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This paper describes a new automatic method of detecting flaws in ball bearings and
classifying them into four categories: normal, flaw on the inner ring, flaw on the outer
ring, and flaw on the balls. Detection and classification are currently carried out mainly
aurally by inspectors who listen to a vibration signal obtained by a vibration pick-up in
an Anderon meter, which is attached to the outer ring of a ball bearing while the inner
ring rotates at a uniform speed. There have been some proposals for the automatic
detection and classification of flaws which are based on the analysis of the periodicity of
vibration pulses excited by flaws. When flaws are slight, however, it is hard to detect
them by recently proposed methods because of the following two reasons: (A) the power
of the vibration due to flaws is less than that of noise, and (B) the period of flaw pulses
is irregular. We have developed a new method, though, by which slight flaws can be
detected. We have applied this new method in the flaw detection of small-sized ball
bearings: flaws were classified with an accuracy rate of greater than 97%; into the above

four categories.

PACS number: 43. 85. Ta, 43. 60. Gk

1. INTRODUCTION

This paper describes a new diagnostic method for
the automatic detection and classification of flaws
on the surface of ball bearings. Ball bearings can
be classified into the following four categories:

(1) normal, , ‘

(2) ones having flaws on the inner rings,
(3) ones having flaws on the oufer rings,
(4) ones having flaws on the balls.

When a flawed bearing is used, for example, in a
video tape recorder to support the spindle of the
head, even flaws of less than 0.01 mm on the bearing
debase the quality of the played-back picture.

Bearings used for such audio/visual purposes are
currently checked aurally, one by one, using an
Anderon meter?’ as follows: a ball bearing is fixed in
an Anderon meter and the inner ring is revolved at

a uniform speed. The vibration signal is picked up
by a vibration pick-up attached to the outer ring.
Defects in ball bearings are thus detected and clas-
sified aurally by inspectors listening to vibration sig-
nals with headphones. However, it requires a great
deal of time to train a good inspector. Additionally,
the physical and mental condition of an inspector
affects the results of detection and classification.

In response, several methods have recently been
proposed up to now for the automatic detection and
classification’ of defects in ball bearings. These
methods utilize pulses excited when balls encounter
flaws on races or when races encounter flaws on
balls. Since the rotation speed of the inner ring is
known, the periodicity of a vibration signal can be
calculated from the shape of the bearing. Hence,
defects may be detected and classified by checking
whether or not peaks are observed at the expected
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frequencies. Unfortunately, slight flaws cannot be .
detected by these proposed automatic methods.
Therefore, we have developed a new method for
the automatic detection and classification of surface
defects in ball bearings, in order to check ball bear-
ings more reliably so as to attain higher standards of
stability, and to eliminate tedious labor for workers.
This paper first discusses the reasons why slight
flaws cannot be detected by recently proposed auto-
matic methods. Next, a new method is proposed to
detect and classify defects even in the case of slight
flaws; this method was experimentally tested, the
results of which are shared here. It was proved by
experiment that defects can be classified into four
categories with an accuracy rate of 97.9%,.

2. APPARATUS FOR
THE EXPERIMENTS

Figure 1 shows the block diagram of the experi-
mental system in which a vibration signal is picked
up and carried to the laboratory using digital audio
tape. The inner ring rotates at a constant speed of
1,800 r.p.m., and the outer one is fixed by axial pres-
sure; the value of the speed and the amount of pres-
sure are the same as those used in practice in video
tape recorders. Under such conditions, a flaw causes
a radial movement of the outer ring; a signal due to
the movement is picked up by a vibration pick-up
attached to the outer ring. The signal is amplified
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Fig. 1 The block diagram of the procedure
for measuring the vibration signal of a
ball bearing.
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and filtered through a high-pass filter to eliminate
the primary frequency component (=30 Hz) cor-
responding to the rotation of the inner ring. The
filtered signal is stored in a high-fidelity digital
audio tape. In the laboratory, the signal is played
back and is A/D converted with a 12 bits A/D con-
verter at a sampling rate of 30 us so as to be pro-
cessed by a digital computer.

