding overhead problem in data
paths. With the help of the redesigned dual-rail domino gates,
single-rail domino logic is successfully applied in noncritical
data paths. As a result, the proposed asynchronous domino
logic pipeline has a small overhead in both handshake control
logic and function block logic, which greatly improves the
circuit efficiency. According to the design feature, we name
the proposed pipeline as asynchronous pipeline based on
constructed critical data path (APCDP).

This paper is organized as follows. Section II introduces
the background of asynchronous domino logic pipeline. PSO
is introduced to demonstrate the advantages and problems
of asynchronous domino logic pipeline based on dual-rail
protocol. Several related designs are also simply introduced.
Section III focuses on the introduction of the proposed pipeline
design method. Synchronizing logic gates (SLGs) and syn-
chronizing logic gates with a latch function (SLGLs) are intro-
duced to construct a stable critical data path. The robustness of
the pipeline structure and the constructed critical data path is
analyzed. Then, more complex pipeline structures are further
discussed. Section IV presents the evaluation results that show
the benefits of the proposed pipeline compared with a bundled-
data asynchronous domino logic pipeline and a synchronous
pipeline with a sequential clock gating (Sync-CG). Section V
presents the conclusion.

TABLE I
CODE TABLE OF THE FOUR-PHASE DUAL-RAIL ENCODING

Codeword (w_t, w_f)
Data 0 0, 1)
Data 1 (1,0)
Spacer (0, 0)
Not used 1, 1)

Fig. 1.

Block diagram of PSO.

II. BACKGROUND

PSO is a well-known implementation style of asynchronous
domino logic pipeline based on dual-rail protocol [8]. It is
an important foundation for most later proposed styles. Since
our proposed pipeline is also based on PS0, we will begin by
reviewing PSO pipeline style, and then simply introducing two
other advanced styles: 1) a timing-robust style called precharge
half-buffer [9] and 2) a high-throughput style called lookahead
pipeline [11]. Finally, we summary the delay assumptions of
these pipelines and give our delay assumption in the proposed
design.

A. PSO

1) Four-Phase Dual-Rail Protocol: PSO is designed based
on the four-phase dual-rail protocol. Fig. 3 shows an example
of data transfer based on the four-phase dual-rail protocol,
and Table I shows the code table of the four-phase dual-rail
encoding. The four-phase dual-rail encoding encodes a request
signal into the data signal using two wires, (w_t, w_f). The
data value 0 is encoded as (0, 1), and value 1 is encoded as
(1, 0); the spacer is encoded as (0, 0); (1, 1) is not used. When
transferring the valid data, a spacer is inserted between them.
A receiver can easily obtain the valid data by monitoring the
two wires. This protocol is very robust since a sender and a
receiver can communicate reliably regardless of delays in the
combinational logic block and wires between them. The dual-
rail encoded data path is known as the delay-insensitive data
path.

2) Structure of PSO: Fig. 1 shows a block diagram of PSO.
In PSO, each pipeline stage is composed of a function block
and a completion detector. Each function block is implemented
using dual-rail domino logic. Each completion detector gen-
erates a local handshake signal to control the flow of data
through the pipeline. The handshake signal is transferred to
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Fig. 2. (a) Dual-rail domino AND gate. (b) Two-bit completion detector.
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Fig. 3. Example of data transfer based on four-phase dual-rail protocol.

the precharge/evaluation control port of the previous pipeline
stage.

Fig. 2 shows an example of the dual-rail domino AND gate
and the 2-bit completion detector. A two-input NOR gate serves
as the 1-bit completion detector to generate a bit done signal
by monitoring the outputs of dual-rail domino gate. To build
a 2-bit completion detector, C-element is needed to combine
the bit done signals. A full completion detector is formed by
combining all bit done signals from the entire data paths with
a tree of C-elements, as shown in Fig. 1.

3) Protocol of PSO: The protocol of PSO is quite simple.
F(N) is precharged when F(N + 1) finishes evaluation. F(N)
evaluates when F(N + 1) finishes its reset, or precharge.
In Fig. 1, if we observe a single data flow through an initially
empty pipeline in which every pipeline stage is in evaluation
phase, the complete cycle of events is as follows.

1) F1 evaluates and data flow to F2.

2) F2 evaluates and data flow to F3. F2’s completion
detector detects completion of evaluation and sends a
precharge signal to F1.

3) F1 precharges and F3 evaluates. F3’s completion detec-
tor detects completion of evaluation and sends a
precharge signal to F2.

4) F2 precharges. F2’s completion detector detects the
completion of precharge and sends an evaluation signal
(enable signal) to F1. The evaluation signal enables F1
to evaluate new data once again.

There are three evaluations, two completion detections, and
one precharge in the complete cycle for a pipeline stage. The
pipeline cycle time Tcycle is

Tcycle = 3tgval + 2tcD + Prech (D

where fgva1 and fprech are the evaluation and precharge times
for each stage and fcp is the delay through each completion
detector.

4) Overhead Problems: There are mainly two overhead
problems that prohibit the widespread use of PSO0, the detection
overhead in handshake control logic and the dual-rail encoding
overhead in function block logic. A ripple carry adder, shown
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Fig. 4. Pipelined 4-bit ripple carry adder.
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Fig. 5. Block diagram of PCHB.

in Fig. 4, is used as an example to clarify these overhead
problems.

