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In most current methods of evaluating the cardiac function based on echocardiography, the heart wall in an ultrasonic image is currently identified
manually by an operator. However, this task is very time-consuming and leads to inter- and intraobserver variability. To facilitate the analysis and
eliminate operator dependence, automated identification of heart wall regions is essential. We previously proposed a method of automatic
identification of heart wall regions using multiple features based on information of the amplitude and phase of the ultrasonic RF echo signal by
pattern recognition. In the present study, we investigate a new method of segmenting an ultrasonic image into the heart wall, lumen, and external
tissues (includes pericardium) by two-step pattern recognition. Also, parameters in the proposed classification method were examined for
application to different cross sections, i.e., long-axis and short-axis views, by considering differences in the motion and echogenicity of the heart
walls. Furthermore, moving target indicator (MTI) filtering to suppress echoes from clutters was improved to enhance the separability in the short-
axis view. © 2014 The Japan Society of Applied Physics

1. Introduction

Echocardiography is an indispensable modality for the
diagnosis of cardiac diseases because it is noninvasive, cost
effective, and easy to use. Also, the echocardiographic
methods for the early detection of cardiac diseases (e.g.,
myocardial ischemia), have been developed.1) In conven-
tional echocardiography, the structural change and macro-
scopic motion of the heart are diagnosed by measuring cross-
sectional images, and, owing to the high temporal resolution,
quantitative evaluation of intracardiac blood flow and cardiac
wall motion can also be done by ultrasound Doppler
measurements.1,2) Furthermore, various valuable methods
for evaluating the cardiac function on the basis of
echocardiography have been developed, such as the evalua-
tion of two-dimensional (2D) cardiac wall motion and strain
rate by the speckle tracking method,3–7) measurement of the
propagation of vibration caused by the closure of heart
valves,8) and strain rate imaging at high spatial and high
temporal resolution, which measures the transient of
myocardial contraction and relaxation for about 10ms.9,10)

In addition, it was reported that the myocardial strain rate,
estimated from the temporal change of the integrated
backscatter signal, which is obtained by averaging the
ultrasonic scattering power from a region of interest in
myocardial tissue, reflects the contractile and relaxant
characteristics fairly well.11)

In most of the above-mentioned methods, the heart wall
(myocardium), which is the object to be analyzed, is currently
identified manually by an operator on a cross-sectional
image of the heart. However, this task is very tedious and
time-consuming, and it causes inter- and intraobserver
variability.12–14) To eliminate operator dependence and
facilitate analysis, automated identification of the heart wall
is demanded.

Various studies on segmenting regions in ultrasonic images
have been conducted. Ibrahim et al. proposed techniques
for the detection of arterial wall boundaries for assessing
the intima-media thickness of the carotid arterial wall.15,16)

Chang et al. classified the thyroid gland and directly
estimated its volume in ultrasonic images.17) In the cited

studies, objects in an ultrasonic image are segmented using
features extracted from the magnitude of the received ultra-
sonic signal. Furthermore, Torp et al. proposed a method for
automatic detection of several candidate points in the apical
view of the left ventricle.18) This method also yields features
from the gray-scale value (intensity of an ultrasound image),
the velocity, and the depth of each image point to detect the
candidate points.

On the other hand, a method has been reported for the
identification of an object of interest, i.e., heart wall or lumen,
on an echocardiographic image by pattern recognition using
the information of the ultrasonic echo signal. Nillesen et al.
introduced a method in which echogenicity was smoothed
in each local area to suppress speckle noise in the lumen.19)

However, the method using only echogenicity would
misclassify a region with low echogenicity inside the heart
wall as lumen. To overcome this limitation, Kinugawa et al.
proposed a method of identifying the heart wall using the
magnitude-squared coherence (MSC) function, which eval-
uates the variance of the phase shift of the RF signal among
consecutive frames,20) and it shows a greater separability of
the heart wall and lumen. Takahashi et al. further improved
the segmentation by using multiple features including
echogenicity and magnitude-squared coherence.21,22) The
separabilities of multiple features change depending on the
behavior of the heart and, thus, the optimal cardiac phase for
feature extraction was determined by quantitative evaluation
of the separability. As a result, a more accurate segmentation
in a frame in the optimal cardiac phase was achieved. The
heart wall region in each frame throughout an entire cardiac
cycle can be identified by tracking the points in the heart wall
region identified by proposed pattern recognition in a certain
frame using a tracking method.

