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This paper describes a new automatic method for detecting defects in ball bearings. The
detection of defects is currently carried out by inspectors who listen to vibration signals
obtained by a vibration pick-up in the Anderon meter. The pick-up is attached to the
outer ring of a ball bearing while the inner ring rotates at a uniform speed. Several
methods have been proposed so far for the automatic detection of flaws. These methods
are based on the periodicity of vibration pulses excited by flaws. However, the perio-
dicity of vibrations is not always guaranteed when (a) there are slight flaws on the surface
of the race, (b) there are flaws on the surface of balls, and (c) there is dust in the grease. -
However, we have developed a new method, by which the non-periodic resonant vibra-
tions due to both slight flaws and dust are detected. We have applied this new method
to the detection of these defects in small-sized ball bearings; the defects were detected

with an 98 %; accuracy rate.
PACS number: 43. 85. Ta, 43. 60. Gk

1. INTRODUCTION

When ball bearings which have flaws on the sur-
face of the ball or races or dust in the grease are used
to support the spindle of the head or the capstan in
a video tape recorder, such defects debase the quality
of the played-back picture. Therefore, currently at
the final step in the manufacturing process, inspectors
check the bearings, one by one, by listening with
headphones to the vibration signa] which is the out-
put of a pick-up attached to the Anderon meter.?
This method, however, has its drawbacks; it requires
a great deal of time to train a person to be a good
inspector. In addition, an inspector in poor health,
physical or otherwise, may make mistakes in the
detection of defects.

Accordingly, because of these limitations, several
methods have been proposed for the automatic detec-
tion and classification of the defects in ball bear-

ings.!"® The defects in bearings are detected by these
present methods when the flaws generate periodical
vibration signals, since the period is calculated from
the shape of a bearing. However, the periodicity of
the vibration is not always guaranteed when (2) there
are slight flaws on the surface of the race, and (b)
when flaws are on the surface of the balls. When
there are slight flaws on the surface of the race, the
ball does not always come into contact with the flaws
since the pathway on which the balls have contact
with the race changes every moment. In the case of
flaws on the surface of balls, the race does not always
contact with the flaw on the ball since the balls do not
always roll regularly. Another problem arises if dust
is mixed in the grease: the periodicity of the resonant
vibration driven by the dust is not also guaranteed.
Therefore, we have developed a new diagnostic
method for the automatic detection of the resonant
vibration due to flaws on the surface or dust in the
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grease. This method is based on the assumption that
the signal to be analyzed is a non-periodic one.

In this paper, we first discuss the problems in-
herent in the conventional methods which are applied
to the detection of the resonant vibrations due to
defects. Next, we propose a new method, by which
the driving pulse sequence x(n) due to the defects is
estimated, and it is found that the amplitude of the
estimated impulse sequence x(n) is in proportion to
the 6/5-th power of the mechanical size of surface
defects. Finally, it is proved by our experiments that
the defects can be detected with the accuracy rate of

98%.

2. APPARATUS FOR
THE EXPERIMENTS

Figure 1 shows a block diagram of the experiment-
al system in which the vibration signal is picked up
and recorded into a digital audio tape to carry back
to the laboratory. The inner ring rotates at a con-
stant speed of 1,800 rpm, and the outer one is fixed
by imposing an axial pressure, where the rotation
speed and the amount of pressure are the same as
those actually used in a video tape recorder. Under
such the conditions, a flaw causes a radial movement
of the outer ring and the signal resulting from the
movement is picked up by a vibration pick-up at-
tached to the outer ring. The signal is amplified and
filtered through a high-pass filter to eliminate the
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Fig. 1 A block diagram of the procedure
for measuring the vibration signal of a ball

bearing.
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primary frequency component (= 30 Hz) correspond-
ing to the rotation of the inner ring. The filtered
signal is stored in a high-fidelity digital audio tape.
In the laboratory, the signal is played back and is
A/D converted with a 12 bits A/D converter at a
sampling period of 15 us or 30 us.

3. DIFFICULTIES IN THE
CONVENTIONAL METHODS

3.1 Application of the Linear Predictive Analysis

The linear predictive analysis has been applied to
the analysis of an exponentially decaying sinusoidal
signal.¥ To detect the resonant vibrations due to
defects by this method, the following three assump-
tions must be satisfied:

(a) The mechanical excitation caused by a defect
is expressed by a unit impulse, where

1 (n=0)
0 (n+0).