The detection overhead is caused by the full completion
detectors that are used to deal with data path delay variations
by detecting the entire data paths. The overhead greatly affects
the pipeline speed and power consumption. The most serious
problem is that the detection overhead is growing the width
of data paths. In a 4-bit ripple carry adder, the width of data
paths is between 8 and 5 bits. The detection overheads of
8-5-bit completion detectors might be acceptable in practical
design. However, in 32-bit ripple carry adder design, the width
of data paths is at least 33 bits. The overhead of 33-bit
completion detector is so large that PSO is hardly applicable
in such situation. Even the detection time can be reduced by
partitioning wide data path into several data streams [11], the
detection power is not reduced.

The dual-rail encoding overhead is caused by dual-rail
domino logic that is used for not only implementing logic
function but also storing data between pipeline stages. Because
there are no explicit storage elements (latches or registers),
a lot of dual-rail domino buffers have to be added to levelize
each stage. The added dual-rail domino buffers consume a
lot of silicon area and power. In a 4-bit ripple carry adder,
18 dual-rail domino buffer gates are added, which almost
cancel out the benefit of removing explicit storage elements.

B. Other Advanced Pipelines

1) Precharge Half-Buffer Pipeline: Fig. 5 shows a block
diagram of precharge half-buffer pipeline (PCHB). PCHB is a
timing-robust pipeline style that uses quasi-delay-insensitive
control circuits [9]. Two completion detectors in a PCHB
stage: one on the input side (D;j) and one on the output
side (D,). The complete cycle of events for a PCHB stage is
quite similar to that of PS0, except that a PCHB stage verifies
its input bits. Because of the input completion detector (D;),
a PCHB stage does not start evaluation until all input bits are
valid. This design absorbs skew across individual bits in the
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Fig. 6. Block diagrams of LP2/2. (a) LP2/2 based on dual-rail protocol.
(b) LP2/2-SR.

data paths. Although this design makes PCHB more timing
robust, it causes a two-time overhead in handshake control
logic compared with PSO. Besides, PCHB has the same dual-
rail encoding overhead as PSO.

2) LP2/2: LP2/2 is a high-throughput pipeline style [11],
which has both dual-rail protocol design and bundled-data
protocol design.

Fig. 6(a) shows the block diagram of LP2/2 based on the
dual-rail protocol. LP2/2 improves the throughput of PSO by
optimizing the sequential of handshake events. However, they
do not solve the overhead problems in handshake control logic
and function block logic. The handshake speed is accelerated
by employing asymmetric completion detectors placed ahead
of function blocks. Although this pipeline structure reduces
the handshake cycle time, the asymmetric completion detectors
still consume a lot of power since they have to detect the entire
data paths.

Fig. 6(b) shows the block diagram of LP2/2 based on
the bundled-data protocol (LP2/2-SR). LP2/2-SR avoids the
detection overhead problem by implementing a single extra
bundling signal. The bundling signal serves as a completion
signal, which matches the worst case delay in function blocks.
Although such design reduces the power consumption in
handshake control logic, the overhead problem in function
block logic remains unsolved since dual-rail domino logic still
has to be used to compose the domino data path [12].

C. Delay Assumptions

PCHB is a very robust pipeline that requires no delay
assumptions or calculations by designer. However, the robust-
ness of circuits comes at the expense of performance. The
complex handshake circuits slow down the handshake speed
and consume more power.

PSO is designed for fast handshake speed by seeking to
design control circuits that are always correct for common
conditions. It is based on a delay assumption that each pipeline
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Fig. 7. Block diagram of APCDP.

stage’s predecessor precharges no slower than the stage’s
successor evaluates.

Based on PSO, LP2/2 makes two more aggressive delay
assumptions: first, each pipeline stage evaluates no slower than
its completion detects plus the stage’s successor precharges.
Second, each pipeline stage completion detects plus its prede-
cessor precharges no slower than the stage evaluates plus its
successor completion detects. Although these delay assump-
tions improve the pipeline throughput, they sacrifice the
pipeline robustness.

Our proposed pipeline is based on PS0O, but makes a
different delay assumption from LP2/2. We assume that, in
the evaluation of domino gates, a n-stack pull-down path
causes larger delay than a m-stack pull-down path (n is larger
than m). Based on this delay assumption, we construct a stable
critical data path for improving the circuit efficiency in both
handshake control logic and function block logic. Because this
delay assumption is made on gate level instead of handshake
structure level, our proposed pipeline has, structurally, the
same robustness as PSO0.

III. ASYNCHRONOUS PIPELINE BASED ON
CONSTRUCTED CRITICAL DATA PATH

A. Overview

Fig. 7 shows the block diagram of the proposed asynchro-
nous pipeline (APCDP). The pipeline is designed based on a
stable critical data path that is constructed using a special dual-
rail logic. The critical data path transfers a data signal and an
encoded handshake signal. Noncritical data paths, composed
of single-rail logic, only transfer data signal. A static NOR
gate detects the dual-rail critical data path and generates a
total done signal for each pipeline stage. The outputs of NOR
gates are connected to the precharge ports of their previous
stages.

APCDP has the same protocol as PSO. The difference
is that a total done signal is generated by detecting only
the critical data path instead of the entire data paths. Such
design method has two merits. First, the completion detector
is simplified to a single NOR gate, and the detection overhead
is not growing with the data path width. Second, the overhead
of function block logic is reduced by applying single-rail
logic in noncritical data paths. As a result, APDCP has a
small overhead in both handshake control logic and function
block logic, which greatly improves the throughput and power
consumption.

