・発表タイトル Presentation Title

1. 口頭発表 Oral Presentation

Session I (11:00 – 12:15) Chair: Prof. Umemura

	発表者 Presenter	発表タイトル Title	所属
OS1-1	荒川 元孝	Designs of ultrasonic devices for	西條研究室
	Mototaka Arakawa	ultrasonic microscopy using pulse	Saijo Lab.
		signals	
OS1-2	髙木 亮	Real-time Treatment Feedback	梅村·吉澤研究室
	Ryo Takagi	Using Novel Filter for Eliminating	Umemura-
		Therapeutic Ultrasound Noise in	Yoshizawa Lab.
		US-guided High-Intensity Focused	
		Ultrasound Therapy	
OS1-3	Piero Tortoli	Advances in vector Doppler flow	Florence
		imaging	University

Session II (14:45 – 16:00) Chair: Prof. Saijo

	発表者 Presenter	発表タイトル Title	所属
OS2-1	瀧 宏文	Compensation Technique for the	金井・瀧研究室
	Hirofumi Taki	Intrinsic Error in Ultrasound Motion	Kanai-Taki Lab.
		Estimation Based on a Speckle	
		Tracking Method	
OS2-2	赤川 紀	Study on Processing of	西條研究室
	Osamu Akagawa	High-Frame-Rate Color Doppler	Saijo Lab.
		Image	
OS2-3	Magnus Cinthio	On the different phases of the	Lund
		longitudinal movement of the carotid	University
		artery wall in healthy humans	

Session III (16:30 – 17:45) Chair: Assoc. Prof. Yoshizawa

	発表者 Presenter	発表タイトル Title	所属
OS3-1	大山 誠司	Quantitative Measurement of	梅村•吉澤研究室
	Seiji Oyama	Focused Ultrasound Pulse Pressure	Umemura-
		Field Using Optical Phase Contrast	Yoshizawa Lab.
		Method	

OS3-2	Maria Evertsson	In vivo detection of rat sentinel	Lund
		lymph nodes using magnetomotive	University
		ultrasound imaging	
OS3-3	Tobias Erlöv	Measurements of scatter size in the	Lund
		. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TT :
		time domain and its	University

2. ポスター発表 Poster Presentation (13:30 – 14:45, 16:00 – 16:30)

	発表者	発表タイトル	所属
PS1	安田 惇	Efficient Generation of Reactive	梅村·吉澤研究室
	Jun Yasuda	Oxygen Species in Rose Bengal	Umemura-
		Solution for Sonodynamic Treatment	Yoshizawa Lab.
PS2	岩﨑 亮祐	Detection of Thermal Lesions	梅村·吉澤研究室
	Ryosuke Iwasaki	Induced by Cavitation-Enhanced	Umemura-
		High-Intensity Focused Ultrasound	Yoshizawa Lab.
		Using Shear Wave Elastography	
PS3	大須賀 将瑞	Acceleration of Lithotripsy Using	梅村•吉澤研究室
	Masamizu Osuga	Cavitation Bubbles Induced by	Umemura-
		Dual-Frequency Ultrasound	Yoshizawa Lab.
PS4	神保 勇人	Reducing electric power consumption	梅村・吉澤研究室
	Hayato Jimbo	with multi-staircase wave driving	Umemura-
		circuit for high-intensity focused	Yoshizawa Lab.
		ultrasound	
PS5	Zulfadhli bin Zaini	Evaluation on Ultrasonic Transducer	梅村•吉澤研究室
		with Heavy Matching Layer towards	Umemura-
		Generating Second Harmonic	Yoshizawa Lab.
PS6	田口 渓	Flash Imaging of Cavitation	梅村•吉澤研究室
	Kei Taguchi	Behavior during High-Intensity	Umemura-
		Focused Ultrasound Exposure	Yoshizawa Lab.
PS7	鈴木 魁	Effect of ultrasonic attenuation on	梅村・吉澤研究室
	Kai Suzuki	focused ultrasound pressure field	Umemura-
		and region of cavitation cloud	Yoshizawa Lab.
		formation	
PS8	富安 謙太郎	Simulation of tissue temperature	梅村・吉澤研究室
	Kentaro Tomiyasu	increase taking nonlinear	Umemura-
		propagation of HIFU into	Yoshizawa Lab.
		consideration	
PS9	花山 洋貴	Preliminary Study of Shadowgraph	梅村・吉澤研究室
	Hiroki Hanayama	Using Simulation of Optical	Umemura-
		Propagation for Ultrasound Pressure	Yoshizawa Lab.
		Field	