However, the above-mentioned method can be applied to
only the ultrasonic data obtained in the long-axis view of the
heart [Fig. 1(a)]. The echogenicity of the lateral wall of the
left ventricle in the short-axis view [Fig. 1(b)] is low owing
to the small angle between the ultrasonic beam and the
direction of the myocardial fiber.23) In addition, the MSC of
the heart wall is low owing to the movement of the heart
wall in the direction perpendicular to the ultrasonic beam.
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Therefore, the classification in the short-axis view is difficult.
In the present study, the extraction of features from ultrasonic
echoes was optimized also for measurement in the short-axis
view. Furthermore, the optimum cardiac phase was examined
by evaluating the separability of the extracted features.

2. Principles

2.1 Feature extraction
Figure 2 shows the procedure proposed in the present study
for automated identification of the heart wall in ultrasound
data throughout an entire cardiac cycle. At the beginning, the
frame of interest (FOI) is selected from the optimal cardiac
phase21) for classification. Then, the ultrasonic data in the
FOI is classified into the heart wall, lumen, and external
tissue by two-step pattern recognition. To perform pattern
recognition, small regions of interest (ROIs) were manually
assigned in the heart wall, lumen, and external tissue in the
FOI, as shown in Fig. 3(a), to obtain training data. After the
classification in the FOI, the heart wall regions in each frame
in an echocardiographic image sequence during one cardiac
cycle is identified by tracking the points in the heart wall
region identified in the FOI by 2D tracking methods. In the
step of pattern recognition, the information of the amplitude
and phase of the ultrasonic RF echo signal is used. The first
feature is echogenicity, which is equivalent to information of
the amplitude of the ultrasonic RF signal. The magnitude-
squared coherence (MSC) function, which evaluates the
temporal variance in the phase shifts in ultrasonic echoes, can
be used to improve the separability.20) Using the extracted
multiple features, the heart wall regions in the FOI are
identified by automatically determining the threshold be-
tween features of the classes (heart wall and lumen regions)
using the expectation-maximization (EM) algorithm.24)

In this method, features, which were extracted with respect
to all points of received RF signals, were calculated from
signals in each spatial window in the axial direction, with a
size of 1.44mm (= 28 points) corresponding to the length of
an ultrasonic pulse. Similar to conventional segmentation of
echocardiographic images, the echogenicity was used as the
first feature in the present study. The echogenicity Gnði; jÞ of
a discrete point at the j-th sampled point in the axial direction
in the i-th beam and the n-th frame was extracted from the
received ultrasonic RF echo signal sði; jÞ as follows:

Gnði; jÞ ¼ log10½LPFj½ðsnði; jÞÞ2��; ð1Þ
where LPFj[0] denotes low-pass filtering in the direction of
depth with a cut-off frequency of 0.3MHz (nominal transmit
ultrasonic center frequency: 3.75MHz).

The heart wall is not completely distinguished from the
lumen using only the echogenicity because there are regions
with low echo levels inside the heart wall. Hete and Shung
found that the magnitude of the ultrasonic backscattered
signals were changed depending on the orientation of muscle
collagen fibers.25) Wickline et al. suggested that the magni-
tude of ultrasonic backscatter is determined by local
differences in acoustic impedance, which are affected by
myocardial contraction and relaxation.26) Thus, an additional
second feature, i.e., the MSC function, was adopted in our
method. The MSC is defined as follows:

j�nði; j;fÞj2 ¼

�����
XN�1

k¼0

Y�
nþkði; jþ bmðnþ kÞ;fÞYnþkþ1ði; jþ bmðnþ kþ 1Þ;fÞ

�����
2

XN�1

k¼0

jYnþkði; jþ bmðnþ kÞ;fÞj2
XN�1

k¼0
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; ð2Þ
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Fig. 1. (Color online) Illustrations of measurement by transthoracic
echocardiography in (a) long-axis view and short-axis view of left ventricle
(RV: right ventricle, LV: left ventricle, IVS: interventricular septum, LVPW:
left ventricular posterior wall).
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Fig. 2. (Color online) Schematic diagram of procedure of identification of
the heart wall proposed in the present study.
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where + and N denote a complex conjugate and the number of
frames used for estimating the MSC, respectively, and bmðnÞ
corresponds to the displacement of the point of interest ði; jÞ
in the n-th frame estimated by the phased-tracking method.27)