APCDP is more familiar to bundled-data asynchronous
pipeline because the critical data path essentially works as
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TABLE II
STATES OF PULL-DOWN TRANSISTOR PATHS
ON DIFFERENT DATA PATTERNS

Pull-down transistor paths
(aD"at: ;fn’a;tetfnbs f Fig. 2(a) Conventional Fig. 6 Synchronizing AND Gate
T T T bt [afl | bfl |[atbtl|[atbfl|[afbt]|afbf
(0,1,0,1) OFF ON ON OFF OFF OFF ON
(0, 1,1, 0) OFF ON OFF OFF OFF ON OFF
(1,0,0, 1) OFF OFF ON OFF ON OFF OFF
(1,0,1,0) ON OFF OFF ON OFF OFF OFF

a matching delay, which controls the correct data transfer in
noncritical data paths. Compared with conventional bundled-
data design using a separate matching delay to match the
worst case delay in function blocks, the proposed design
method reuses the existing function block logic to provide the
matching delay. Such design has many advantages. First, the
matching delay is accurate. The matching delay in APCDP is
exactly the same worst case delay in function blocks. Second,
the matching delay is robust for delay variations. Dual-rail
critical data path supplies delay-insensitive property, which can
be self-adaptive to delay variations in function blocks. Third,
the handshake control logic is efficient in area and power. The
handshake control logic is implemented by reusing the existing
function block logic.

Finding a stable critical data path in function blocks is
very important in the proposed design. The problem is that
it is difficult to get a stable critical data path using traditional
logic gates. Traditional logic gates have the gate-delay data-
dependence problem—the gate delay is dependent on input
data patterns. For example, the ripple carry adder in Fig. 4.
The ripple carry path seems to be the stable critical data path.
However, actually, the critical data path varies according to
different input data patterns. Because of the gate-delay data-
dependence problem, the carry function gate can be triggered
early by the input bits (a, and b,) regardless of the carry bit.
Since the input bit travels faster in the buffer path than the
carry bit in the ripple carry path, it cannot guarantee that the
critical transition signal always presents on the ripple carry
path.

Adding delay elements is an intuitive way to construct a
stable critical data path. However, this method needs complex
timing analysis and would cause huge overhead of delay
elements. This paper introduces an efficient solution that uses
SLGs to construct the critical data path. The SLGs solve
the gate-delay data-dependence problem by making sure that
SLGs cannot start evaluation until all valid data arrive [14].
This feature does not only help to construct a stable critical
data path but also enable the adoption of single-rail domino
logic in the noncritical data paths. As a result, the proposed
design is significantly area and power efficient.

B. Logic Gates

In VLSI circuits, it is difficult to get a stable critical data
path using traditional logic gates due to the gate-delay data-
dependence problem. Fig. 2(a) shows a traditional dual-rail
domino AND gate. The true side of logic is implemented
by out_t = a_t - b_t and the false side by out_f =

Truth table of dual-rail AND logic

out_t | out_f
0 0

NN NN

alafolo| i |[®

~lof=lo| [T

olo|=|=a||®
£
ol|alo|a||T
5,
~|lO|O|O
oflalala

Fig. 8. Synchronizing AND gate and the truth table of dual-rail AND logic.

The states of latch

en_t en_f States
- - Opaque
0 0 Opaque
0 1 Transparent
1 0 Transparent
1 1 No used

Fig. 9. Synchronizing AND gate with a latch function and the table of latch
states.

a_f+b_f. Table II shows the states of pull-down transistor
paths on different data patterns. In traditional dual-rail domino
AND gate, there are three transistor paths: 1) [a_t,b_t];
2) [a_f]; and 3) [b_f1]. First of all, these paths have different
number of transistors at the sequential position. When they
turn ON, respectively, [a_f] and [b_f] cause less delays than
[a_t, b_t]. Moreover, when the data pattern is (0, 1,0, 1),
[a_f] and [b_f] will be both ON, which leads to a much
quicker signal transfer. As a result, the gate delay has a
large variation depending on different data patterns. To solve
the gate-delay data-dependence problem, SLG and SLGL are
introduced [14].

1) Synchronizing Logic Gates: SLGs are dual-rail domino
gates that have no gate-delay data-dependence problem. Fig. 8
shows the synchronizing AND gate and the truth table of dual-
rail AND logic. The principle is that, in the pull-down network,
there is exactly one path activated according to one data
pattern, and the stack of all possible paths is kept constant at
the sequential position. Compared with the traditional design,
the false side logic expression is changed to out_f = a_t -
b_f+4+a_f-(b_t+b_f). Table II shows that there are four
transistor paths: 1) [a_t, b_t];2) [a_t,b_f1;3) [a_f, b_t]; and
[a_f,b_f]. Every path has two transistors at the sequential
position, and there is only one path turns ON corresponding
to an input data pattern. As a result, the gate delay becomes
independent on different data patterns. This kind of gates is
named as SLGs because they can synchronize their inputs.
The SLGs verify that all data signal transitions have arrived
on their inputs before changing their outputs.

The characteristics of SLGs are listed as follows.

1) An SLG has a certain number, inputs’ number, of
transistors in pull-down transistor paths at the sequential
position.
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2) An SLG has no gate-delay data-dependence problem.
Its gate delay mainly relates to the inputs number.