3. FLAW DETECTION USING
THE POWER SPECTRUM
OR CEPSTRUM TECHNIQUE

A vibration signal x,(n) is excited by a flaw on the
inner ring, on the outer ring or on the balls. It is
assumed in the simplified model that the resonant
vibration signal is expressed as the sum of several
number of exponentially decaying sinusoidal waves,
as follows:

xi(n)= ; exp(—an) cos(wn)-u(n) , -

(1)

where u(n) is a unit step function, w: is an angular
eigen frequency and a: is a damping factor of i-th
mode. Since the bearing rotates at a uniform speed,
the vibration signal xi(») repeats at a uniform period
T. The repetition frequency 1/T depends on the posi-
tion where the flaw is. The frequency is derived
theoretically® using the rolling speed of the inner

Table 1 Equations for the repetition fre-
quencies of flaws and the frequencies
calculated for the ball bearing (JIS696).

The number of balls: Z=7
Ball diameter: d=2.7781 mm
Pitch diameter: D=10.5mm
Contact angle: 6=10.3 deg

[at a state with about 1.75 kg thrust loaded]

(1) Rolling speed of the inner ring:
Sf1=30Hz (1,800 r.p.m.)

'(2) Rolling speed of the cage
(=revolution speed of balls):
fai=fi-{1—(d/D)cos 0} /2=11.2Hz

(3) Rotating speed of balls:
Sfo=fi-(D/d){1—(d/ D) cos? 0} [2=52.9 Hz

(4) The repetition frequency of flaws on the inner ring:
fi=Z(fi—f)=132 Hz

(5) The repetition frequency of flaws on the outer ring:
So=Z f:=T717.6 Hz

(6) The repetition frequency of flaws on the ball:
Jo=2+f3=106 Hz
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ring and the shape factors of all parts. Table 1 shows
the equations which represent the repetition fre-
quency of the impact caused by flaws, and the
frequencies calculated by the equations from the
rolling speed and the shape factors of the bearing-
type used in our experiments.

The resultant signal x(n) is expressed as follows:

x)=xde 33 Sn—KD)+n(n), (2)

where
(1 (n=0)
Sy= {0 (n0),
n(n) is noise, and * represents the convolution.

Using Eq. (2), the Fourier transform of the vibra-
tion signal x(n) is expressed as follows:

@N+1)-X:(p)+Xa(p),
pT=0, £1, £2, -,

\sin{27(2N +1)pT[2}
X —gamrn  TX@,

otherwise ,

X(p)=

(3)

where Xi(p) is the spectrum of the vibration xi(n),
and Xa(p) is the spectrum of the noise n(n). The
power spectrum of the vibration signal x(n) shows
many line peaks at the frequencies f=1/T, 2/T, 3/T,
.... We can observe the peaks clearly around the
resonant frequency where the higher signal-to-noise
ratio is obtained. Whether or not there is a flaw can
be detected by the magnitude of the peaks in the
power spectrum X(p). Flaws are classified by the
magnitudes and frequencies of those peaks.

To measure the repetition period more precisely,
the method of using the cepstrum technique has
been proposed. However, the method does not work
as well as might be expected. Figure 2 shows the
power spectra and the cepstra.

The power spectra are calculated by averaging
32 periodgrams which are computed after cutting
out the vibration signal by use of'a Hanning window
with a length of 2,048 points. There is little differ-
ence between the power spectrum of a normal bear-
ing: 2 (a-1) and others having flaws: 2 (a-2)-2 (a-5).
It is difficult to find the frequency band in which the
components of the vibration due to flaws are su-
perior to the background noise.

The cepstra are calculated from the signal band-
limited between 1 kHz and 9 kHz to eliminate the
effect of lower frequency components of the vibra-
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Fig. 2 An analysis of several kinds of
vibration signals using the power spectral
technique and the cepstrum technique.

tion which is generated when the ball passes just
under the pick-up. Except for Figs. 2 (b-4) and
2 (b-5), it is also difficult even by the cepstrum tech-
nique to recognize a peak at a position corresponding
to the periodic interval T of each flaw, as shown in
Figs. 2 (b-2) and 2 (b-3). The reasons why the cep-
strum does not show a peak are considered as
follows:

(A) since the vibration decreases too rapidly in
comparison with the repetition interval of flaws, the
power of the vibration due to flaws is not larger than
that of noise; ,

