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Estimation of Input Pulse Locations From the
Response of an All-Pole Transfer System
Using Tapered Rank Reduction

Hiroshi Kanai, Associate Member, IEEE, and Ken'iti Kido, Member, IEEE

Abstract—When a multipulse input time series is estimated from the
response of a transfer system, it is necessary to remove characteristics
of the transfer system from the response signal before applying the
previously proposed method for estimating the input pulse locations.
When the ordinary rank reduction is used to remove the characteristics
of the transfer system and to estimate the multipulse input time series,
the ignificant values are sharply cut off by low-order
truncation if the system Q (quality factor) is high, and then a large
ripple occurs around each pulse location. In order to avoid these dif-
ficulties, we propose a new method where the multipulse time series is
estimated by a rank reduction using a tapering window in order to sup-
press the ripple due to the low-order sharp truncation, and then by
applying the pole-estimation method to the inverse Fourier transform
of the resultant time series, the pulse locations are accurately esti-
mated. By using the pulse locations as the initial estimates, the maxi-
mum likelihood estimates of the pulse locations are obtained. From
simulation experiments, these principles are confirmed.

I. INTRODUCTION

ETx(n),n=20,1, - - -, N — 1 be a multipulse input time
series, which has N, pulses, represented by
NP
x(n) = 2 d; - 8(n — 1) (1)
i=1
where
1, ifn =0
8(n) =
0, otherwise

d;and 7, (0 < 7, < 7, < -+ + < 7y, < N) are the unknown
amplitude and the unknown location of ith pulse, respectively.
Suppose the response of a transfer system to the multipulse in-
put time series x(n) is received by a sensor in the form

y(n) = h(n) + w(n) (n=0,1,---,N—-1) (2)

where w(n) is the additive noise component assumed to be in-
dependent of the input signal x(n), h(n) is a response of an
Mth order all-pole model 1/4(z) = 1/T¥_, a,,z 7™ to x(n)
as

h(n) = — Zzll a, - hin — m) + x(n)
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M is the assumed order of the all-pole model, and {a,}, m =
0, 1, - - -, M are known linear predictive coefficients (a, =
1). The problem is to estimate the time delays {7;} and the
input time series {x(n)} from a short-length (N-point) record
of { y(n)}. This is the same problem as the analysis-by-syn-
thesis of a vowel voice [1], [2] or a multipath time delay esti-
mation [3]-[6], which arises in various fields such as
geophysics, radar, and underwater acoustics. A performance
limit of the multipath delay estimation has been also investi-
gated in several papers [7]-[9]. In other papers [10]-[13], both
the input signal x(rn) and the output signal y(n) are used to
estimate a multipath time delay. Since the number of spectrum
zeros produced by the multipulse time series depends not on the
number of the pulses but on the interval of the pulses, the prom-
ising pole-zero estimation approaches [14]-[17] cannot be ap-
plied to the estimation of the multipulse time series from the
response signal y(n).

One of the key questions to be addressed in this paper is how
to estimate the multipulse input time series {x(n)} in the case
where the signal-to-noise ratio (SNR) is low and the system @
(quality factor) is high. That is, the transfer system has at least
one pole which is close to the unit circle in the z plane.

A traditional way to estimate the time delays is to use auto-
correlation of the output signal y(n) [5], [10], [18], [19]. The
delay differences can be estimated from the corresponding peaks
of the resultant correlogram as long as the time delay differ-
ences are greater than the length of the signal autocorrelation
[8]. If the system Q is high, however, the peaks due to the
characteristics of the transfer system are much larger than the
peaks due to the time delay differences. Thus, it is difficult to
estimate the time delays from the resulting correlogram of the
output signal y(n) without removing the characteristics of the
transfer system.

If the characteristics of the transfer system are removed, this
problem is analogous to the estimation of the frequencies of the
sinusoids in noise. Some methods for estimating time delays of
a finite length output signal y(n) in additive white noise were
proposed [12]-[14], [19] as a direct implementation of maxi-
mum likelihood (ML). If the number N, of pulses is large, this
nonlinear least square search becomes computationally unat-
tractive for practical implementations, especially in the cases
where the reasonable initial estimates cannot be used.

Other methods which minimize the computational effort have
been proposed such as so-called high-resolution methods [6],
[11], [20]-[22]. One such method, called modified forward-
backward linear prediction (MFBLP) [23]-[26], proposed by
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Kumaresan and Tufts, is especially promising if the transfer
system has a flat power spectrum.

If the system Q is high, it is necessary to remove the char-
acteristics of the transfer system from the output signal y(n)
before applying the above high-resolution method. In such
cases, however, frequency components other than at the reso-
nant frequencies are easily affected by additive noise. Then an
ordinary inverse filtering [1] cannot whiten the output signal
because the frequency components which are contaminated by
noise are emphasized by multiplying the inverse characteristics
A(z) of the transfer system. The similar whitening procedure
in frequency domain is used in [20].