3) An SLG can synchronize its inputs. The SLG cannot

start evaluation until all valid data arrive.

2) Synchronizing Logic Gates With a Latch Function: Based
on the characteristics of SLGs, SLGLs are extended. Fig. 9
shows synchronizing AND gate with a latch function and the
table of latch states. An SLGL has an enable port (en_t, en_f),
which controls the opaque and transparent state of the SLGL.
The principle is that SLGLs cannot start evaluation without
the presence of the enable signal.

Same as the dual-rail AND logic, all traditional dual-rail
domino logic can be redesigned to become an SLG or an
SLGL. The critical data path in dual-rail asynchronous pipeline
can be easily constructed using SLGs and SLGLs.

C. Structure of APCDP

Fig. 10 shows the structure of APCDP. The solid arrow
represents a constructed critical data path (dual-rail data path),
the dotted arrow represents the noncritical data paths (single-
rail data paths), and the dashed arrow represents the output of
single-rail to dual-rail encoding converter.

In each pipeline stage, a static NOR gate is used as
1-bit completion detector to generate a total done signal for
the entire data paths by detecting the constructed critical
data path. Driving buffers deliver each total done signal to
the precharge/evaluation control port of the previous stage.
Since the completion detector only detects the constructed
critical data path, the noncritical data paths do not have to
transfer encoded handshake signal anymore. Therefore, single-
rail domino gates are used in the noncritical data path to
save logic overhead. Encoding converter is used to bridge
the connection between single-rail domino gate and dual-rail
domino gate.

1) Construction of the Critical Data Path: 1t is difficult to
construct a stable critical data path using traditional logic gates
for their gate-delay data-dependence problem. The critical
signal transition varies from one data path to others according
to different input data patterns. Since SLGs have solved the
gate-delay data-dependence problem, a stable critical data path
can be easily constructed by the following steps:

1) finding a gate (named as L;, gate) that has the largest
number of inputs in each pipeline stage;

2) changing these L;, gates to SLGs;

3) linking SLGs together to form a stable critical data path.

The basic idea of finding the critical signal transition is that
embedding an SLG in each pipeline stage and making the SLG
to be the last gate to start and finish evaluation. First of all, the
embedded SLG has the largest gate delay in a pipeline stage.
The reasons are as follows.

1) The SLG has the largest stack in the pull-down network
compared with other gates.

2) The SLG has only one pull-down transistor path acti-
vated for each input data pattern.

Then, if all gates evaluate at the same time or the SLG is the
last gate to start evaluation in the pipeline stage, the critical
signal transition would present on the output of the SLG.

In practice, making all gates evaluate at the same time is
difficult, especially without the help of intermediate latches or
registers. Therefore, we make the SLG become the last gate to
start evaluation by linking each pipeline stage’s SLG together.
In the first pipeline stage, the critical signal transition is on
the output of the SLG because all gates evaluate at the same
time for the input control of latches or registers. After linking
each pipeline stage’s SLG together, the SLG in the following
pipeline stage would be the last gate to start evaluation since it
always waits for the critical signal transition from the previous
SLG. As a result, the linked SLG data path becomes a stable
critical data path.

Linking each pipeline stage’s SLG together is partially done
in the process of selecting Li, gate in each pipeline stage.
When searching L, gate, there might be more than one option.
It is best to select the Lj, gate that is originally linked to the
Li, gate in the following pipeline stage. After changing these
Li, gates to SLGs, SLGs are naturally linked. For example,
the linkage between Stagel and Stage2 in Fig. 10. However, if
we cannot find the linked L;, gates in neighbor stages, SLGL
needs to be used to solve the linking problem. The linkage
between Stage2 and Stage3 is in such situation. The linkage
is established by connecting the output of SLG in Stage2 and
the enable port of SLGL in Stage3.
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Fig. 11. Encoding converters. (a) Intuitive design. (b) Proposed design.

TABLE IIT
TRUTH TABLE OF ENCODING CONVERTER

2) Encoding Conversion: Since the completion detector
detects only the constructed critical data path, the noncritical
data paths do not have to transfer encoded handshake signal
anymore. The logic overhead in the noncritical data paths can
be reduced using single-rail domino gates instead of dual-rail
domino gates. However, single-rail domino gate and dual-rail
domino gate use different encoding schemes. It has encoding
compatibility problem when a single-rail domino gate connects
to a dual-rail domino gate. Encoding converter needs to be
designed to solve the problem.

Fig. 11 shows two implementations of encoding converter.
Table III shows the truth table. In precharge phase pc = 0,
encoding converter outputs a dual-rail data0 (out, out) = (0, 1).
In evaluation phase pc = 1, if the input is a single-rail data0
in = 0, the converter keeps the dual-rail data0. If the input is a
single-rail datal in = 1, the converter outputs a dual-rail datal
(out, out) = (1, 0). Since single-rail encoding only has two
states that, respectively, represent data0 and datal, there is no
other state that can be converted to spacer (out, out) = (0, 0).
The disappearance of spacer violates the four-phase dual-rail
protocol, which would cause data transfer error.