(b) The repetition interval of a pulse sequence
x(n) of mechanical excitations is so long that the re-
sponse to the. previous excitation impulse sufficient-
ly decreases before the next excitation.

(c) The transfer function from the mechanical
excitation to the resonant vibration, which is
detected by the pick-up on the outer ring, is repre-
sented by an all pole model 1/A4(z).

If the above three assumptions are satisfied, all
pole model 1/A4(z) can be identified by using the linear
predictive analysis. In addition, the pulse sequence
x(n) of mechanical excitations can be obtained by
using the inverse filter 4(z).

However, when the configuration of flaws on the
surface of the race is complicated, the mechanical
excitation is expressed by multi-pulses and the second
assumption is not satisfied. Thus, the linear predic-
tive analysis cannot be applied to the vibration anal-
ysis in such a case.

o(n) =

3.2 Use of a Band-Pass Filter

The signal-to-noise ratio can be improved by
extracting only the frequency components around
the central frequency of the resonant vibration using
a band-pass filter. However, the use of a band-pass
filter involves the following two problems:

(@) The amplitude of a band-passed signal does
not correspond to the mechanical size of defects as
described later in Chapter 5.

(b) It is difficult to select a single narrow-fre-
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quency-band with which the defects are successfully
detected. The reason is described in detail here. The
vibration signal y(¢) obtained by the pick-up is ex-
pressed by the convolution between the resonant
vibration A(¢) and the pulse sequence x(¢) of mechani-
cal excitations as follows:

y(@)=h()xx(0), (1)

where * denotes the convolution. ' This relation can
be expressed in the frequency domain as follows:

Y(w)=H(0) X (w), (19

where the Y (w), H(w) and X(w) are the Fourier trans-
form of y(¢), k() and x(¢), respectively. Since the
characteristics of A(¢) and H(w) are determined both
by the size and by the material of the outer ring, the
bearings with the same size and the same material
show the same resonant characteristics. On the other
hand, the spectrum X(w) of the exciting signal x(z)
is determined by the configuration of each defect.
A broad frequency band is necessary to detect the
exciting signal because the exciting signal is com-
posed of pulses of very short duration.

Figure 2 shows the characteristics of a bearing
having two kinds of defects. Figures 2 (a-1) and
2 (b-1) show the vibration signals yi(n) and y:(n) due
to the defects whose surface cross-sectional views are
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Fig. 2 Two vibration signals due to two flaws
on the inner ring of the same sample. (1)
vibration wave yi(n), i=1,2, (2) power
spectrum, (3) profile of the surface mea-
surement (cross-sectional view).

shown in Figs. 2 (a-3) and 2 (b-3), respectively. The
power spectra of the vibration signals yi(n) and
y:(n) are shown in Figs. 2 (a-2) and 2 (b-2), respec-
tievly. Since the characteristics of the resonant vi-
bration h(r) is the same for both yi(n) and y:(n), the
difference between y:(n) and y:(n) depends on the
configuration of the flaws. It is difficult to select a
single narrow-frequency-band with which a high
signal-to-noise ratio is obtained because the fre-
quency spectrum spread onto a broad frequency band
as shown in Figs. 2 (a-2) and 2 (b-2). The difference
between these frequency spectra is caused by the
difference between the excitation pulse train gener-
ated by the flaws on the surface shown in Fig. 2
(a-3) and 2 (b-3). Therefore, an improvement in the
detection of defects by an improvement in signal-to-
noise ratio cannot always be expected by simply
passing the signal through a band-pass filter.

4. ESTIMATION OF POLES BY
USING TWO-PULSE MODEL

We propose a new method of estimating the pulse
sequence x(n) excited by the surface defects using the
vibration signal y(n). If the resonant vibration h(n)
has been already estimated, the sequence x(n) can
be calculated from the vibration signal y(n) since
y(n) is expressed by the convolution of the sequence
x(n) and the resonant vibration ().

Therefore, h(n) should be estimated first. This
chapter describes the method of identifying the reso-
nant vibration A(n). By this method, h(n) is estimated
from the vibration signal y(n) excited by the flaw
with a simple configuration as shown in Fig. 2 (a-3).