The rank reduction technique [27] can be applied for remov-
ing the transfer characteristics from the output signal y(n) by
truncating nonsignificant singular values of the transfer char-
acteristics. In this case, it is important to determine the opti-
mum truncation order [28], and a constructive procedure for
selecting rank was addressed by Scharf and Tuft [29]. If the
system  is high, only a few singular values are significant, and
then large ripples are caused around each pulse location due to
the low-order sharp truncation.

We propose a new rank reduction method using a tapering
window in order to suppress the ripples and clarify each pulse
Jocation in the resultant multipulse time series. In [30], we pro-
posed a method to estimate multipulse time series based on the
singular-value decomposition (SVD) using the tapering win-
dow. It presents a simple example showing that the ripples are
suppressed by the tapering window. Its principle was, however,
not described sufficiently and the improvement in the estimation
accuracy of each pulse location was not evaluated. The present
paper presents the principle of the tapered rank reduction in de-
tail, and by combining it with the MFBLP method and an ML
approach, we propose a new method to estimate the multipulse
time series and each pulse location. These principles of this
three-stage procedure are confirmed experimentally by compar-
ing the estimates with those obtained from the rank reduction
without using the tapering window. Throughout the paper, we
assume that characteristics of the transfer system and the num-
ber N, of pulses are known. Estimation of the order M of the
transfer system and the number N, of the pulses has been in-
vestigated in several papers (see [31], and its references). We
also assume that the additive noise components w(n) is white
Gaussian.

II. FORMULATION OF MINIMUM-NORM LEAST SQUARE
ESTIMATION

Since the location of each pulse cannot be previously deter-
mined, it is necessary to assume that the N-length multipulse
time series x(n) of (1) has N pulses (N, = N) such as

N-1
x(n) = Z;o d, - 8(n—1i). (3)

Using vectorsy = [ y(0), y(1), - = = , y(N = D1, h = [A(0),
h(1), « -+, k(N — D1, x = [x(0), x(1), - -+, x(N ~
1)1%, and w = [w(0), w(1), - -, w(N — 1)1, where the
superscript T denotes the matrix transpose, y(n) of (2) is given
by

y=h+w

=Hx +w (4)
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where H is the N X N lower triangular Toeplitz matrix such that

hy(0) 0 .-+ 0
ho(1) ho(0) e 0
H= : : oo ;
ho(N —2) ho(N—-3)--- O
ho(N — 1) ho(N —2) --- ho(0)
(ho(0) = 1)
and ho(n), (n = 0, 1, - -+, N — 1) is the response of the

transfer system to a unit impulse 4 (n). By minimizing the power
of noise w, the linear least square solution of x, denoted by £,
is obtained by

£ = (H'™H) 'Hy. (5)

Let A be an N X N lower triangular Toeplitz matrix defined by
using the linear predictive coefficients {a,,} such that

Gp O ot ree ee 0
o @ - . o
A= {ay "’
0 ay
: . . . ay 0
LO 0 ay <o g ao_

where a, = 1. Since AH = I, where Iisthe N X N unit matrix,
and det A = det H = 1, the solution £ of (5) is equal to Ay. By
substituting y of (4)

£ = Ay
=x + Aw. (6)

That is, the resultant signal £ is the sum of the true components
of the input time series £ and the noise components Aw, which
is caused by the whitening procedure. Though the determinant
of H or A is always equal to unity, the ratio of the minimum to
the maximum singular values is very small if the system Q is
high. In such cases, the power of the second term Aw, which is
represented by an all-zero process, is much larger than that of
the first term x.

In order to avoid difficulties in estimating a multipulse time
series in low SNR cases, the minimum-norm solution to the
above linear least square problem is obtained using the rank
reduction technique [32] as follows: Let {¢;},i=1,2, - -,
N be nonzero singular values of H. Then the matrix H is rep-
resented in the general form

H=0,%0] )

where Q, and Q, are N X N unitary matrices which are com-
posed of the orthonormal eigenvectors of HH™ and H'H, re-
spectively, and the matrix ¥ has ¥, in the i, i position (1 < i
< N) and zeros elsewhere such that ¥ = diag [¥,, ¥», - " -,
Yyl, where ¢, = ¢, = -+ + = ¢y > 0. Suppose the singular
values {¢;},i =R+ 1, R+2, -, N are nonsignificant and
that the rank of H is approximately equal to R. Then.the mini-
mum-norm linear least square estimate £ of (5) is obtained by

£=0,¥%:'0ly (8)
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where ¥;' d=efdiag[1/¢1, -+, 1/Yg, 0, - -+, 0]. The phys-
ical meaning of the estimate £ is given below. The N X N Toe-
plitz matrix H, when multiplied by the N X N order reversal
matrix J, becomes a symmetric matrix JH, which is broken
down using the eigen value {o;} of the matrix JH as [32]