Fig. 10 shows two examples that encoding converters are
used to bridge the connection between single-rail domino gate
and dual-rail domino gate. Focusing on the encoding converter
in Stage2, when Stage2 enters the precharge phase, the SLG
outputs a spacer, but the converter outputs a invalid data0.
This invalid data0 cannot be absorbed by the SLGL in Stage3
since the spacer impedes its evaluation. However, when Stage2
enters the evaluation phase, it has a risk that the invalid
data0 might be erroneously absorbed if the output of the SLG
becomes valid earlier than the output of the converter. The
earlier arrived valid data from the SLG trigger the SLGL to
start evaluation and absorb the invalid data0. To avoid this
problem, the encoding converter needs to satisfy a timing
constraint that the output of the converter should become valid
earlier than the output of SLG. In other words, the constructed
critical data path should be robust.

In addition to protect data transfer error by enhancing the
robustness of the critical data path, we can also improve the
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conversion speed of the encoding converter. Interestingly, we
do not have to care about the conversion from the single-
rail data0 in = O to the dual-rail dataQ (out, out) = (0, 1).
Because the converter initially outputs a dual-rail data0, this
conversion can be considered infinite fast. We only have to
focus on improving the conversion from the single-rail datal
in = 1 to the dual-rail datal (out, out) = (1, 0). Fig. 11(b)
shows the proposed design of the encoding converter. When
the converter enters the evaluation phase, the input in = 1 can
immediately pull down out. No matter the output (out, out) is
a instant spacer (0, 0) or the valid datal (1, 0), it effectively
protects the data transfer error. On the other hand, the intuitive
design in Fig. 11(a) has a longer signal transition delay. out
cannot be pulled down until out becomes 1. It has a higher
possibility of causing data transfer error than the proposed
encoding converter.

D. Robustness Analysis

APCDP has pipeline failure in the situation that a pipeline
stage does not finish evaluating before its previous stage start
precharge. In such situation, the pipeline stage cannot correctly
finish evaluating because the precharge of its previous pipeline
stage removes the valid data from the inputs. To avoid this
pipeline failure, APCDP needs to satisfy an assumption that,
in a pipeline stage, none of the other bits across the entire
data paths is slower than the detected bit by more than the
delay through a static NOR gate and the drive buffer chain
following it. The robustness of APCDP is analyzed based on
this assumption.

1) Robustness of the Pipeline Structure: According to the
pipeline structure of APCDP, the hold time Tjo1q of valid data
on the inputs of each pipeline stage is

Thold = SLG_Eval + tnor + !Buf + SLG_Prech ()

where #s1.G_Eval 1s the evaluation time for the SLG in a pipeline
stage and #s1.G_prech 1S the precharge time for the SLG in the
previous pipeline stage. fxor + fBuf 1S the delay through the
NOR gate and the drive buffer.

The pipeline structure of APCDP is quite robust since
the hold time Tiolq supplies sufficient time margins. In the
construction of the critical data path, we introduced that the
SLG is embedded as the last gate to finish evaluation in each
pipeline stage. There are even some gates that are slower
than the SLG because of delay variations in practice, Thold
supplies fxor + ?Buf + SLG_Prech time margins for pipeline
failure protection. We believe that these time margins are
sufficient for dealing with delay variations in practical design.
However, for safety, we supply several enhance measurements
for the constructed critical data path in the following section.

2) Robustness of the Critical Data Path: We first use the
method of logical effort [19] to analyze the robustness of the
constructed critical data path. Then, we discuss how to further
enhance the robustness of the constructed critical path.

The method of logical effort is an easy way to estimate delay
in CMOS circuit. In the method, modeling delay of a logic
gate isolates the effects of a particular fabrication process by
expressing all delays in terms of a basic delay unit particular to
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that process. The delay incurred by a logic gate is comprised of
two components: 1) a fixed part called the parasitic delay p
and 2) a part that is proportional to the load on the gate’s
output, called the effort delay f. This effort delay depends
on the load and the properties of the logic gate driving the
load. There are two related terms for these effects: the logical
effort g captures the effect of the logic gate’s topology on its
ability to produce output current, while the electrical effort
h describes how the electrical environment of the logic gate
affects performance and how the size of the transistors in the
gate determines its load-driving capability. Electronic effort is
also called fanout by many CMOS designer. As a result, the
delay of a logic gate is expressed as

COLII

Cin
where Coy; is the capacitance that loads the output of the logic
gate and Cj, is the capacitance presented by the input terminal
of the logic gate.

In each pipeline stage of APCDP, the SLG/SLGL has a
larger gate delay than other gates according to the method
of logic effort. First, the SLG/SLGL has more complicated
topology than other gates in the pull-down network. It slightly
increases the parasitic delay p and the logical effect g. Second,
the output of SLG/SLGL is connected to a static NOR gate and
the SLG/SLGL in the next stage. Compared with the outputs
of other gates, the SLG/SLGL has a larger fanout Coy¢, which
increases the electrical effort 4. As a result, the SLG/SLGL
has a larger gate delay than traditional logic gates even they
have same number of inputs. When linking all SLGs/SLGLs
together, these imposed delays increase the robustness of the
constructed critical data path.