The details of the estimation of the MSC is described in
references,20,28) and the frequency f was set at 4.82MHz. As
illustrated in Fig. 4, the temporal changes in waveforms of
RF echo signals in an ROI placed in the heart wall region
are fairly small and can be tracked. Therefore, the MSC in
the heart wall becomes high. On the other hand, blood cells in
the cardiac lumen are difficult to track because they are
moving fast owing to blood flow and slip off the ultrasonic
beam. Therefore, the temporal change in the waveform of
an ultrasonic echo in an ROI assigned in the lumen is
significant. Therefore, the MSC becomes high in the heart
wall region and low in the lumen region. However, the MSC
of RF signals, the second feature, is also increased because of
the components of echoes from stationary or slowly moving
clutter, such as the ribs.20) In addition, there is a considerable
difference between the acoustic impedances of clutter and
blood particles. Therefore, the echogenicity and MSC
become higher when echoes from clutters are included.
Thus, reduction of the clutter component is necessary to
accurately extract the features, particularly from the cardiac
lumen. In the present study, in order to reduce echoes from
clutters, a high-pass filter with respect to the frame29) was
used as a moving target indicator (MTI) filter30) for RF
signals before calculating the first and second features,
Gnði; jÞ and j �nði; jÞj2.21,22) There are clutter echoes partic-

ularly in shallow regions, e.g., clutter echoes from ribs, and,
thus, the clutter echoes dominantly influence the echoes
from a shallow region in the heart, e.g., the right ventricle.
Therefore, in the present study, MTI filtering was applied to
the region with depth limited to 33mm to suppress reduction
of the necessary signal, i.e., echoes from the heart wall and
lumen.

2.2 Improvement of estimated MSC distribution by
adaptive mean filtering
In the present study, adaptive mean (AM) filtering, which
smooths spatial features, is applied to reduce the undesired
spatial fluctuation in the estimated MSC distribution and
improve the separability of the second feature, i.e., MSC. The
AM filtering is expressed as follows:

ĉ ¼ �þ kðc� �Þ; ð3Þ
k ¼ � � �min

�max � �min
; ð4Þ

k ¼ 0 if k < 0

1 if k > 1

�
; ð5Þ

where ® and · are the mean and standard deviation of MSC
in each 6 © 6mm2 (in horizontal and vertical directions)
region (window) containing 30 © 30 data points (center of
the window is the point of interest). The original ultrasonic
RF data were obtained in a sector format and, thus, the
original ultrasonic data were interpolated so that 30 © 30 data
points were included in each 6 © 6mm2 window. In this
interpolation, the value (MSC) of the nearest original sampled
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Fig. 3. (Color online) Result of identification of external tissue: (a) B-mode image with gravity center estimated using echo amplitude and manually
assigned areas for heart wall, lumen, and external tissue. (b) Region-identified image. (c) Region-identified image corrected using distance from gravity center.
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point was used as the value of each interpolated point.
Figures 5(a)–5(c) show examples of a B-mode image, MSC
image unprocessed by AM filtering, and standard deviation of
MSC in each local region (window), respectively. In the
present study, the standard deviation obtained with respect to
the manually assigned ROI for the heart wall [region
surrounded with red line in Fig. 5(a)] was used as the lower
limit of standard deviation �min (corresponding to the case
when there is no boundary in a window for AM filtering). On
the other hand, the standard deviation obtained from the data
(MSC) included in both the manually assigned ROIs for the
heart wall and lumen was used as the upper limit of standard
deviation �max (corresponding to the case when there is a
boundary between the heart wall and lumen in a window).
Using the original MSC c at the point of interest and a
variable coefficient k, which was determined from estimated
standard deviations, the filtered MSC ĉ was obtained. The
AM filter outputs the mean in a 6 © 6mm2 window to smooth
the MSC distribution when the standard deviation · is low
(there is no boundary). On the other hand, the smoothing
effect of the AM filter is suppressed when the standard
deviation · is high (there is a boundary). Using the AM filter,
the separability is considered to be improved by information
of surrounding points even when there is a peculiar point,
e.g., low MSC in the heart wall owing to a low signal-to-noise
ratio of an echo signal.