JH =ULU" (92)
where
0 0 0 1
0 0 1 0
J = 0
0 1 -+ 0 0
1 o --+- 0 O

def
L = diag [0y, 04, * * - , oy] is a N X N diagonal matrix and U
is the unitary matrix composed of the eigenvectors {u;} of H.
By neglecting nonsignificant eigenvalues {o;}, i = R + 1,
-+, N, JH is approximately given by
JH = UL UT (9b)

where T, = diag [0}, 02, * - * , 08, 0, - =+, 0]. Since J? =
JTJ = I, then the term (H"H ) 'H7 of (5) is approximately
equal to UZR'U"J, where Lz is defined by diag [1/4y, 1/ 0,
©++,1/0g, 0, +++,0]. Thus, the minimum-norm least square
estimate £ of x is given by
£ = UL 'UTy.
Equation (10) is rewritten by use of (4) and (9b) such that
2= ULR' UT(JULRUx + w)

(10)

= (UT) ' AU + (UD) 55" U™W (11)

where
Ap = ZR'T
R N—-R
— ——
= diag [1, -+-, 1,0, ---,0]

and w' = Jw is the time-reversed noise signal. That is, w'(n)
def

= w(N — n — 1). The first term (UT) " 'AU” of (11) repre-
sents a low-order-passing filter as illustrated in Fig. 1(a). If each
column eigenvector u; of U is the orthonormal basic vector used
in the N-point discrete Fourier transform, the term (U7)™'Ag U7
indicates the ordinary bandpass filter. The second term
(UN™'Ex'UT of (11) denotes a high-order-emphasis filter. By
truncating the order greater than R, the noise term is suppressed
and the stable estimate £ of the multipulse time series is ob-
tained even in low SNR cases. However, the sharp and low-
order truncation of (10) leads to a large ripple around each pulse
location in a similar manner as the well-known Gibbs phenom-
enon [33]. '

I1I. RANK REDUCTION USING A TAPERING WINDOW

In order to suppress the ripple and clarify the location of each
excitation pulse, we propose a new rank reduction method using
a tapering window \;, N,  * * , Ay. Let Abe a N X N diagonal
matrix, of which diagonal components are composed of the ta-

B . def |
pering window as A = diag [ A\, N, - -, Ay]. When a taper-
ing window is used in the rank reduction, the minimum-norm
least square estimate £ of the multipulse input time signal is

X w X w
ok kb
} N Vo
Ap Dral A AT
1 1 \A/i 1T ‘ // ;
1 R I:I R . 1 N
v Y
(UT)—I (UT)—l (UT)—I (UT)—I
b b4

(a) (b)

Fig. 1. The principle of the method for estimating the multipulse time se-
ries £ using the low-order-passing filter formed by (a) the ordinary rank
reduction and (b) the tapered rank reduction.

represented using the matrix A¥ ~' instead of ¥z' = Ag¥ ™' of
(8) or the matrix AL ™" instead of £z' = ARZ™' of (10) as

£ = QAY'Qly

(12)

or

£ = UAZ™'UT)y. (13)
In (12) or (13), nonsignificant singular values are neglected by
using a tapered window A, Ay, * -+, Ay. By using (4) and (9a)
and the property U = (U”)™', (13) is rewritten as

£ = (U 'AU"x + (UT) AT UW. (14)

(See Fig. 1(b)). The tapering window has the effect of suppress-
ing the ripple as described below. Let vector
—~e A .
di=[ov e ,0, 1!0’ st vO]

denote an N-length input time sequence having a unit pulse at
time i. When d, is used instead of x in (14), the first term be-
comes (UT) 'AUTd,. By letting [u,;, uy;, * = - , uy;]1” be the
component of the ith column vector u; of U, the estimated time
series in the case of SNR = o, denoted by d,,, is represented
as !

d. = (UTY'AUTY,

Uy Uz Uin A O 0
Uy, 0N :
0

Uy "ottt U 0 -+ 0 M
Uiy
Uiz
Uiy

N

,Z N

Jj=1

N
20 Nuyuy,
j=1

N
=d - Z (1 = N)uy,
=
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where the property Ii_, u, uy = 8;is used. In ordinary inverse
I"]ltering, each N\, (j=1,2,--+,N)is equal to 1 and then
d... become d;. In the case of the rank reduction of (10), how-
ever, A is denoted by
R N-R
N\
diag [1, -+ -, 1,0, -+, 0]
and d,,, becomes d; — I ;. u;u;, of which the second term
indicates the ripple around the unit impulse due to the low-order

sharp truncation. The power | d,, | of d,,, estimated by using
the tapering window \;, N,, * - -, Ay is given by

) N
dio H = ,§1 )\jzui

The estimated amplitude d. of the ith impulse is equal to
*_1 N;uj. On the other hand, the noise power of the second

term of (14), denoted by || #|?, is
02
E[1%)]

E[|vaz ' U™w'|]

N A 2
1)
j=1 \0j

where o2, is the power of additive noise. Assuming that the noise
component is independent of the input time series, the ratio of
the square of the estimated amplitude die of the ith pulse to the
total power of the estimated input time series and the noise term
is represented by

ldix I

V(di)= PUY
llde]” +

i

N 2

j; Nt
= 5 . (15)
2 N + o), % (N/o),

j=1 i=1

Take the simplest example of a signal length of N = 3, and a
nonsignificant singular value truncation at the order of 2. That
is, \y =N\, =1,and 0 < A\; < 1, then »(d,) is