In practice, the robustness of the constructed critical path is
affected by delay variations. As a matter of fact, it is a common
problem in VLSI circuit design, same as the robustness of a
clock signal in synchronous design and a match delay line in
bundled-data asynchronous design [2]. As we all know, these
designs all suffer from delay variations. To resist the influence
of delay variations, synchronous design enlarges the cycle time
of a clock signal to get some margin. On the other hand,
bundled-data asynchronous design adds extra delay margin
on the matching delay line to match the worst case delay in
combinational logic block. Same like these solutions, the delay
variations problem in the proposed design can be solved by
enlarging delay margin on the constructed critical data path.
We supply four measures to enlarge the delay margin, which
are listed as follows:

delay=f+p=gh+p=g +p (€))

1) sizing the pull-down transistors or the static inverters of
SLGs and SLGLs to increase gate delays;

2) applying a low priority in circuit layout for the con-

structed critical path;

3) improving the noncritical paths delay;

4) adding delay elements on the critical path.

These measures have different impacts on the performance
of circuits. It is better to choose a proper measure or multi-
ple measures according to the practical design requirements.
In measure 1), reducing the transistor size of pull-down
network or the static inverters can increase the gate delays
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Fig. 12.

of SLGs and SLGLs. The increased delay slightly slows
down pipeline speed, but smaller transistor size helps in
saving power and silicon area. Measure 2) is layout opti-
mization. Although this measure slightly decreases pipeline
speed, it does not impose the extra overhead of transistors.
Measure 3) does not degrade pipeline speed. The problem is
that improving the noncritical path delay would increase the
power consumption. Measure 4) is an intuitive way to enhance
the critical data path. The drawback is the extra overhead of
transistors.

In addition, the use of domino logic introduces many design
risks because it is very sensitive to noise, circuit, and layout
topologies [20]. The solutions to alleviate these problems are
not in the scope of this paper. We only recommend to limit
the largest stack of domino logic when designing APCDP.
The limitation depends on processing technology, practical
problems, and actual conditions. Smaller stack design helps
in alleviating the noise problems and increasing the pipeline
speed. The tradeoff is the increased number of pipeline stages.
More pipeline stages means larger silicon area and higher
power consumption. On the other hand, larger stack design
deteriorates the noise problems and the pipeline speed. The
merit is the reduced number of pipeline stages. Less pipeline
stages helps in saving silicon area and power consumption.

E. Extension to Complex Structures

The previous sections just analyzed the linear pipeline
structure. For more complex data paths, forks and joins are
needed [2]. Fig. 12 shows fork structure and join structure in
APCDP.

In fork structure, the outputs of function block A are split
to connect with function blocks B and C. C-element is used
to collect the handshake signal from A’s successors. The
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construction of the critical data path in fork structure is same
as that of described in the linear structure. The problem is
that the data paths from A to B and C are more complex
than the linear structure. The complex data paths cause large
delay variations, which affect the correctness of the critical
data paths at the inputs of B and C. Pipeline failure happens
when B and C do not finish their evaluations before A finishes
its precharge. The delivery time of the precharge signal from
B and C to A is that

Tael = Tnor + Tc + Touffer 4)

where Txor, Tc, and Touffer are delay time of a static NOR
gate, a C-element, and the buffer gate. If the delay variations
on the data paths are smaller than Tgel, no pipeline failure
happens.

In join structure, the outputs of function block A and B
merge together at function block C, which requires sending an
acknowledge signal from C to all its predecessors. In function
block C, the critical data paths from function block A and B
need to simultaneously connect to an SLG/SLGL. The design
process is similar to that of described in the linear structure.
The problem in join structure is that the acknowledge signal
networks at function block B and C are more complex than
the linear structure. Pipeline failure happens when A and B
do not completely finish their precharge process before C
enters the next evaluation phase, which means that C would
mistakenly absorb old data from A or B. The delivery time of
the precharge signal from C to A and B is that

T4e1 = Tnor + Touffer- (5)

According to the handshake protocol, the time for C to enter
the next evaluation phase is that

ThextEval = 2TEval + 2TNOR + 2Tbuffer (6)

where Tgya is the evaluation time for a function block.
Therefore, the margin time is that

Tmargin = ThextEval — Tdel = 2TEval + Tnor + Thuffer- @)

If the delay variations on the acknowledge signal networks are
smaller than Tiargin, N0 pipeline failure happens.

IV. EVALUATION

This section presents the evaluation results of APCDP.
An 8 x 8 array style multiplier is chosen as the test case,
which is, respectively, designed using the proposed APCDP,
LP2/2-SR [11], classic synchronous pipeline (Sync), and Sync-
CG [15], [16]. Conventional dual-rail asynchronous pipelines
are not selected as the evaluation counterparts because they are
hardly applicable in the design of large function block (such
as the 8 x 8 array style multiplier).

A. Experiment Setup

Four 8 x 8 array style multipliers are designed using
HSPICE in a 65-nm design technology. All designs are simu-
lated at 1.2 V normal supply voltage, 85 °C temperature, and
a normal process corner.
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TABLE IV
EVALUATION RESULTS OF 8 x8 ARRAY STYLE MULTIPLIERS
APCDP W Sync Sync-CG
(Bundled-data design)
Function 8 X 8 multiplier
Logic gate Domino gate Static gate
Transistor
7375 9874 9010 9154
counts
Total FET width| 3075.45um 4726.35um 5065.07um 5171.48um
SLG & SLGL 56 NA NA NA
Storage 0 0 278 284
element (D flip-flop) (D flip-flop)
Latency 0.44ns 0.37ns 1.3ns 1.3ns
Throughput 4G data-set/s | 5.2G data-set/s | 4G data-set/s | 4G data-set/s
(schematic)
ff*00 1
ff*01
ff*03
o
g ffro7 | APCDP
o ff*of LP22-SR
E f*1f ) M Sync-CG
S -
ff*3f
ff*7f
ff*ff
0 1 3 4 7
Energy (pJ)
Fig. 13. Energy consumption per cycle for processing different data patterns.