2.3 First-step classification: Identification of external
tissue
In the present study, we proposed a method by two-step
pattern recognition for classification of an ultrasonic image
into three regions, i.e., heart wall, lumen, and external tissue.
In the first step, external tissue is identified and excluded
from the second step for segmentation of the heart wall and
lumen. In the first pattern recognition, the ultrasonic data was
classified into the heart wall, lumen, and external tissue by
the EM algorithm using only the echogenicity. Figure 3(b) is
an example of the result of classification based on the
echogenicity. In Fig. 3(b), there are small regions misclassi-
fied as external tissue in the interventricular septum (IVS),
which must be corrected. This misclassification was corrected
using the geometrical information of each point. To obtain
the geometrical information, the gravity center cðci; cjÞ
[yellow dot in Fig. 3(a)] was obtained as a rough position
near the center of the left ventricle as follows:

Dði; jÞ ¼ 1� Gði; jÞ
Gmax

; ð6Þ

ci ¼
P

i

P
j i � Dði; jÞP

i

P
j Dði; jÞ

; ð7Þ

cj ¼
P

i

P
j j � Dði; jÞP

i

P
j Dði; jÞ

; ð8Þ

where Gmax is the maximum of echogenicity in the entire
ultrasonic data and Dði; jÞ corresponds to the darkness of the
point of interest ði; jÞ in the B-mode image. The echogenicity
in the lumen is, in general, low, and the position of the lumen
can be estimated roughly using the gravity center cðci; cjÞ
obtained by weights of darkness Dði; jÞ.

The distance between the gravity center cðci; cjÞ and each
point classified as the heart wall based on echogenicity was
averaged to obtain the mean distance from the gravity center
cðci; cjÞ to the heart wall. Using this mean distance, a point,
which was classified as external tissue and whose distance
from the gravity center cðci; cjÞ is shorter than the mean
distance from the gravity center cðci; cjÞ to the heart wall, was
corrected as the heart wall.

The advantage of two-step pattern recognition is described
below. Figure 6(a) shows the result obtained by single-step
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Standard deviation

of MSC(a) (c)(b)

Fig. 5. (Color online) Example of MSC image of short-axis view of left ventricle: (a) B-mode image. (b) MSC image. (c) Standard deviation of MSC in
each local region.
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Fig. 6. (Color online) (a) Result of classification of heart wall, lumen, and
external tissue by one-step classification using EM algorithm.
(b) Distributions of feature vectors of region manually assigned as each tissue
and Gaussian distributions fitted by EM algorithm.
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classification into the heart wall, lumen, and external tissue
using the EM algorithm with two features (i.e., echogenicity
and MSC). Misclassification of the heart wall as external
tissue is frequently observed. Figure 6(b) shows the feature
distributions in the regions manually assigned as the heart
wall, lumen, and external tissue and the estimated Gaussian
distributions fitted to features of the respective regions. The
reason for misclassification of the heart wall as external tissue
is that the Gaussian distribution finally determined by the
EM algorithm does not appropriately fit the measured
features, as shown in Fig. 6(b), particularly for the heart
wall. The separability of MSC to distinguish the heart wall
(red points) from external tissue (green points) is low because
the MSCs of the heart wall and external tissue are similar
(high MSCs). Therefore, most of the data in the heart wall
and external tissue can be explained by the Gaussian
distribution obtained for external tissue, as can be seen in
Fig. 6(b), and the data that cannot be explained by the
Gaussian distributions obtained for the lumen and external
tissue are explained by the Gaussian distribution obtained for
the heart wall. Such a failure of estimation of the probability
density function (Gaussian distribution) leads to significant
classification errors in Fig. 6(a). Therefore, the data from
external tissue, which have MSCs similar to those in the heart
wall, should be removed before applying the EM algorithm
for the classification of the heart wall and lumen.

2.4 Second-step classification: identification of heart wall
and lumen
In this method, the data points classified as external tissue in
the first classification were excluded in the second classi-
fication. The other data points were classified into the heart
wall and lumen using two features, i.e., echogenicity and
MSC, using the EM algorithm.21) In the measured RF dataset
of each cross section (long-axis and short-axis views), the
regions of the heart wall and lumen were manually assigned as
training data for classification based on the EM algorithm.24)