(B) the period of the vibration due to flaw pulses
is irregular. That is, since the diameter of the ball
is a little smaller than the diameter of the hole in
the cage, there is some amount of scattering in the
repetition intervals of the flaw pulses generated by
many balls. Figure 3 shows an example of the distri-
bution of repetition intervals. The repetition inter-
vals are those at which the short-time auto-correla-
tion functions take the maximum values near the
theoretically calculated interval of a vibration due
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Fig. 3 The distribution of the repetition
intervals of the vibration due to flaws on
the inner ring. The bearing sample ana-
lyzed here is the same one as analyzed in
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to flaws on the inner ring (see Table 1). The auto-
correlation functions are calculated for a vibration
signal band-limited between 1 kHz and 9 kHz. In
this figure, the average value m of the distribution
is the same as the theoretical repetition interval
shown in Table 1. The standard deviation o takes
a rather large value, and the ratio of o to the sampl-
ing period T,(=30 us) is about 11.7.

Next, we show by computer simulation the effect,
both on the power spectrum and the cepstrum, of
irregularity in the repetition interval of flaw pulses.
Figure 4 (a-1) shows the periodic exponentially-
decaying sinusoidal series which is expressed as
follows:

x(n)=x:(n)* kéN S(n—kT). (4)

Figure 4 (b-1) is the same signal as Fig. 4 (a-1), except

Figs. 2 (a-2) and 2 (b-2). for the condition where a gaussian noise n(n) is
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Fig. 4 The effect of the ifregularity in the repetition intervals of the flaw pulses on the power
spectrum and the cepstrum. (a-1): the periodic exponentially-decaying sinusoidal wave,
(b-1): the periodic exponentially-decaying sinusoidal wave with irregular repetition
intervals and additive gauss random noise, X1(f): the envelope of the power spectrum of
the resonant vibration signal without irregularity in the repetition intervals and without

noise.
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added to the signal and there is some fluctuation in
the repetition interval. The signal in Fig. 4 (b-1) is
expressed as follows:

x(n) =x1(n)*xr(m)+n(n)

N

=xx(n)*kZ}Nt?(n—kT—Aan(n) , (5)
where r(n) is the impulse train and 4y represents the
lag for the k-th impulse from the expected time kT.
The repetition interval T+ Ax for the k-th impulse
is set so that the normal probability density function
p(dx; x)= N(m,o?;x) is the same as the measured one
in Fig. 3 concerning the mean m and the standard
deviation o.

Figures 4 (a-2) and 4 (a-3) are the power spectrum
and the cepstrum of the input signal shown in Fig. 4
(a-1), respectively. The peaks due to the repetition
interval are clearly observed at the expected position
in Fig. 4 (a-3). Figures 4 (b-2) and 4 (b-3) are the
power spectrum and the cepstrum of the input signal
shown in Fig. 4 (b-1), respectively. Xi(f) in Fig. 4
(b-2) is the envelope of the power spectrum of the
resonant vibration signal.

Next, the reason why clear peaks are not observed
in the power spectrum 4 (b-2) nor in the cepstrum
4 (b-3) will be explained theoretically. If a vibration

“has fluctuations in the periodical interval, the vibra-
tion signal is represented by Eq. (5). We assume
that the distribution {4z} is represented by the nor-
mal probability density function p(ds; x)=N(0, 0?;
x) as follows:

P(4x; x)=N(0, 0*; x)
1 x?
T 2not exp(— 20 > ’ (6)
where the mean value m is zero and the standard
deviation is 0. From other experiments we found

that the standard deviation o was sufficiently smal-

ler than the period T. Moreover, the length of the
response x;(n) due to flaws is less than the interval 7.
Therefore, the power spectrum |X(p)|? of the signal
x(n) is calculated from Eq. (5) by the following
equation, since there is no correlation between x(n)
and n(n):

|X(p)|*=|X1(p)I*+ |R(D)|*+IN(D)*, (7
where Xi(p), R(p) and N(p) are the spectrum of
x1(n), r(n) and n(n), respectively.