LP2/2-SR is chosen as a representative of latchless
pipeline for comparing with APCDP. LP2/2-SR was pro-
posed along with LP2/2, which is significantly more
area and energy efficient. It was reported that LP2/2-
SR had about 60% smaller area and 55% lower energy
consumption than LP2/2 in first-input first-output (FIFO)
design [11]. Besides, LP2/2-SR resembles the design of latch-
less synchronous pipeline. The difference is that latchless
synchronous pipeline uses a complex multiphase clocking
instead of bundled-data handshaking. Because of their similar-
ity, the performance of LP2/2-SR can be used as a reference
for comparing APCDP with latchless synchronous pipeline.

An 8 x 8 array style multiplier is extremely fine-grain or
gate-level pipelined using LP2/2-SR as well as APCDP. The
depth of each pipeline stage is only one domino logic gate, and
there are no explicit storage elements between stages. Their
comparisons show not only the circuit efficiency of APCDP
but also the merits of dual-rail asynchronous design.

To make a further comparison, Sync and Sync-CG are also
designed. They are used as comparison references since they
do not belong to latchless pipeline. The 8 x 8 array style
multiplier is divided into five pipeline stages. The logic blocks
are composed of static logic gates, and D flip-flops are used
as intermediate storage elements between pipeline stages. The
sequential clock gating in Sync-CG is designed using six D
flip-flops, which realizes fine-grain clock gating that is similar
to the handshake behaviors in APCDP and LP2/2-SR.
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dataset/s).

Performances of power consumption (all designs operate at 3.6G

B. Results

Table IV shows the evaluation results of the 8 x 8 array
style multiplier. The performances of throughput are evaluated
without considering design margins, which are ideal results.
The results show that APCDP has high throughput, the small-
est transistor count, and the lowest forward latency in all
designs. Fig. 13 shows the energy consumption for processing
different data patterns. Fig. 14 shows the performances of
power consumption under different workloads. The results
show that APCDP is the most power efficient design.

1) Transistor Count: Table IV shows that APCDP,
respectively, reduces the transistor count by 25.3% and 18.1%
compared with LP2/2-SR and Sync. APCDP uses a mixture
of dual-rail domino logic and single-rail domino logic. The
single-rail domino logic gates in the noncritical data paths
save a lot of the transistor count. Although the SLGs and
SLGLs in APCDP consume more transistors than traditional
dual-rail domino gates, they are in a small quantity (only 56,
used in the critical data path), which have small impact on
the transistor count.

The results also show that the transistor count of LP2/2-SR
is larger than that of synchronous pipeline, which indicates
that conventional latchless pipelines are difficult to realize the
potential advantage of small silicon area. The main reason is
the dual-rail encoding overhead in domino data path. Because
of the latchless feature, a lot of implicit storage elements (dual-
rail domino buffers) have to be added at each pipeline stage
to store data. These added dual-rail domino buffers cause a
large overhead. Although LP2/2-SR is significantly more area
efficient than LP2/2, it still consumes more transistors than
Sync and Sync-CG.

In addition to the transistor count, total FET width is a better
metric to figure the relative difference of capacitance between
designs. Table IV shows that APCDP, respectively, reduces
the total FET width by 34.8% and 39.3% compared with
LP2/2-SR and Sync. An interesting result is that LP2/2-SR
has a smaller total FET width even it has a larger transistor
count compared with Sync. This is because domino gates use
keepers to protect charge leakage problem [20]. These keepers
have a very small transistor size.

2) Latency: APCDP and LP22-SR have about one-third
lower forward latency than Sync and Sync-CG. This is because
latchless design has no sequential overhead (no registers
or latches) on its forward path. Compared with LP22-SR,
APCDP has a little larger latency. The latency is sacrificed
for constructing the stable critical data path. Fortunately, this
degradation is not serious.

3) Throughput: The performances of throughput are evalu-
ated without considering design margins, which are all ideal
results from the schematic simulations.

The results show that LP2/2-SR has the best throughput per-
formance. This benefits from the bundled-data asynchronous
design of LP2/2-SR. Traditional dual-rail domino data paths in
LP2/2-SR actually have better signal transition speed than the
data paths composed of SLGs/SLGLs. Bundled-data design
can exploit this benefit to increase the pipeline through-
put. However, delay margins need to be added in practical
bundled-data design, which would decrease the performance
of throughput.

Because of the dual-rail critical data path, APCDP
does not have to add design margins in practical design.
In Section III-DI, it shows that the pipeline structure of
APCDP originally supplies some time margins. Although
APCDP has a slower pipeline speed and a higher forward
latency than LP2/2-SR in the ideal evaluation, it is possible
that APCDP may have a faster pipeline speed and a lower
latency than LP2/2-SR in practical design if the timing mar-
gins required in LP2/2-SR exceed the detection overhead in
APCDP. Especially, the delay of function blocks is not known
until the circuit layout has been generated. This can make the
estimation of matching delay in LP2/2-SR overly conservative
with a negative impact on performance.