Using the EM algorithm, a mixture of two Gaussian
distributions (corresponding to the heart wall and lumen)
was fitted to features of the data points, and the line where the
probabilities of the determined Gaussian distributions were
the same was used as the threshold for the classification
of each data point. Using the 2D feature vector di;j ¼
ðGði; jÞ; j �ði; jÞj2Þ extracted at each discrete point ði; jÞ in an
acquisition area, the mixing coefficient f�hg, mean vectors
f�hg, and covariance matrices f�hg were obtained for classes
f!hg [lumen (h = 0) and heart wall (h = 1)] as follows:

�h ¼ Nh

N
ðh 2 f0; 1gÞ; ð9Þ

�h ¼ Ei;j½di;jj!h� ðh 2 f0; 1gÞ; ð10Þ
�h ¼ Ei;j½ðdi;j � �hÞðdi;j � �hÞTj!h� ðh 2 f0; 1gÞ; ð11Þ

where Ei, j[0] denotes spatial averaging in the axial and the
lateral directions, and Nh, N, and �h are the number of feature
vectors belonging to each class, the total number of vectors in
the area for evaluation, and the mean vector in each class,
respectively.

In the first iteration, the measured ultrasonic data were
classified using covariance matrices f�hg, mean vectors f�hg
and mixing coefficient f�hg obtained from the manually

assigned training data. In the subsequent iterations, cova-
riance matrix �h, mean vector �h and mixing coefficient �h

were updated from feature vectors fdi, jg classified into the
corresponding class using the previous covariance matrix,
mean vector and �h. The iteration maximizes the likelihood
of a mixture of Gaussian distributions, which represents the
degree of fitting, and the iteration was stopped when the
likelihood converged to a local maximum value.

3. Experimental results and discussion

3.1 Determination of optimal cardiac phase and number
of frames for calculation of MSC
We previously reported that the optimal cardiac phase for
classification of the heart wall in the long-axis view is the
period from the rapid-filling phase to the slow-filling
phase.21) In the present study, the optimal cardiac phase for
the short-axis view was also determined. In addition, the
number of frames N for the calculation of MSC, which is the
important parameter for determining the separability of MSC,
was examined. A larger number of frames is desirable for
statistically stable estimation of MSC. However, an excessive
number of frames degrades the separability of MSC because
tracking errors are more likely to occur. Therefore, the
optimum cardiac phase and number of frames should be
examined for each cross section, i.e., long-axis and short-
axis views.

Ultrasonic RF echoes were acquired from the long-axis
and short-axis views of the heart of a healthy 25-year-old
male, using a 3.75MHz phased array probe. By parallel
beamforming (PBF)31,32) with plane wave transmission, high-
frame-rate (long-axis: 860Hz, short-axis: 560Hz) measure-
ments of RF echoes were realized with 0.375° intervals of
scan lines. The sampling frequency of the measured RF
signals was 15MHz.

To evaluate the separability of the feature vector, the
interclass covariance matrix SB in Eq. (14), which corre-
sponds to the distance between mean vectors of classes (heart
wall and lumen), and the intraclass covariance matrix SW in
Eq. (15), which corresponds to the mean variances of feature
vectors within classes, were defined using these parameters as
follows:

ph ¼ Nh

N
ðh 2 f0; 1gÞ; ð12Þ

� ¼
X1
h¼0

phEi;j½di;jj!h�; ð13Þ

SB ¼
X1
h¼0

phð�h � �Þð�h � �ÞT; ð14Þ

SW ¼
X1
h¼0

ph�h: ð15Þ

Separability of the feature vector increases in proportion to
the distance between mean vectors of classes, whereas it
decreases in proportion to the variances of vectors within
classes.24) Therefore, the criterion of separability J is defined
by normalizing the interclass covariance matrix SB by the
intraclass covariance matrix SW as follows:33)

J ¼ tr½S�1
W SB�; ð16Þ

where tr[0] represents the sum of diagonal components.
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Figures 7(a) and 8(a) show the estimated separabilities in
the long-axis and short-axis views of the left ventricle with
different numbers of frames N for the calculation of MSC.
Periods A, B, C, D, and E denote the ejection phase,
isovolumic relaxation phase, rapid-filling phase, slow-filling
phase, and atrial systole, as indicated in Figs. 7 and 8. The
white lines in Figs. 7(a) and 8(a) indicate the optimal cardiac
phases. The white arrows in Figs. 7(a) and 8(a) show the time
and the number of frames, which give the maximal value of
J. As shown in Fig. 7(a), the maximal value of J is found in
the early slow-filling phase D when N is 70. The optimal
cardiac phase agreed with that reported by Takahashi et al.,
and the reason is the large difference in MSCs between the
heart wall and lumen, as shown in Fig. 7(b).21)