Using h(n) thus obtained, the pulse sequence x(r)
is estimated by inverse-filtering the vibration signal
y(n) using h(n)~*, where

h(n)y~*xh(n)=20(n). (2)

The estimated sequence x(n) is found to correspond
to the mechanical size of surface defects as described
later in Chapter 5.

The surface defects of the ball bearing are diag-
nosed using the amplitude of the sequence x(n).

4.1 Estimation of the Resonant Vibration #(n) Using
the Two-Pulse Model
Figure 2 (a-1) shows a part of the vibration signal
y(n) caused by a flaw with a simple configuration on
the inner ring. The cross-sectional view of the flaw
is shown in Fig. 2 (a-3). This part of the vibra-
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tion y(n) is represented by the sum of two resonant
vibrations driven by two impulses d(z—7:) and
d(n—7s). The two impulses are excited when a ball
comes into contact with the flaw on the inner ring
and hits the inner ring and the outer ring, respective-
ly. As reported in a previous investigation,® the
resonant vibration A(n) is expressed by an all pole
model. Therefore, the modeled vibration signal $(n)
driven by the two pulses is expressed as a linear com-
bination of M complex exponentials as follows:

M
Ym)= 33 (um1+zm"0
m=1
+ i * e z* =) U(n—14)

M
+- 2 (uma+ Zp T

m=1

+ Uma* < Zp**—*2) . U(n—7s)+ b, (3)

where umi and ume are complex coefficients, ums* the
complex conjugate of umx, U(n) a unit step function,
‘b’ a real constant (representing the bias term), and
zm (m=1,2,..., M) the roots of the polynomial in
the denominator of the all pole model as follows:

A(zm)=0, (4)

where 1/A(z) is the z-transform of the resonant vi-
bration #(n). From Eq. (3), the ideal response y(n)=
P(n)—b is expressed as follows:

for m=1,2,..., M,

M
{"ml.' « ZnT - gy ¥ -Zm*(”""l)},
m=1
5 (for 1:<n<1y)
Y=
D {ume” + zm P + Uma"* e zn* 73} ()
m=1
(for 1:<n)
where umi’=um1 and Ums’ = tm1°Zm 2"V + U,  The

unknown parameters ume(m=1,2,...,M; k=1,2), b,
and zm (m=1,2,..., M) are to be determined, and the
difficulty lies in the fact that the equations are non-
linear because of the z’s. This difficulty can be mini-
mized by Prony’s method,**> and these unknown
parameters can be obtained by solving a set of simul-
taneous equations as described below. Since the
period of the transient time of the vibration excited
by a single pulse is sufficiently short, the optimum
value of b is also identified by solving the same
simultaneous equations.

Since zm (m=1,2,...,M) are the roots of the equa-
tion A(z)=0 in Eq. (4), A(2) is expressed as follows:
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A(Z): ﬁ (l—z’nz_l)(l -—zm*rl)
m=1
M
=21 a5z
J=0

=0,

(ao=1)

(6)

In order to determine the coefficients a5 (j=1,2, ...,
2M), by multiplying #(7x+2M) in Eq. (5) by ao,
J(Te+2M—-1)by as, y(1e+2M—2) by as, ..., J(1e+ 1)
by d:x-1, and y(7x) by a:x, and by adding the results,
the following equation is obtained:

(for z=2m, zw*; m=1,2,...,M)

M
gar}"'('rﬁZM—-i)
M M
=3 a5 33 (- 24P
J=0 m=1

+umkl* .zm*(zu—.h}

= ﬁ‘, {um’< % a;-z,r-’) Zn¥

m=1 Jj=0
M

+ o’ * (E aj'zm*_j)zm*w} .
=0

(for k=1,2) (7)

Since zm (m=1,2,...,2M) satisfy Eq. (6), the right
hand side of Eq. (7) is equal to zero and then for the
period n>7.+2M, (k=1,2), 3(n) and p(n)=y(n)+b
are represented as follows:

Po)=—3a 51,
and
$()—b=— 3 a-{(n=1)=b).
(for n>7x+2M; k=1,2) (8)