Here, the characteristic of |R(p)|® is examined as
follows: the auto-correlation function C(7) of the

impulse train r(n) is introduced as:

1 (To
C(r)= lim — S_T /2r(n)r(n+1)dn . (8)

T g0 [
Then, for the interval mT— T/2<n<mT+ T/2, m=0,
+1, +2, -+, the product r(n)r(n+7) is equal to 1 at
only one position, and the product is equal to zero
elsewhere. Thus, for the case —T/2<7<T/2, C(1)
is described using the delta function d(n) as follows:

C 1i 1 = M1 (mT+T/3 i
nN= ‘}_r.rolo T m=_M/ZSmr_T/2r(n)r(n+'r) n
=8(nIT, —T)2<7<T/2. (9)

Next, for the interval gT— T/2<7<LqT+ T/2,C(7)
is described using the probability density functions
p(drx; x) and p(dx,q;y) as follows:

+ o0

- co=|

* p(Ai; X)p(Arsra; y)dxdy , 10

where 7’=7—qT. By substituting p(dx; x) and
P(Ariq;y) defined in Eq. (6) into Eq. (10), the esti-
mate of C(7) is calculated as follows:

S_"a(m—um—r'»

-—00

+00

1 +eo , 1
C(n) =7S S-ma(x—(y_T ))‘EZT

x2

1 »e
<exp ( - —2—5_2—> ot exp < - —:—z?)dxdy

1 +o x?
=T 2not S_wexp(— 20")
"2
(x+7") )dx

-exp(-— 25

—_l_c_l—oex (— 7'2 )
- T 2mo? Pl ™20
+o0 !12)2
.S exp(_.z_(_iiz/z_))dx.

—e 20t

Let v=+/2(x+7’/2), C(1) is calculated using the
relation:

(1)

1 +o00 2
oo | oo( =5 =1,

as follows:
1 1 7'
=1 57575~ 1)
+o0 va d
. S_;:xp(— 75" ) (1]

2

1 1 T
=T V2 20y °"”(’ 2(</20)° ) - 12
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Since d(7) of Eq. (9) is zero except for the case 7=0,
and exp(—T77%/(2(~/2 o)) is sufficiently small in the
case that |7/|>T/2, the auto-correlation function
C(7) of the impulse train r(n) is approx1mately ex-
pressed as follows:

Lid 1

1
C@) =? . 8(1)+7 ; %z)v'___—JZ__ﬂ( 730)
q
<exp ( - 13)

(r—qT) )
2(/20) )’

C(7) is expressed as the sum of two components, one

of which is the periodic component [C(7)], and the

other of which is the nonperiodic components [C(7)],

as follows:

CO=ICEL+IC@L, 14)

where '
y 1 (r1—qT)
CORS q?:%v Wi T °"p(‘ 230y )
and
[CE = 8) = e
T T ;21r(~/20')2
12
‘°"p(“z<7W> ' U3

Based on the Wiener-Khintchine theorem, the
power spectrum |R(p)|* of the impulse train r(n) is
equal to the Fourier transform of auto-correlation
function C(7). Let [P(p)], and [P(p)]: be the Fourier
transforms of [C(7)], and [C(7)]., respectively. Since
[C(7)], is expressed as the sum of the normal prob-
ability density function p(dx;7—qT)=N(,0%;7—
qT), the g-th term of which is shifted by ¢T from the
lag origin 1'=0 [P(p)); is expressed as follows:

[P(p)], = (16)

norm(p) Z exp(—j2npqT),

g=-N

where F,o:n(p) is the Fourier transform of the normal
probability density function N(0, 20%; n) as follows:

Fooru(p)=F[N(0, 20%; n)]
=exp(—2(m+/2 op)?) . an

The second factor in Eq. (16) is expressed using
the formula for geometrical series as follows:

2 exp(—j2mpqT)

q=—N

2N+D), pT=0, £1, £2, .-
=1 sin{27(2N +1)pT[2} .
sin@7-pT/2) , Otherwise. (18)
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Since N is sufficiently large, we can assume that Eq.
(18) shows line peaks at pT=0, +£1, £2,-.-. 'On the
other hand, the power spectrum of the non-periodic
components is expressed as

1
U

where 1 is the Fourier transform of the delta function
0(n). From Eqgs. (18) and (19), |R(p)|? is expressed as

[P(p)]r= ""Fnorm(p)} ’ (19)

-IT{Fnorm(p)o(ZN-i-l)-l-I— norm(2)}
pT=0, :I:l, i‘.2,

1 sin{2m(2N +1)pT/2}
T {F vorm(P) —— G T 2)