On the other hand, as shown in Fig. 8(a), the maximal
value of J is found in the atrial systole when N is 150.
Figure 9 shows mean MSCs in the respective regions in the
short-axis view with different numbers fNg of frames in the
early slow filling phase D (shown by the solid lines) and
early atrial systole (shown by the dashed lines). As shown in
Fig. 9, MSC of the lateral wall in the slow filling phase
becomes markedly lower as the number of frames N
increases. The motion velocity of the wall estimated by the
phased-tracking method in the slow-filling phase is higher
than that in the atrial systole, as shown in Fig. 8(d).
Therefore, the separability in the slow-filling phase is lower
than that in the atrial systole because the MSC of the lateral
wall becomes lower mainly as a result of the fast movement
of the heart wall in the direction perpendicular to the
ultrasonic beam. As a result, the optimal cardiac phase for the
short-axis view is the early atrial systole when the movement
of the heart wall is slower than that in the slow-filling phase.

The motion velocities of IVS and LVPW are evaluated in the
atrial systole because the phased-tracking method cannot
estimate the velocity of the lateral wall in the direction
perpendicular to the ultrasonic beam.

Furthermore, the optimal number of frames N for the
calculation of MSC was determined for each cross section.
The number of frames N showing a high separability for
the long-axis view was 40–100 frames corresponding to
0.05–0.12 s [= 0.074/(heart rate)] in the early slow-filling
phase and 177 frames corresponding to 0.21 s [= 0.187/
(heart rate)] in the early atrial systole. For the short-axis view,
the optimal number of frames N showing high separability
was 50–70 frames corresponding to 0.09–0.13 s [= 0.09/
(heart rate)] in the slow-filling phase and 130–150 frames
corresponding to 0.23–0.27 s [= 0.21/(heart rate)] in the
atrial systole. Two ultrasonic datasets from the long-axis and
short-axis views were acquired under different conditions,
e.g., different frame rates and heart rates. Therefore, the
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Fig. 7. (Color online) Results obtained in long-axis view of left ventricle:
(a) Criterion of separability J. Spatial means of (b) MSC, (c) echogenicity,
and (d) velocities.
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optimal number of frames N was expressed by the percentage
to a cardiac cycle. The optimal number of frames N in the
slow filling phase was smaller than that in the atrial systole in
each cross section. The reason is that the frames correspond-
ing to the rapid-filling phase are included when the number of
frames N is larger and the heart wall moves and deforms
rapidly in the rapid-filling phase. Therefore, a smaller number
of frames N was optimum in the slow-filling phase.

As described above, in the long-axis view, the optimum
cardiac phase is the early slow-filling phase and the optimal
number of frames N is 70. In the short-axis view, the
optimum cardiac phase is the early atrial systole and the
optimal number of frames N is 150. Table I summarizes the
optimal cardiac phase and the number of frames N in each
view.

3.2 Optimization of MTI filtering
Echoes from the heart wall are likely to be affected by MTI
filtering because the motion of the heart wall is smaller than
those of blood particles. The suppression of the echo signal
from the heart wall possibly degrades separability because
the echogenicity and MSC in the heart wall become also
lower. Thus, in the present study, MTI filtering was applied to
the region with a limited depth, which includes most of the
clutter echoes, to preserve the echo signal from the heart wall.
Figure 10(b) shows the power spectrum at each depth

obtained by applying DFT with respect to the frame [window
size: 50 frames (= 0.09 s)] to RF echoes from manually
assigned regions of RV, IVS, and LV shown in Fig. 10(a) at
the best frame for classification. The power spectra were
averaged for all scan lines. As shown in Fig. 10(b), the
components with low velocity and high magnitude could be
clutter echoes, and the clutter component becomes lower as
the position becomes deeper. The optimal cut-off frequency is
determined to be 50Hz because the clutter components exist
under approximately 50Hz. Although echo signals in IVS
should include echoes from the heart wall (IVS) and clutter
echoes, it is difficult to distinguish between them, as shown
in Fig. 10(b). Therefore, the range (depth), to which the MTI
filter was applied, was changed from 20 to 100mm, and the
criterion of separability J was evaluated. Figure 11 shows the
criterion of separability J plotted as a function of the range
for MTI filtering. The result shows that the range of 33mm
was the optimum range for MTI filtering. Figures 12(a),
12(b), and 12(c) show the spatial distributions of MSC
without the MTI filter, MSC with MTI filtering (cut-off
frequency: 10Hz),21) and MSC with MTI filtering applied
to the limited range, respectively. Using the previsously
determined MTI filtering [Fig. 12(b)], MSCs lower than
those without MTI filtering in the heart wall are found and
the clutter components are not sufficiently suppressed, as
shown in Fig. 12(b). On the other hand, MTI filtering applied
to the limited range resulted in the reduction of clutter
components in the right ventricle while preserving MSC in
the heart wall, as shown Fig. 12(c).