In a practical case, the observed signal y(n) must be
used instead of (n) in Eq. (8). Then, y(n) is repre-
sented as follows:

oM
y(n)—b=— Eaj-{y(n—i)—b}+e(n),
(for n>7x+2M; k=1,2) (9)

where e(n) is the residual error. If the above model
shown in Eq. (3) just represents the vibration signal
¥(n), the error e(n) are equal to zero for the periods
T1+2M<n<T7: and 7:+2M<n. Therefore, the co-
efficients {a;}, (j=1,2,...,M) are obtained by solving
Eq. (9) so that the following squared error (71, 7z)
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Fig. 3 Illustration showing samples used
in the squared error for various lags 7
and 7: in Eqs. (10) and (17).

takes the minimum value (See Fig. 3).

a(r, )= 2> e(n)

ne P(fl,fz)

= 2] [gl a:-{y(n--i)—-b}]2

ne P('l"ﬂ) J=0
M M

> Dasar y(n—j)y(n—k)

neP(rl,rz)[j=o k=0
M M

—2:b-3) Dasae-y(n—j)

J=0 k=0

w2
+b% ) Eajdk.:l,

J=0 k=0

(10

where

P11, 12)={n| (1+2M)<n<min(re, 7:+N)
and (1:+2M)<n<(1:+N)},

N is the length of the time window in which the
squared error is calculated, and min(p, ¢) represents
the minimum value, p or q. N is set so that the fol-
lowing conditions are satisfied: N>2M and-N<L,
where L is the interval from one.mechanical excita-
tion to the next one. Here, the following three func-
tions are introduced:

Cu(T,T2)= > y(m—j) y(n—k),

nEP(rI,rz) .
(fo: i=0,1,...,2M; k=0,1,...,2M)
Dy(1, T3)= 2 y(n—j)s

ne P(fl,fz)

(for j=0,1,...,2M)

and

Eo(Tl,Tz)= 2 1.

neP(ry,rg)

(1n

Using these functions, Eq. (10) is expressed as fol-
lows:
2M M

(71, Te)= Eo k}]a; i+ Cy(T1, T2)
2M a2M
—2:b- 3>} Dlajax-Dy(11,72)
7=0 k=0
M 2M
+b% 3] kz‘})a;an Eo(11,73). (12)
_O =

Then, minimization of a(7,, 72) is obtained by setting
the partial derivatives of a(71,7:) to zero* with re-

spect to both {a;} (j=1,2,...,2M) and b as follows:
M =0  (for j=1,2,...,2M)
aj
7. S
=2-?_,‘ ars Cax(T1,T2)
=0
M
—2-b <E ax> °.D_1(1'1, Tz)
k=0
°2M :
+2'b2' (;‘5_} az) 'Eo(Tl, Ta). (13)
=0
Ba('r;, Ta) _
—a 0

= <§ cm) . {—2-:2:am-Dm(Tn72)

k=0

+2.b- szoam) «E, (1'1,12)} . (14

Here, since bias is very small in real applications, b?
can be negligible in Eq. (13). Let the variable d:

d=—b-<§ am>,

m=0

15

and since av=1, the set of 2M+1) linear simul-
taneous equations are obtained as:

M
D ax Cx(T1, T2)+d - Dy (71, T2)
k=1

=—C(11,12), (for j=1,2,...,2M)

and

M
:‘T‘_' am* D (71, T2)+d » Eo (71, T2)

m=1

= —Do(‘f:, 7'2). '

(16)

The unknown prediction coefficients {a;} and d (or
b) are obtained by solving this set of simultaneous
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equations. When the vibration over the period 0<
n<L is approximated by the modeled vibration
signal driven by the two pulses at n=7, and n=7;s in
Eq. (3), the following total squared error a.(71,7s) is
calculated for various lags of 7: and 7: within the
period (0<n< L), where there is a resonant vibration
due to the presence of a flaw:

(T, T)=a(r, 12)4+ > y(n), an

nEPn(rl, fz)
where
Pu(11,15)={n| 0<n<7, and (Tz-FN)SnSL},

(See Fig. 3). If N is so large that the modeled vi-
bration y(n) sufficiently decrease at n=7:+N, the
second term of the right hand side of Eq. (17) denotes
the power of the background noise over the periods
Niand N: in Fig. 3. In an ideal case, this term is also
equal to zero. Optimum lags of 7; ;. and 7, ., are
those which are obtained when the squared error
0T min, T min) takes the minimum value.