~ Fura0)}

|R(P)}*= ¢

otherwise. (20)
Figure 5(b) shows the power spectrum directly
calculated by Eq. (20). Figure 5 (a) shows the power
spectrum of the computer-synthesized impulse train
r(n) with random intervals, which is defined in Eq.
(5) in the case in which the noise n(n)=0. The two
power spectra almost coincide with each other. The
first term of Eq. (20) shows line peaks clearly at the
frequencies f=n/T, n=1, 2, +--, mainly in the low
frequency range. Since the peakes are observed
clearly in the case that [P(p)), >[P(p)):, the upper
limit frequency f;, up to which we can observe the
peaks, is expressed as:

(2N+ 1) 'Fnorm(f;)= 1 _Ezorm(f;) . (21)
From Eq. (21), f;/f. is expressed as follows:
flfi= ~/l N;- . (22)

o/T,”’
where N, = (2N +2), and f,=1/T, denotes the sampl-
ing frequency (=33 kHz, see Fig. 1). Figure 5 (c)
shows the relation between the standard deviation of
the lag {4} and the upper limit frequency f..

The power spectrum |X(p)|? of x(n) is the product
of |R(p)|* and the power spectrum |Xi(p)|® of the
vibration xi(n) due to flaws superimposed by noise
power spectrum |[N(p)|?, as shown in Eq. (7). There-
fore, it is hard to detect the line spectra in the power
spectrum |X(p)|? in the case in which vibrations due
to flaws have fluctuations in the periodical interval
and the power of the vibration due to flaws is not
superior to that of the noise except for the limited
high frequency region. We cannot detect and clas-
sify flaws by these proposed automatic methods in
such cases.
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Fig. 5 The effect of the irregularity in the
repetition intervals of the periodic impulse
train on the power spectrum. (a): the
power spectrum of the computer-synthe-
sized impulse train with random intervals,
(b): the power spectrum directly calculated
by Eq. (20), (c): relation between the
standard deviation o and the normalized
upper limit frequency f./f, to detect the
line peaks. f;=1/T,: the sampling fre-
quency, N,=(2N-2), N: number of inter-
vals.

4. FLAW DETECTION BASED ON
THE ENVELOPE SIGNAL OF
THE SQUARED MAGNITUDE OF
THE NARROW BAND SIGNAL

We propose a new, reliable method of detecting
vibration due to flaws. The input vibrational signal
is band-limited, using a short-time (16 point) Fourier
transform, and 8 narrow band-passed signals are
obtained. Then, the significant frequency band, by
which the best detection of flaws is achieved, is
selected from the 8 narrow bands. The envelope

signal is obtained by squaring the narrow band-
passed signal and passing it though a low-pass filter.
The periodicity is detected from the envelope signal.
The details of this processing are explained here-
after.

First, a band-limited signal y(n), n=[— N, N—1] is
made from the 2N point input data sequence x(n),
n=[— N, N—1], where the duration 2N is sufficiently
shorter than the period of the rotation of the inner
ring. In our experiments the duration 2N is set at
16. Then, at most only one pulse is observed in the
duration. The spectrum Y(p) of the band-limited
signal y(n) is represented using Fourier transform
X (p) of x(n) and the transfer function W(p) of a nar-
row band-pass filter as follows:

Y(p)=W(p)-X(p). (23)

Second, the squared signal z(n) of the band-
passed signal y(n) is calculated. Using the relation
Fly*(m]l=Y*(—p),»” where F[ ]denotes the Fourier
transform and y*(n) and Y*(—p) denote the complex
conjugates of y(n) and Y(—p), respectively, the
spectrum Z(p) of the squared band-passed signal
z(n)=|y(n)|® is represented as follows:

Z(p)=F[y(n): y*(n)]
=F[y(m)]+F[y*(n)]
=Y(p)*Y*(—p)
= S vwr*e—p

k=—~N

= le Wk)X (kYW *(k—p)X*(k—Dp).

k=-N

D)

Since z(n) is the squared signal, the spectrum Z(p)
has low frequency components. From Eq. (2), the
spectrum X(p) is the sum of two components: the
resonant vibration S(p) and a random noise N(p), as
follows:

- X(p)=S(p)+N(p). (25)
Using Eqgs. (24) and (25), Z(p) is represented as

follows:
Z(p)= ,,NEN W (k)W (e — DY(S()S* (e — p)
+SON*(k— D)+ N()S*(k— p)
+NEN*K—D)} . 26)

In Eq. (26) the components due to the second term
S(k)N*(k—p) and the third term N(k)S*(k—p) take
small values since there is no correlation between
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S(k) and N(k). From other experiments, we found
the fact that the resonant signal s(») due to flaws has
a broad-phase characteristic in the frequency domain,
while the noise n(n) has a random-phase character-
istic. Therefore, the components due to the fourth
term N(k)N*(k—p) take a smaller value than that
due to the first term S(k)S*(k—p). That way, the
method of calculating the band-passed signal has
the advantage of emphasizing the resonant vibration
components buried in the random noise.