		T	
PS10	長岡 亮	Elasticity estimation method by	西條研究室
	Ryo Nagaoka	using deformation induced by	Saijo Lab.
		arterial pulsation	
PS11	伊郷 泰智	Measurement of acoustic properties of	西條研究室
	Taichi Igo	cells using high frequency acoustic	Saijo Lab.
		microscopy	
PS12	佐藤 遊	A basic study on ultrasound and	西條研究室
	Yu Sato	optical coherence tomography	Saijo Lab.
PS13		Measurement of velocity vector map	西條研究室
	深津 幸助	and selectable parameters by means of	Saijo Lab.
	Kosuke Fukazu	Particle Image Velocimetry	
PS14	田畑 拓也	Development of Photothermal Therapy	西條研究室
	Takuya Tabata	Using Gold Nanorods	Saijo Lab.
PS15		Two-dimensional velocity vector	西條研究室
	継田 直哉	visualization method by	Saijo Lab.
	Naoya Tsugita	Echo-Dynamograpy	
PS16	牧野孝洋	Wavelength dependence of photo	西條研究室
	Takahiro Makino	acoustic imaging	Saijo Lab.
PS17		Detection of Abnormal Blood Vessels	西條研究室
		on Optic Disc for Diagnosis of	Saijo Lab.
	Israr Ul Haq	Proliferative Diabetic Retinopathy	
PS18	松木 大輔	Photothermal therapy of tumors in	小玉研究室
	Daisuke Matsuki	lymph nodes using gold nanorods	Kodama Lab.
		and near-infrared laser light with	
		controlled surface cooling	
PS19	八巻 哲平	Perfusion defect in metastatic lymph	小玉研究室
	Teppei Yamaki	node using micro CT	Kodama Lab.
PS20	武田 航	Intranodal chemotherapy for	小玉研究室
	Kazu Takeda	tumor-bearing lymph node and its	Kodama Lab.
		evaluation by using intranodal	
		pressure	
PS21	吉羽 正太	A study on agent distribution in	小玉研究室
	Shota Yoshiba	lymph node using liposomal	Kodama Lab.
		doxorubicin	
PS22	多田 明日香	Visualization of Flow Dynamics in	小玉研究室
	Asuka Tada	Lymphatic Channels in Lymph Node	Kodama Lab.

PS23	浅井 拓磨	Measurement of Myocardial	金井・瀧研究室
	Takuma Asai	Contraction/relaxation Property	Kanai-Taki Lab.
		Using Ultrasonic Two-Dimensional	
		Speckle Tracking	
PS24	木所 一祥	In Vivo Measurement of Luminal	金井・瀧研究室
	Kazuyoshi	Surface Roughness of Carotid Artery	Kanai-Taki Lab
	Kidokoro	Using High Spatial Resolution	
		Ultrasound	
PS25	黒川 祐作	Spectrum Analysis of Blood Echo	金井・瀧研究室
	Yusaku Kurokawa	Around 40 MHz for Quantitative	Kanai-Taki Lab
		Assessment of Red Blood Cell	
		Aggregation	
PS26	酒井 康将	Accurate Evaluation of Change in	金井・瀧研究室
	Yasumasa Sakai	Viscoelasticity of Radial Arterial	Kanai-Taki Lab
		Wall During Flow-Mediated Dilation	
		Using 7.5 MHz Ultrasound	
PS27	望月 雄太	A study on shear wave propagation	金井・瀧研究室
	Yuta Mochizuki	generated by dual acoustic radiation	Kanai-Taki Lab
		force	
PS28	小野寺 絃	Probe localization for freehand 3D	金井・瀧研究室
	Gen Onodera	ultrasound imaging: basic study	Kanai-Taki Lab
PS29	高橋 一生	Depiction of acoustic window to	金井・瀧研究室
	Kazuki Takahashi	epidural space for thoracic	Kanai-Taki Lab
		anesthesia: basic study	
PS30	高橋 航平	Automatic heart wall identification	金井・瀧研究室
	Kohei Takahashi	in echocardiographic images using	Kanai-Taki Lab
		linear discriminant function	
PS31	飛内 優美	Regularity of change in ultrasonic	金井・瀧研究室
	Yumi Tobinai	integrated backscatter from regional	Kanai-Taki Lab
		myocardium during one cardiac cycle	
PS32	松野雄也	Ultrasound imaging of propagation	金井・瀧研究室
	Yuya Matsuno	of myocardial contraction in rat	Kanai-Taki Lab
		heart tissue	