By using the predictive coefficients {@; i}, Which
are calculated by Eq. (16) in the case where the lags
(11,72) is equal tO (71 min, Tamin), the following poly-
nomial A(z) is defined:

(18)

The poles {zm, zu*}, (m=1,2,..., M) of the all pole
model are obtained by solving the polynomial 4(z).
By using {zu}, b, 71 min and 73 o1, the vibration signal
y(n) actually observed is described as follows:

°M .
A(z)=.’2_oajmln'z_j- (a0m1n=l)

' M
y(n)= 3] (tm1+ 201 min?
m=1

A U ® o Zpp ¥ mln)) U(n—Timin)

M
+ E (Umz* 22 min)
m=] '

+ Umz™ 21»"‘(”_'.2 mln)) . U(n —T3 mln)
+b+n(m), (for m<n<r:+N) (19)

where 9(n), (1:<n<T7:+ N) represents the residual
term. Since {zm}, b, Timi and Ty, have already
been obtained by Eq. (16), the modeled vibration
signal $(n) can be obtained from Eq. (3). Here, the
error function:

A= IR [O)

ne€P'(r1miniT3min)

= 2 {y(m—ym}, (20)

nEP (1 minsTamin)

where
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P'(14,72)={n| 1:<n<min(rs, 7.+N)
and 7:<n<(7:+N)},

is introduced. The estimation of the complex coeffi-
cients {um1, Ume}, (m=1,2,..., M) are those which
are obtained when the error function g8 takes the
minimum value.*%

4.2 Results Obtained by Using the Two-Pulse
Model "

Figure 4 (b-1) shows the wave form of the modeled
vibration signal $(r), which is obtained by expressing
the original vibration signal y(n) shown in Fig. 4 (a)
by the two-pulse model where the number 2M of
poles is set to 2. Figures 4 (b-2) and 4 (b-3) show the
positions of the identified poles: zo, and zo* in the z-
plane and the complex coefficients: (ui, us), respec-
tively. Figure 4 (c) shows the modeled vibration

signal $'(n) obtained by expressing the original
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Fig. 4 Experimental results using the two-
pulse model. (a) the vibration signal y(n)
due to a flaw (see also Fig. 2(a-1)), (b-1)
predicted vibration signal $(n) by the two-
pulse model, (b-2) poles zo and zo* in the
z-plane, (b-3) initial phase coefficients
and u; in the z-plane, (¢) predicted vibra-
tion signal $’(n) by the one-pulse model.
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vibration signal y(n) by a one-pulse model:

J,;' (n) — (u . zO(n—ro)

+u* - ze* =) . U(n—T1o)+ b, @1

where u is the complex coefficient, and 7, the time
when the vibration is excited. It is found from these
experimental results that the original vibration signal
y(n) is well matched with the modeled signal $(n)
expressed by the two-pulse model. The position of
the two complex coefficients #: and u. are different
by about 7 radian in phase. That is, the directions
of the driving pulsive forces are opposite each other.
We consider that the first pulsive force is excited
when a ball collides into the inner ring after the ball
rotates over the crack on the inner race, and the sec-
ond force is excited when the ball collides into the
outer ring (See Fig. 9 in Chap. 5). That is, the first
pulse is positive and the second pulse is negative in
this case.

Twenty-seven vibration signals y(n) (n=0, 1, ...,
63) are obtained from a bearing sample so that
every vibration signal y(x) involves a response to
a pulse excitation due to a flaw. Figures 5 (a) and
5 (b) show the distribution of the position of the
estimated poles and the complex coefficients obtain-
ed from these 27 vibration signals. Since the posi-
tion of these poles are almost the same as shown in
Fig. 5 (a), it is clear that the parameters are con-
sistently obtained accurately by using the two-pulse
model. Figure 6 shows the position of the average
pole %, and the prediction coefficients {a;} calcu-
lated from the average pole Z,, where each vibra-
tion signal is A/D converted at a sampling period
of 15 us.

4.3 Residual Power of the Two-Pulse Model

The residual error 5(n) defined in Eq. (19) is ex-
pressed by the sum of two uncorrelated components:
the noise n(n) and the error ¢(n; 2M) which occurs by
using the 2M-order two-pulse model as follows:

n(n)=e(n; 2M)+n(n).