The throughputs of Sync and Sync-CG relate to the pipeline
granularity. Although the throughput performance can be
improved using fine-grain design, the power consumption
increases simultaneously. Therefore, Sync and Sync-CG are
carefully designed considering the tradeoff between through-
put and power. Although Sync and Sync-CG have the same
throughput performance with APCDP, they hardly can win
APCDP in practical design because synchronous design has
to add design margins.

4) Power: The energy consumption of VLSI circuits relates
to the toggling rate in data paths. In APCDP, the adoption of
single-rail domino gates in the noncritical data paths saves not
only silicon area by reducing transistor count but also energy
consumption by reducing the toggling rate.

Fig. 13 shows the energy consumption per cycle for
processing different data patterns. Each energy consump-
tion is an average value calculated from 100 cycles. The
results show that APCDP consumes much less energy than
LP2/2-SR. The adoption of single-rail domino gates in APCDP
reduces the toggle rate in data paths since single-rail domino
logic does not toggle when transferring low-voltage signal.
Besides, the toggling rate relates to the injected data patterns.
Therefore, the energy consumption of APCDP varies a lot
according to different data patterns. On the other hand, the
energy consumption of LP2/2-SR remains almost constant.
LP2/2-SR’s full dual-rail domino data paths have almost a
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Fig. 15. Workload definition.

constant toggling rate regardless of the injected data patterns.
Compared with LP2/2-SR, APCDP saves up to 60.2% of
energy in the best case when processing data pattern ff*00
(hexadecimal digit) and 24.5% of energy in the worst case
when processing data pattern ff*ff.

The energy consumption of Sync-CG is also evaluated.
However, Sync-CG is designed using static logic. Different
from domino logic, static logic does not have an initial state.
To provide a relative fair comparison, we set the initial state
of Sync-CG as low-voltage inputs. The injected data patterns
are a certain data pattern (e.g., ff*ff) following with an initial
pattern ff*00. The energy consumption per cycle is calculated
from 100 cycles. The results show that Sync-CG has lower
energy consumption than LP22-SR in most cases. However,
Sync-CG also consumes more energy than LP2/2-SR when
the toggling rate is high (processing ff*ff). Since the toggling
rate in Sync-CG relates to the initial state, the practical energy
consumption might be better or even worse than the evaluated
results. In our evaluated cases, APCDP shows better energy
consumption than Sync-CG.

Furthermore, the power performance with different work-
loads is evaluated. Fig. 14 shows the performance of power
consumption when all designs operate at 3.6G dataset/s. The
solid lines show the power consumption when the injected
data patterns are recurring between ff*ff = ff*00. The dotted
lines shows the power consumption when the injected data
patterns are recurring between ff*0f = ff*00. The workload
refers to the rate of the number of active-state cycles to the
total number of cycles. In our case, the workload is calculated
based on a period of consecutive data injection cycles (active-
state cycles) following consecutive empty cycles. Fig. 15
shows the workload definition. The workload is calculated
as N/(N + M), where N is the number of consecutive data
injection cycles and M is the number of consecutive empty
cycles.

The solid and dotted lines, respectively, show that APCDP
reduces the power by 41.6% and 52.9% compared with
LP2/2-SR. This evaluation also verifies that Sync and Sync-
CG have a better performance of power than LP2/2-SR in most
situations, except for processing data pattern ff*ff. However,
Sync and Sync-CG can hardly win APCDP. APCDP saves up
to 43.9% and 38.6% of power compared with Sync-CG when,
respectively, processing ff*ff and ff*0f. In addition, the results
also show that Sync-CG saves a lot of clock power compared
with Sync. However, because of the clock-gating design,
Sync-CG consumes a little more power than Sync when the
circuits work at peak speed.
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C. Further Discussion

The above evaluation is based on schematic simulation.
To apply APCDP to large function modules, design automation
is an important issue that has to be solved. Design automation
for asynchronous circuits is a very large research domain.
It is difficult to fully cover this topic. The interested reader is
referred to [21]. Here, we just simply address several specific
design automation issues in APCDP.

One issue is the design automation for constructing a
stable critical data path. Based on the proposed construction
method, design automation flow can be easily developed. First,
the gate with the largest number of inputs in each stage and
connection of gates between stages is identified. Then, the
proper gates using SLGs or SLGLs are replaced according to
the gate connection information and optimization methods.

Another issue is the design automation for layout. Standard
placement and routing (P&R) tools tend to reduce the worst
case delay in function blocks by optimizing circuit layout.
Such optimization is not suitable for APCDP since it would
degrade the robustness of the constructed critical data path. To
avoid this problem, a specific P&R method has to be developed
to increase the delay on the constructed path.

The last issue is timing verification. There are almost no
EDA support for verifying domino circuits because charge
sharing and uncertainty about worst case delay makes static
timing analysis (STA) very complex [21]. In APCDP, the
known critical data path and the dual-rail handshake control
logic help in easing the timing analysis problem. After creating
a high-quality domino gate library, it is possible to apply STA
for verifying the timing constraints in APCDP.

V. CONCLUSION

This paper introduced a novel design method of asynchro-
nous domino logic pipeline. The pipeline is realized based on
a constructed critical data path. The design method greatly
reduces the overhead of handshake control logic as well as
function block logic, which not only increases the pipeline
throughput but also decreases the power consumption. The
evaluation results show that the proposed design has better
performance than a bundled-data asynchronous domino logic
pipeline (LP2/2-SR). It is even comparable with a synchronous
pipeline with sequential clock gating.
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