2
(uh + upp + Nuds)
1 1 AN
W+ il + Nk + ol (.—2 S5+

¢! o} o}

v(dy) =

Letting Ay, By, Co, and D, denote the nonnegative constants
W+ ub, uh, 02(1 /0% + 1/63), and 02 ( N}/ a3), respectively,
v(d,) is simply represented as

(4o + Bohs)’
(4o + Gp) + (By + Do)N’

v(dy) =

By letting the partial derivative of »(d,) with respect to A; be
zero, it is known that »(d,) takes a maximum value v, (d>)
= (43(By + Do) + Bi(Ao + Co))/((Ag + Co) (Bo + Dy)) at
Mo = Bo(Ag + Co)/(Ag(By + Dy)), (0 < Ayg < 1) as illus-
trated in Fig. 2. When the sharp truncation of the ordinary rank
reduction is used (A; = 0), v(d,) is equal to AS/(AO + Cy).
When the rank reduction is not used ( A; = 1), v(d,) is equal
to (Ag + By)*/(Ay + By + Cy + Dy). Both values of »(d,)
are, of course, less than the maximum value »,,(d,). From
the above simple example, if proper values are selected for a
tapering window, it is obvious that rank reduction using a ta-
pering window suppresses the ripple due to the low-order sharp
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55
2 &
g8 ?
ok :
s 1
= .
2 2 i Ao+Bo)’

0 0
: M i Ao+Bo+Co+Do
AR '
g i
o 0 {
0 ) —Bo(AtCo) 1
307 Ao(Bo+Do)
3
ORDINARY TAPERED INVERSE
SHARP RANK FILTERING
RANK REDUCTION

REDUCTION

Fig. 2. The relative power of the estimated amplitude of the pulse to the
total signal power. The tapered rank reduction simultaneously suppresses
the noise term and the ripple which is caused by the sharp rank reduction
and then clarifies the pulse locations.

truncation and clarifies the location of each excitation pulse. It
is, however, difficult to select optimum values { \; } of the ta-
pering window. We describe two approaches to design the ta-
pering window below.

A. Convolution by a Window Function

Let [8;, 8,, * - * , 8y] denote the diagonal component of the
matrix Ag of (11) obtained by ordinary rank reduction. By cal-
culating the circular convolution between a (2N — 2)-length
sequence of [8;, 85, * ** , Sy_1, Oy, Oy, * * * 5 82, 8] with
a window function of w (n), a (2N — 2)-length sequence of
[N, Ny * * * 5 Man—2] is obtained. By selecting the first N ele-
ments of the sequence and using them, the N X N diagonal
matrix A = diag [ M\, Ny, * * * , Ay] is obtained. Then the min-
imum-norm least square estimate £ is obtained using (12) or
(13). For example, the (2N, + 1)-length window function
w (n) is defined by the following Hamming window [33]:

wy (n) = 0.54 + 0.46 cos (2an/2N,) - (=N, = n = N,)}.
(16)

B. Minimization of Mean-Square Error

The response of the low-order-passing filter UAR U Tof (11)
to the impulse

is UARU"d,, which has a large ripple around the ith impulse.
In order to suppress the ripple, the response is multiplied by an
N X N weighting diagonal matrix, denoted by W;, and the sup-
pressed sequence f; is given by

fi = W, UARUd,.

Foreachi, (i = 1,2, - - - , N), the desired response f; to the
impulse d; is prepared using the weighting matrix W, in ad-
vance. Since the characteristics of the W, depend on the pulse
location i, we cannot use the W; to estimate multipulse input
time series in practical cases. Thus, we determine an N X N
diagonal matrix A = diag [ M, Ay, =+, Ay] of (12) or (13)
below.




152

Let an N-dimensionai vector s; denote the response sequence
of the filter UAU7 to d;. That is

s; = UAUTd,

To determine the diagonal elements { \;} of A, the following
mean-square error «, which is defined by the difference between
the desired response f; and the response s, of the filtér UA U to
d;, is minimized as

M=z

- s,-||2

Q
1

£

1

N

2 | £ ~ UAUTG;|” — MIN.
i=1

Since U is the unitary matrix

N
o« =2 |UT - AU (17)
s uy;]" of
U, the second term A U'd; is equal to U,-X, where U; < diag
- def
Luis iy ==+, uiyl is an N X N matrix and A = [N}, Xy,
-, M\y]” is an N-dimensional vector. Using the property:
U+ U3+ -+ + Uy =1, aof (17) is arranged as

Using the ith column eigenvector u; = [uy;, uy;, * *

N
2 |u - U

N N
S fTf -2 Zl FTUUN + NN,
i=1 i=

By taking the partial derivatives of with respect to x and set-
ting the derivatives equal to zero, the coefficient vector A of the
tapering window is determined as

- N.
X= 2 (wuny,

I
NS EL

(UU™W,UAU") d..

(18)
Using the components { \;} of the resultant vector X, the mul-
tipulse time series x is estimated from (12) or (13). For exam-
ple, if the N-length Fourier transform of the Hamming window
wy (n) of (16), denoted by Wy (k), (k = -N/2 + 1, -- -,
-1,0,1, ---,N/2), is used, the diagonal components of the
weighting matrix W; = diag [W;, W, - -+, Wy] to suppress
the ripple around ith impulse are determined as W; = Wy (j —
i+ 1).