Figure 7 (a) shows the power distribution of the same
27 vibration signals y(n) used in Fig. 5. Figure 7 (b)
shows the power distribution of the residual errors
7(n) obtained from the same vibration signals y(n)
used in Fig. 7 (a). Other 27 vibration signals are
obtained from the same bearing sample used in Fig.
5 so that these signals do not involve any responses
to pulse excitations due to a flaw. Figure 7 (c) shows

(22)

(a) (b

Yo:l x: 2
[T

Fig. 5 Experimental results obtained by
the two-pulse model using 27 vibration
signals y(n) obtained from a bearing sam-
ple. (a) the distribution of the estimated
poles zo and zo*, (b) the distribution of the
initial phase coefficients u; and wus.

Img
+i
gj
- 1
Zo
Re 1
-1 0 +1 0 2 3 3
70 1

T e

Fig. 6 The average pole Z, and its predic-
tive coefficients (aj}.

the power distribution of these 27 signals, which
shows almost the same distribution as that of the
residual errors 7(n) shown in Fig. 7 (b). This means
that the original vibration signals are well matched
by the two-pulse model (order: 2M=2).

4.4 Inverse Filtering

Since the z-transform of the resonant vibration
h(n) is expressed by an all pole model, z-transform
of the ideal response J(n)=$(n)—b is expressed as
follows:

Y(2)=X(2)]A(2), (23)

where Y~(z), X(z) and 1/A(z) represent the z-transform
of #(n), x(n) and h(n), respectively. By multiplying
both sides of Eq. (23) by A(z), the following equation

is obtained:
X@)=Y(2)A(2). 24

In the time domain, Eq. (24) can be equivalently
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a flaw.

written as follows:
oM
x(n)=§)aj-f(n—j)

2M
=§oar(ﬁ(n—j)—b)-

Using the predictive coefficients {a;} calculated by
the average poles Zo as shown in Fig. 6, an inverse
filter A(n)~* is obtained by letting A(/)~* be equal to
aj. By convoluting A(n)~* with the vibration signal
y(n), the driving pulse sequence x(n) is estimated.
Since the resonant vibration is determined only by
the size and the material of the bearing parts, the
inverse filter A(u)~' obtained above is the same as
those of the other bearings with the same sizes and
the same materials.

Figure 8 shows an estimated driving pulse sequence
x(n) obtained by the convolution between the inverse-
filter A(n)~* and the vibration signal y(n) shown in
Fig. 4 (a). Two main impulses of opposite signs are
observed in this figure.

(25)
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Fig. 8 Estimated driving pulse sequence
x(n) obtained by inverse-filtering. The
amplitude of x(#) is normalized by the
maximum value.
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Fig. 9 The collision model of a ball with a
flaw on the inner race.

5. ESTIMATION OF
THE FLAW SIZE

In this chapter, we describe the relation between
the size of a flaw and the estimated impulse sequence
x(n). The collision of a ball with the flaws on the
race is described by the model® shown in Fig. 9.
When a revolving ball arrives at the edge A of the
flaw, the ball rotates around the fulcrum A, and the
ball hits the other edge B of the flaw. The velocity
V, of the collision at the edge B is represented as
follows®:

Vo=w- W cos 0, (26)

where @ denotes the angular velocity of the ball
rotation around the fulcrum A, W the width of the
flaw and @ the angle between the lines OM and OB.
Since the width W of the flaw is usually much smaller
than the diameter D, of the ball, cos @ is approxi-
mated to be 1, and the velocity V, is expressed as
follows:

Ve~wW. 27

Since the inner ring rotates at a constant speed, the
angular velocity o is constant.®> Therefore, the ve-
locity V, of the collision at the edge B is in proportion
to the width 1 of the flaw. It is known that the excit-
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ing force F at the collision is in proportion to the
6/5-th power of the velocity ¥} %™ as follows:

Foc V22, (28)

The amplitude of the accelerating vibration A, driven
by the exciting force F is in proportion to the 6/5-th
power of the velocity V;.%

Since the vibration signal y(7) used in this paper is
picked-up by a velocity-type sensor, the following
equation is obtained:

Y= Sth oc WA, 29)
Thus, the amplitude of the estimated impulse se-
quence x(n) is in proportion to the 6/5-th power of
the width W of the flaw as well as the vibration signal
y(n). Therefore, the size of a flaw can be evaluated
by the amplitude of the vibration x(n). Hence, the
ball bearing is sorted by the width of a flaw.