3.3 Effect of AM filtering and segmentation of in vivo
ultrasonic data
Figures 13 and 14 show MSCs obtained from the long-axis
and short-axis views, respectively. In Figs. 13 and 14,
original MSC images (a) and AM-filtered MSC images (b)
are shown. Particularly in the short-axis view, spotlike
regions with low MSCs are observed in the lateral wall, as
shown in Fig. 14(a). By AM filtering, such regions were
eliminated because of smoothing of MSC using the
information of surrounding points. By applying AM filtering,
the criterion of separability J improved from 11.3 to 15.7 for
the data of the long-axis view and from 9.0 to 12.5 for the
short-axis view.

Figures 15 and 16 show the results of classifications in the
long-axis and short-axis views, respectively: (a) B-mode
images, (b) results of the identification of the heart wall

Table I. Summary of optimal cardiac phase and number of frames N in
each cross section.

Cross section
in left ventricle

Optimal cardiac phase
Optimal number
of frames N

Long-axis view Early slow filling phase
70 frame

[= 0.08 s, 0.074/(heart rate)]

Short-axis view Early atrial systole
150 frame

[= 0.27 s, 0.22/(heart rate)]
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power spectra of RF echoes (RV: right ventricle, LV: left ventricle, IVS:
interventricular septum). (b) Power spectra at each depth obtained by
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regions in the optimal cardiac phase with the optimum number
of frames N, and (c) feature distributions of the heart wall and
lumen extracted from manually assigned regions with the
corresponding Gaussian distributions estimated using the EM
algorithm.24) The red regions in Figs. 15(b) and 16(b) are the

regions identified as the heart wall, and the results show that
accurate segmentation was possible in both long-axis and
short-axis views by the proposed method. As can also be seen
in Figs. 15(c) and 16(c), the features extracted under the
optimal condition show high separabilities.

MSC10 mm(a) (b)

Fig. 13. (Color online) Result of applying AM filtering to MSC obtained
in long-axis view of left ventricle: (a) Original MSC image. (b) Filtered MSC
image.

10 mm MSC(a) (b)

Fig. 14. (Color online) Result of applying AM filtering to MSC obtained
in short-axis view of left ventricle: (a) Original MSC image. (b) Filtered
MSC image.
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Fig. 15. (Color online) Result of segmentation in long-axis view of left ventricle: (a) B-mode image. (b) Result of identification of the heart wall regions.
(c) Distribution of features of region manually assigned as each tissue in 2D feature space and Gaussian distribution fitted into features of each distribution.
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Fig. 12. (Color online) Spatial distribution of MSC applied by MTI filtering limited in depth: (a) MSC image without MTI filter. (b) MSC image with
previously determined filtering (cut-off frequency: 10Hz).21) (c) MSC image with MTI filtering applied to limited range.
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Fig. 16. (Color online) Result of segmentation in short-axis view of left ventricle: (a) B-mode image. (b) Result of identification of the heart wall regions.
(c) Distribution of features of region manually assigned as each tissue in 2D feature space and Gaussian distribution fitted into features of each distribution.
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4. Conclusion

The aim of the present study was the identification of the
heart wall in ultrasound data obtained in various cross
sections. In the present study, we have shown that an accurate
segmentation can also be realized in the short-axis view by
optimizing the optimum cardiac phase and number of frames
for the calculation of MSC. Moreover, AM filtering was
effective, particularly in the short-axis view, in elimination
of spotlike regions with low MSCs. Furthermore, the MTI
filtering applied to a limited range resulted in the reduction of
clutter components in the right ventricle while preserving
MSC in the heart wall. Through these optimizations, it was
shown that accurate segmentation was possible in both long-
axis and short-axis views by the proposed method.
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