By using the tapering window designed from either of these
two methods, the ripple around each pulse location is sup-
pressed.

IV. DETERMINATION OF PULSE LOCATIONS BY POLE
ESTIMATION

Using the multipulse time series £(n) estimated by the ta-
pered rank reduction method, we propose an approach to ac-
curately determine the pulse locations of the multipulse input
time series x (n) as follows:

Let s(k) denote the inverse Fourier transform of the multi-
pulse time series £ (n) estimated above as

N-1

s(k) = gof(n) exp (j2wnk/N). (19a)
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If the sequence £(n) is ideally expressed by (1), then
Np

s(k) = ‘Zl d; - exp (j2wr.k/N). (19b)
Thus, the inverse Fourier transform s (k) of the estimated series
£(n) is the sum of N, complex sinusoids d; exp ( j277,k/N).
The frequency 7; and the amplitude d; of the ith sinusoid cor-
respond, respectively, to the location and the amplitude of the
ith pulse. In general, a deterministic process consisting of N,
complex sinusoids is represented by the N,th order difference
equation of the form [14]:

Np
s(k) = = 2 by - s(k = i)

(20)
where {b;} are coefficients of the polynomial:
Np
B()= Dbz (by=1)
Np
=II 1-8-27"). (21)

i=1

By applying the high-resolution technique such as the MFBLP
method [23]-[25], the coefficients {b;} are estimated as fol-
lows: Using an L-dimensional vector b = [by, by, * ** , b, 1"
formed. by the L weights {b,}, (L = N,), the forward predic-
tion error e;(k) and the backward prediction error e, (k) are,
respectively, expressed as

e (k) = s(k) + s;(k)'b (22a)

ey(k) = s(k — L) + s,(k)'b* (22b)

where §;(k) is the L-dimensional vector [s(k — 1), s(k — 2),
i, s(k — L)Y, s,(k) is the time-reversed L-dimensional
vector [s(k — L + 1), - -+, s(k — 1), s(k)}7, and * denotes
the complex conjugate. The permissible upper limit of values
for the predictor order L is equal to N — N, /2 [25].

If the above model exactly represents the multipulse time se-
ries, both error terms, ¢;(k) and e,(k), are equal to zero for
the period k = L,L + 1, - - -+ , N — 1. Therefore, the coeffi-
cients {b;} are determined by minimizing the following squared
erTor €:

¢ = éL (e + |en(t)[}. > MIN.  (232)

Let s be a 2(N — L)-dimensional vector defined by [s(L), s(L
+ 1), ++-, s(N — 1), s¥(0), s*(1), -+, s¥(N - L —
1))7, and let S be a 2(N — L) x L matrix defined by [s;(L),
sp(L+ 1), -+, s(N— 1), sF(L), s§(L+ 1), -, s (N
— 1))7. Using the matrix notation, the prediction error energy
e of (23a) is given by

e=(s + Sb)(s + Sb), > MIN (23b)

where the superscript H denotes Hermite transpose. By mini-
mizing e with respect to b, the deterministic normal equation is
obtained as

§Hsh = —S§"s.
When the nutber of pulses is equal to N, the rank of the matrix

§ is equal to N,. Thus, by using the SVD of S, a truncated SVD
solution is obtained by setting the nonsignificant singular values
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of S to zero. That is, the estimate bofbis given by
b= —P,Ty'PYs (24)

where P, and P, are 2(N — L) X 2(N — L) and L X L unitary
matrices, respectively, and a 2(N — L) X L diagonal matrix I’
has the ith singular value +; of S in the i, i position and zeros
elsewhere, where (y, = v, = * * * = v,). Since the rank of §
isN,, Yn,+1 = Yn,+2 = ** > =y, = Oand the L X 2(N-1L)
inverse matrix [y of T' is defined by diag [1/v,, 1/72, " " *»
1/v3, 0, ++, 0]

Using the complex coefficients { b;} obtained from (24), the
root of the polynomial B(z) = 0 of (21). That is, the L poles
{B; = exp (j2n7,/N)} are determined. The N, largest poles
{ 8} are selected and the corresponding pulse locations {#},
(i=1,2, -+, N,) are obtained by

%, = N[an™' (Im §8;/Re B)]/2m.

If each pulse location 7; is assumed to be restricted to one of
the discrete sampling points (n = 0, 1, - -+ , N — 1), the
corresponding sinusoid exp (j277;/N) is continuous between
k =n — 1and k = 0. Then, the prediction errors of (22a) and
(22b) are alternatively defined by the circular convolution as

er(k) = EO b; - s(k — i mod N) (25a)

and

L
ep(k) = 2 b, - s*(k + i — Lmod N). (25b)
i=0

Since the error terms are defined for the period k = 0, 1,

-+ ,N - 1instead of the periodk =L, L +1, -+ ,N — 1
of (23a), s and S of (23b) are redefined by 2 N-dimensional vec-
tor and 2N X L matrix, respectively. Thus, the estimate bis
obtained by a similar procedure as described in (24).