The reasoning can be explained by computer

simulation as follows: Figs. 6 (a-1) and 6 (a-2) show
the computer-synthesized signals for the resonant
vibration signal with a broad phase, as shown in
Fig. 6 (c-1), and for a noise with a random phase, as
shown in Fig. 6 (c-2), respectively. In these figures,
the total length of the data x(n) is 2,048 points and
the value of the damping factor «=1/10. This value
is almost the same as that of the resonant vibration
due to flaws. In Eq. (26), the component due to the
first term has a larger value than that due to the fourth
term, even if S(p) and N(p) have the same power
spectra as shown in Figs. 6 (b-1) and 6 (b-2). Figures
6 (d-1) and 6 (d-2) show the analyzed results of the
two signals shown in Figs. 6 (a-1) and 6 (a-2), using
our method. As shown in Figs. 6 (d-1) and 6 (d-2),
the power spectrum of the envelope of the narrow,
band-passed signal with a uniform phase is about
17 dB larger than that of the signal with a random
phase. In this figure the band-passed signal y(n) is
calculated using a 2N=16 points Fast Fourier
Transform (FFT). The amount of noise attenuation
is changed by the length 2N of the data in Eq. (26).
Figure 6 (e) shows the relation between the amount
of noise attenuation and the length of the data. The
amount of noise attenuation increases by decreasing
the length 2N of the data, or when the value of the
damping factor « is larger because of the following
two reasons: (1) the width of the main-lobe of the
narrow, band-pass filter increases by decreasing the
length 2N of the data, and (2) the phase characteristic
of x(n) is broader when o takes a larger value. How-
ever, when we increase the width of the main-lobe
too much, the power of the components other than
the resonant vibration increase, and the signal-to-
noise ratio decreases. Thus, we use a time window
with a length of 16 points.

The method of calculating the squared signal has
another advantage; it deletes the influence of fluctua-
tions of the period, as explained below: from other
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Fig. 6 Improvement of the signal to noise
ratio by the proposed method. (a-1):
computer-synthesized resonant vibration
signal with an almost constant phase,
(a-2): computer-synthesized noise with a
random phase, (b-1) and (c-1): the power
spectrum and the phase of the signal
shown in (a-1), (b-2) and (c-2): the power
spectrum and the phase of the signal
shown in (a-2), (d-1) and (d-2): the results
obtained by the proposed method from
the signals (a-1) and (a-2), respectively,
(e): relation between the amount of noise
attenuation and the length of the data. _

investigations, the response x:i(n) shown in Eq. (5)
to one flaw and the duration 2N of the time window
w(n) are sufficiently shorter than the period of the
repetition interval T of flaws, and there is. no cor-
relation between xi(n) and n(n). Therefore, the



H. KANAI et al.: DETECTION OF FLAWS IN BALL BEARINGS

squared signal z(n) is expressed as follows:
z(n)=|y(n)|?
N
=|xi(mwn)|** >3 S(n—kT—As)
k=-~N

+ |n(n)xw(n)|? . 27

Equation (27) is the same as Eq. (5) except for the
data window, that is, |xi(n)*w(n)|* and |n(n)*w(n)|?
are used instead of x.(n) and n(n), respectively.
Except for the D.C. components, there is no correla-
tion between |xi(n)*w(n)|? and |n(n)*w(n)|®. Because
of the above two reasons, the power spectrum |Z(p)|*
of the squared signal z(n) is expressed as follows:

1Z(p)*=|X+'(p)*- |R(P)|*+|N"(D)I*, (28)

where | X1’(p)|? is the power spectrum of |x:(n)*w(n)|?
and |N’(p)|® is that of the sequence |n(n)*w(n)|®. Even
if the original signal x:(n) does not contain low
frequency components, the low frequency com-
ponents of | X, (p)|® are large in magnitude. There-
fore, |Z(p)|* shows clear peaks in low frequencies in
spite of the effect of |R(p)|* shown in Eq. (20) and
Fig. 5 which represent the irregularity of the repeti-
tion intervals.