6. SORTING OF A BALL BEARING

There are the following two problems in sorting
a bearing by our proposed method: (a) Since the
inverse filtering makes the power spectrum of the
estimated impulse sequence x(n) flat, the signal to the
noise ratio decreases when all of the frequency com-
ponents of the vibration signal y(n) is used to estimate
the impulse sequence x(n); (b) There are some fluctu-
ations in the gain of the amplifier.

To solve the above two problems, the following
processes are carried out in the following sequence:

(1) The impulse sequence x(n) is estimated by
the proposed method described previously in Chap-
ter 4.

(2) By using Nj filters, Ny narrow-band signals
are calculated from the impulse sequence x(n),
where N3 is the number of band pass filters. The
Nz filters are realized in our experiment by 2Ny
(=16) point fast Fourier transform. The band
widths of all filters are 4 kHz. By calculating the
squared values of the narrow band signals, Nj
power sequences z(n;i), (i=1, 2, ..., Ng) are ob-
tained.®

(3) The average powers ri, (I=1,2,...,Ng) of the
narrow band signals z(n;i) are calculated, and
the normalized narrow band power signals z’(n; )
=z(n;i)/r: are calculated.

(4) Normalized signals z’(n; i) are compared with
thresholds {73}, (i=1, 2, ..., Ng) to sort the ball
bearing.

(dB)
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+6r M

+ljf~

THRESHOLD LEVELS

+2

0

D.IC. 2'k ‘:k le 8Ik lfl)k lIZKll:KHZ
CENTRAL FREQUENCY OF EACH
NARROW BAND

Fig. 10 Thresholds {7y} for detecting the
flaws or dust.

The thresholds {7:} are determined as follows:
343 bearings were sorted aurally by a highly qualified
inspector into 6 categories shown in Table 1: normal,
flaw on the inner ring, flaw on the outer ring, flaw on
the ball, dust, and borderline cases where he could
not determine if there was a defect. The vibration
signal was A/D converted at the sampling period of
30 us, and the data length used for the sorting was
0.98s. Thresholds {T:}, (i=1,2,..., Ng) were experi-
mentally set to be the maximum values of the narrow
band powers z'(n;i) of 84 normal ball bearings.
Figure 10 shows the threshold level {T:} for various
frequency bands.

Table 1 shows the results of the sorting, where the
samples on the border are not counted when ob-
taining the recognition rate. The number of correctly
sorted samples and that of incorrectly sorted samples
are 314 and S, respectively. The ball bearings are
sorted at the correct rate of 98.4%,. Two of the
incorrectly sorted samples had dust, and their vibra-
tion signals used for the analysis did not involve the
responses to the defects. The other three incorrectly
sorted samples had many flaws on the outer race.
Since the vibrations were driven almost always by the
flaws on the rough race, the average powers {r:}
were large, and the resonant vibration could not be
detected by the procedure described above. These
samples can be, however, classified by using our
previously proposed method.®

Figure 11 shows the rate of detecting each kind of
inferior samples by the eight narrow bands. Almost
all flaws could be detected by using any frequency
band from D.C. to 6 kHz, and the dust could be
detected by using slightly higher frequency bands
from D.C. to 8 kHz.
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Table 1 Recognition results of ball bearings.

Out
In The number of samples The number of samples Total
recognized to be normal recognized to be inferior
Normal o 84 0 84
Samples on the border 8 16 24
Dust 2 36 38
Flaw on the inner ring 0 126 126
Flaw on the outer ring 3 38 41
Flaw on the ball 0 30 30

Total number of used samples: 343, recognition rate: 98.4%.
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Fig. 11 The rate of detecting the following
kinds of inferior samples for the narrow
bands. (a) dust, (b) samples on the board-
er, (c) flaw on the ball, (d) flaw on the
inner ring, (e) flaw on the outer ring.

7. CONCLUSIONS

A new method is proposed for the automatic
detection of slight flaws or dust in" ball bearings
using vibration signals. These defects, which are not
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detected by periodic analysis or by ordinary signal
processing techniques, can be easily detected by using
our new method with a 98.4 9 accuracy rate.
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