The complex sinusoids s (k) obtained from the inverse Fou-
rier transform of the multipulse time series £(n) estimated in
(12) or (13) is multiplied by the characteristics of the tapering
window function. Thus, the usage of the tapering window in
the rank reduction is analogous to the multiplication of a win-
dow used in the ordinary autocorrelation method (1] in the lin-
ear predictive coding, and the estimated poles { §;} fall inside
the unit circle. Using the ipput signal estimated from the ra-
pered rank reduction, therefore, the pulse positions of the mul-
tipulse time series are stably determined. This is another merit
of the tapered rank reduction method.

V. MAXIMUM LIKELIHOOD ESTIMATION

Since the ML estimation of the pulse locations has high non-
linearity, it is very time consuming to obtain global minimum
without using suitable initial values. It is, however, possible to
obtain more accurate estimates by using the pulse locations es-
timated above as the initial values for the nonlinear optimiza-
tion. Using the matrix notation and (19a), the prediction error
of (22a), denoted by a (N — L)-dimensional vector e, is given
by

e = BF"Ay

BFPA(h + w) (26)
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where B is the (N — L) X N matrix:
bL bL*l e bl bO ... 0

0 - b b, <ot b b
and the m, n element of the N X N matrix F is the Fourier
operator exp { —j2xmn/N}, (m,n=0,1, -, N - 1).

If the above matrices B and A exactly represent the pulse lo-
cations and the transfer system, respectively, every component
of the first term BFAh is equal to zero and then only the second
term BFHAw remains. Letting the term BF”4 be denoted by (N
— L) X N matrix G, e is represented by

e = Gw.

Since the rank of the matrix B equals N — L, the rank of the
matrix G is also N — L. Then, the additive noise w is given by

w==G"

=G*'Gy (27)
where G * is the Moore-Penrose pseudoinverse matrix [32] of
G of rank (N — L) represented by means of the SVD. The
power 7 ({b;}) of the observed noise is defined as

a({6}) = [wl’

= |G*Gy|' = MIN. (28)
Both the pulse locations {7;} and the noise signal w are esti-
mated by minimizing the power 1 with respect to the complex
linear coefficients { b; }. Though this optimization has high non-
linearity, the global minimum is achieved by using an ordinary
nonlinear optimization technique such as the Marquardt method
[34] using the estimates obtained in Sections III and IV as the
initial values.

VI. SIMULATION RESULTS

In order to illustrate the advantages of the three-stage method
proposed in Sections III-V over the ordinary inverse filtering
method or the SVD-based method in Section II, we choose the
popular example of the fourth-order all-pole model used in the
literature [35]. The values of the linear predictive coefficients
are ag = 1, a; = —2.7607, a, = 3.8106, a; = —2.6535, and
a, = 0.9238. Fig. 3(a) shows the characteristics of the all-pole
madel. This all-pole model has 4 poles, which are close to the
unit circle on the z plane. Thus, the ratio of the minimum and
the maximum singular value of the matrix H is very small (ap-
proximately 1073) as shown in Fig. 3(b). Each method is im-
plemented on an IBM3081 (1 word = 32 bit) computer using
double precision arithmetic.

First Example: Consider the two-pulse input series x(n),
where the pulse locations are 7, = 4 and 7, = 14 and respective
amplitudes are d; = 1 and d, = —1. Figs. 4(a) and (b) show
the x(n) and the response h (n) of the transfer system to x(n),
respectively. The total length of the synthesized signal y(n) =
h(n) + w(n) is 32 points (Fig. 4(c)) and the SNR is equal to
10 dB. Fig. 4(d) shows the moving average process Aw of (6),
which has an average amplitude equal to 11.0. Thus, the am-
plitude of the multipulse time series x(n) is so small as to be a
tenth of the average amplitude of the noise term Aw, though the
SNR is 10 dB.
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Fig. 4. (a) The 2-pulse input time series x(n) for the first example. (b)
The response h(n) of the transfer system to x(n). (c) The observed signal

y(n) = h(n) + w(n) (SNR = 10 dB). (d) The moving average process
Aw

Fig. 5(a) shows the multipulse time series estimated by the
ordinary inverse filtering of (6). The resultant estimate is sim-
ilar not to x(n) but to the sequence Aw in Fig. 4(d). Figs. 5(b)
and 5(c) show the multipulse time series obtained by using the
ordinary rank reduction of (10) when the SNR equals o and 10
dB, respectively. The truncation order R of (10) was determined
by comparing the normalized ratio p (R) [15, pp. 924-925]

(29)

= 10 dB, (d) the diagonal components of the matrix A of (11) or A of (13).
(e) The tapered rank reduction in Section III-A (N,, = 8), for SNR = oo,
(f) for SNR = 10 dB, (g) the diagonal components of the matrix A of (11)
or A of (13). (h) The tapered rank reduction in Section III-B (N,. = 2),
for SNR = o, (i) for SNR = 10 dB, (j) the diagonal components of the
matrix A of (11) or A of (13).

with a threshold 7;,. The R is equal to 7 when the Ty is 99.7%.
The characteristics of the diagonal components of the matrix Az
of (11) has low-order sharp truncation as shown in Fig. 5(d)
and the sharp truncation leads to the large ripple (see also Fig.
1.