Figure 7 shows the result of the computer-syn-
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Fig. 7 The results obtained by the proposed
method from the computer-synthesized
signal shown in Fig. 4 (b-1).

thesized signal shown in Fig. 4 (b-1), which is the
repetitive exponentially-decaying sinusoidal signal
with additive gauss random noise. The period of
this wave cannot be detected by a conventional
period detection methods, such as the cepstrum
technique as shown in Fig. 4 (b-3). It is, however,
possible to detect its period by our method at 2 kHz,
4 kHz and 6 kHz, which are the frequency bands
near the resonant frequency, as shown in Fig. 7.
These results from computer simulations indicate
that this method is suitable as a diagnostic technique.

5. EXPERIMENTS AND THE RESULTS

The process of the flaw detection method proposed
here is explained at this time. At first, the vibration
signal is divided into many segments by multiplying
short time (16 point) Hanning windows. Adjacent
segments overlap each other by a half-length of the
segment. The vibration signal is band-limited by
calculating Fourier transforms for all the segments.
Each band-limited signal is squared and moving-
averaged using a 16 point Hanning window so that
only low frequency components due to flaws are
extracted. Then, a envelope signal is generated by
picking up one sample every third segment, and the
period of the flaws is estimated by the Fourier Trans-
form of the envelope signal (1,024 points, Hanning
window, averaged by summing up them 7 times).

The experimental results obtained by the proposed
method are shown in Fig. 8. Figures 8 (2) and 8 (3)
show the results for the bearings having flaws on the
inner ring. The vibration signals used here are the
same as those used to obtain Figs. 2 (2) and 2 (3).
Especially in the 4 kHz band, peaks appear clearly
at the frequencies: f; and 2f;, which just coincide
with the theoretical ones. On the other hand, these
peaks cannot be observed by other proposed auto-
matic methods as shown in Figs. 2 (2) and 2 (3).
Figure 8 (1) shows the results with a normal bearing.
Clear peaks cannot be observed in the 4 kHz band
and the higher frequency bands. Figures 8 (4) and
8 (5) show the results for bearings having flaws on
the outer ring and on the ball, respectively. In these
figures, peaks also appear clearly at the frequencies:
£, and f,, respectively (see also Table 1). Therefore,
the flaws can be detected and classified using the
4 kHz band signal by checking whether or not there
are peaks at the frequencies corresponding to the
theoretical ones.
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Fig. 8 The experimental results obtained by the proposed method. The vibration signals
used here are the same as those used in Fig. 2. The peaks at f}, f, and f;, correspond to

the frequencies in Table 1.

6. CLASSIFICATION OF FLAWS AND
ITS EXPERIMENTAL RESULTS

It is easily found whether a sample is normal or
has some flaws by classifying the feature vector intro-
duced next. The components of the feature vector
are the power of peaks appearing at the repetition
frequencies, which are calculated theoretically for the
three kinds of flaws. The kinds of flaws are also
discriminated by these repetition frequencies. We
used 241 samples for the classification experiments.
Figure 9 shows the classification results of these
samples by Bayes decision. In order to check which
band envelope is the best to detect and classify flaws,
feature vectors are calculated for 8 bands and the
accuracy rates are computed. The components of
the feature vector used in the experiments are the
values of peaks appearing at the three repetition
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frequencies. The flaws were classified using the 4
kHz band with an accuracy rate of about 97.9%; into
four categories: normal, flaws on the inner ring,
flaws on the outer ring and flaws on the balls., By
using this feature vector, the detection and classifi-
cation do not depend on the total power of the input
signal.

7. CONCLUSIONS

A new method is proposed for the automatic
detection and classification of slight flaws in ball
bearings using vibrational signals. Slight flaws, which
are not detected by other proposed automatic meth-
ods such as the cepstrum technique, are easily de-
tected and classified by our new method with an

accuracy rate of 97.9%; into four categories; normal,
flaw on the inner ring, flaw on the outer ring and
flaw on the balls.
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