Figs. 5(e)-(g) and 5(h)-(j) show the multipulse time series
estimated by the rank reduction using the tapering windows,
each of which is designed by the method in Sections III-A and
III-B, respectively. The width N, of the tapering window is 8
in Fig. 5(e)-(g) and 2 in Fig. 5(h)-(j). Each diagonal compo-
nent \; of A of (14) is shown in Fig. 5(g) and Fig. 5(j). The
large ripple occurring around each pulse location in Fig. 4(b) is
reduced in Figs. 5(e)-(g) and 5(h)-(j).
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Fig. 6. The relative power ¢ of the ripple caused around each original pulse
location as a function of the width N,, of a tapering window and the thresh-
old T, in (29). The minimum value is marked with ‘' ®.”

Fig. 6 shows the normalized mean-square error { for various
widths N,, of a tapering window, which is designed by the
method in Section ITI-A. From the input series £(n) estimated
in the case where the original time series x(n) has only one
impulse, that is, x(n) = d,6(n — 7,), the { is calculated as

Z;:o lf(n) - /t{,L,(n)|2
P10 (30)
= oo

where

Xo(n), 7, — Ng < n < 7, + Ng;

x(n) =
(n) 0, otherwise

and x,,(n) is the input time series estimated when SNR = oo.
By setting the value of N to be 1, { evaluates the relative power
of the ripple caused around the original pulse location. In the
figure, the value of { obtained for the case N,, = 0 indicates the
relative power of the ripple of the input time series estimated
by the ordinary sharp rank reduction. The minimum value of {
is achieved by using a tapering window for each threshold Ty,
and the minimum value of { is about 3 ~ 5 dB less than that
obtained when the sharp rank reduction is used.

Fig. 7(a) shows the pulse locations estimated from the input
time series in Fig. 5(f) using the proposed method in Section
IV (SNR = 10 dB). The predictor order L used in (24) is equal
to 4. Each of the estimated 4 poles {f;} is marked with *“ X"’
in the z plane. The two largest roots are selected and the cor-
responding pulse locations #; are shown by the mark ‘|’ out-
side the unit circle. Fig. 7(b) shows the maximum likelihood
estimates of the pulse locations based on the proposed method
in Section V by using the estimates in Fig. 7(a) as the initial
values. Figs. 7(b) and (c) show the estimates of the response of
the all-pole model A (n) and the multipulse time series x(n),
respectively, each of which agrees well with the original one in
Fig. 4.

Second Example: In order to confirm the effect due to the
tapering window, consider the three-pulse time series x(n),
where the pulse locations are 7, = 4, 7, = 11, and 7; = 14 and
the respective amplitudes are d, = 1,d, = —1,and d; = —1.
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Fig. 7. (a) The pulse locations estimated from the sequence in Fig. 5(f)
using ‘the proposed method in Section IV (L = 18, SNR = 10 dB). (b)
The maximum likelihood estimates in Section V using the pulse location
estimates in Fig. 7(a) as the initial values, for the estimated pulse locations,
(c) for the estimated response h(n), and (d) for the estimated input time
series x(n).

The SNR of the synthesized signal y(n), (n =0, 1, - - -, 31)
is equal to 15 dB.
Fig. 8(a) shows the poles {B,-}, (i=1,2,---,L)and the

pulse locations {#.}, (k = 1, 2, 3) estimated in the 32 inde-
pendent trials for various values of R. The width N,, and the
predictor order L is equal to 8 and 12, respectively. Fig. 8(b)
shows { B;} and {#} for various values of N, (R = 10 and L
= 12). Fig. 8(c) shows {B;} and {#} for various values of
L(R = 10 and N,, = 8). These figures also show the average
of the estimation error e, which is defined by using the true
pulse locations {7;} and their estimates {#;} obtained from the
above 32 independent trials as

(31)

The optimum values of R, N,,, and L are approximately equal
to 10, 8, and 12, respectively. By comparing the results ob-
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(a-1)

(@-5)

Fig. 8. The poles, marked by *“X,”" and the pulse locations, marked by **|,”” estimated in the 32 independent trials for the
second example (SNR = 15 dB) and the average values of the estimation error € of (31). (a) For various values of the truncation
order R(N,, = 8, L = 12): (a-1) R = 32, inverse filtering, ¢ = 7.93, (a-2) R = 20, ¢ = 6.99, (@a-3) R = 14, ¢ = 0.72, (a-4)
R = 10 (optimum) , e = 0.45, (a-5) R = 5, ¢ = 4.64. (b) For various values of the width N,.(R = 10, L = 12): (b-H N, =
0, ordinary sharp rank reduction, ¢ = 1.09, (b-2) N, = 8 (optimum), ¢ = 0.45, (b-3) N,. = 16, ¢ = 1.05, (b4 N, =24, ¢ =
4.96, (b-5) N,, = 30, e = 6.53. (c) For various values of the predictive order L(R = 10, N,, = 8): (c-1) L = 3, ¢ = 5.07, (c-2)

L = 12 (optimum), € = 0.45, (c-3) L = 21, € = 1.11, (c-4) L = 27, ¢ = 1.56.
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Fig. 9. The maximum likelihood estimates of the pulse locations using the
proposed method in Section V for the 32 independent trials (SNR = 15
dB). The estimates in Fig. 8(a-4) are used as the initial values.
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Fig. 10. The comparison of the pulse locations estimated by the five meth-
ods for various SNR for the second example. (@) The ordinary inverse fil-
tering. (b) The ordinary rank reduction (R = 10). (c¢) The tapered rank
reduction method in Section III-A (N, = 8). (d) The pole-estimation
method in Section IV (L = 18). (¢) The maximum likelihood estimate in
Section V.

tained by tapered rank reduction (Fig. 8(b-3), € = 0.45) with
those obtained by the inverse filtering (Fig. 8(a-1), e = 7.93)
and the ordinary sharp rank reduction (Fig. 8(b-1), € = 1.09),
it is obvious that the usage of the tapering window increases the
estimation accuracy.

The average of the residual power 5 of (28) is about 21.4 for
the initial estimates obtained from the method in section 4 (R
=10, N, = 8, and L = 12) with regard to the above 32 in-
dependent trials. By applying the ML estimation proposed in
Section V to the results obtained from the above 32 independent
trials, the average of the n was reduced to about 5.88, where
the true value of the noise power o2 is equal to 5.97. The aver-
age value of the error e of (31) for the estimated pulse locations,
which are refined as shown in Fig. 9, is considerably reduced
to 0.143.

Fig. 10 shows the average of € of (31) concerning the 32 trials
as a function of SNR. For the inverse filtering (a), the ordinary
sharp rank reduction (), and the tapered rank reduction (c), the
pulse locations {#;} are calculated from the locations corre-
sponding to the three maximum amplitudes of the absolute val-
ues of the estimated input time series. From the figure, each of
the proposed three methods is obviously effective even in low
SNR cases.

Third Example: Consider the following seven-pulse time se-
ries x(n) as shown in Fig. 11(a). The SNR is equal to 18 dB.
Figs. 11(b) and 11(c) show the estimates of the multipulse time

157

] 1 1 1

T T

+1} I '
0 _T_[_ II[ILL—IIT“T”.‘IT“—‘IJLB_ ®-1)
41 1 1] 5 1 1
0 15 TIME (n) 31
8 ! /
x 7/
,
S
IPC'
AR5
x 6 “
xlglZ (02
X

ls !

0 -"'nI-Iv'H' l' ]‘--'{'3"1'1"1‘61“ r"x‘&‘ (c-1)

-1L . .

0 15 TIME (n) 31

Fig. 11. The results of the simulation experiments for the third example.
(a) The original 7-pulse time series x(n). (b) The ordinary sharp rank re-
duction (R = 10). (c) The tapered rank reduction in Section III-A (N, =
4). (b-2) and (c-2) show the pulse locations estimated from the sequences
in (b-1) and (c-1), respectively. Each of true pulse locations is marked with
g

series and the pulse locations. There are some errors in the pulse
locations of Fig. 11(b-2), which is estimated when the pole-
estimation method proposed in Section IV is applied to the mul-
tipulse time series in Fig. 11(b-1) obtained by the ordinary sharp
rank reduction (N,, = 0). However, when the pole-estimation
method is applied to the multipulse input time series in Fig.
11(c-1) obtained from the tapered rank reduction method (N,,
= 8, R = 10, and L = 18), the satisfactory result is obtained
as shown in Fig. 11(c-2).

VII. CONCLUDING REMARKS

In order to estimate the multipulse time series from the re-
sponse of the all-pole transfer system in the case where the sys-
tem Q (quality factor) is high and the SNR is low, the ML
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estimation requires high nonlinear optimization and then it is
important to select suitable initial estimates. On the other hand,
for other methods such as the pole estimation method, it is nec-
essary to remove the characteristics of the transfer system be-
fore determining each pulse location. In order to avoid these
difficulties, we proposed an alternative three-stage method. The
multipulse time series is estimated by the tapered rank reduction
method. By applying the pole-estimation method to the inverse
Fourier transform of the resultant multipulse series, the pulse
locations are determined accurately. By using the pulse loca-
tions as the initial estimates, more accurate maximum likeli-
hood estimates of the pulse locations are obtained. From the
simulation experiments, these principles were confirmed.

In the experiments, the order M and the parameters {a,,}, m
= 1,2, + -+, Mof the all-pole transfer system and the number
N, of pulses of the multipulse time series are already known.
However, in general, it is difficult to choose these unknown
parameters for an unknown signal. It is also important to choose
the optimum values of the truncation order R, the width N,, of
the tapering window, and the predictive order L, using the re-
lation between the values of these parameters and the SNR.
These important issues are currently under investigation. It is
also important to apply the proposed procedure to some prac-
tical examples.
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