plotted in Fig. 3 the radial field components at the input and out-
put to the horn just discussed. For low frequencies (see Fig. 3a),
given the relatively low permittivity of the core material in the
throat region of the horn, the excitation at the input is approxi-
mately that of the fandamental TE,, mode for the same-sized cir-
cular waveguide. At the output, however, we obtain good
symmetry between the radial electric and magnetic fields, indicat-
ing an appropriate choice of gap thickness for hybrid-mode opera-
tion. For higher frequencies (Fig. 3b), the excitation at the input
more closely resembles that of a pure HE,, mode. With negligible
field at the metallic walls of the feed, we can see that the guiding
structure is now essentially the dielectric. The hybrid mode is
effectively launched at the foam termination, and is basically unaf-
fected by the remaining length of the feed. This feature is main-
tained up to 30GHz and beyond. In the vicinity of 6 — 7GHz,
there is some degree of overlap between the two mechanisms
involved, providing a smooth transition between the two modes of
operation. Thus good pattern symmetry and low cross-polar can
be maintained continuously over an extremely large bandwidth.

Multi-frequency band applications: The characteristics of our cone-
loaded feed makes it attractive for use in dual-band applications.
A scaled version of the cone-loaded feed of Fig. 1 has been used in
an application where two 24% bandwidths were required over a
3:1 frequency separation. The band splitting was achieved by a
dielectrically loaded coaxial diplexing junction where the inner
conductor of the coaxial waveguide accommodates a dielectrically
loaded circular waveguide to support the high-frequency band,
while the low-frequency band (cut off at the small circular
waveguide size) passes through the coaxial section. The measured
results were in excellent agreement with the predictions and this
horn is now in service on an earth-station antenna (Details of the
design and results of this feed/diplexer system are currently being
prepared for publication [4]).

Conclusion: We have described a dielectrically loaded hybrid-mode
feed that can operate continuously over an extremely large band-
width with bandwidth ratios > 30:1. Two mechanisms are respon-
sible for the hybrid-mode operation, where their overlap provides
for the extremely wide continuous bandwidth. The challenge now
is to use this type of horn fully with effective means of diplexing
multiple-frequency bands at the input to the horn.
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In vivo measurement of frequency
characteristics of phase velocity of bone
with bending vibration

H. Kanai, M. Park and N. Chubachi

Indexing terms: Biomedical engineering, Doppler measurement

The authors propose a new method of measuring the frequency
characteristics of phase velocity along a bone for bending
vibration modes to diagnose its mechanical characteristics. By
introducing a simple model of a distributed-constant network, the
-phase velocity is determined for each frequency from the spatial
distribution of velocity along a radius bone surface which is
measured by the ultrasonic Doppler method.
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Introduction: In the literature, there have been acoustical
approaches for in vivo evaluation of bone quality for noninvasive
diagnosis of osteoporosis using vibrations of low frequency of less
than several kilohertz [1]. The propagation velocity of the longitu-
dinal elastic wave, ¢, which is the square root of the ratio of the
Young’s modulus to the average density, p, is evaluated by meas-
uring the resonant frequency f; of a bone when the bone is excited
by forced vibration. In these approaches, acceleration pick-ups on
the skin surface are employed to measure the bone vibration. Due
to the characteristics of the vibration propagating in the flesh
between the skin and the bone, the measurable points are limited.

In our previous paper [2], it was demonstrated that the spatial
distribution of the velocity on the surface of a bone with forced
vibration of low frequency can be directly measured using stand-
ard ultrasonic Doppler diagnosis equipment. The obtained veloc-
ity distribution is investigated to fit well to the distributed-
constant-network model to determine the wavelength A,(f;), from
which phase velocity ¢,(f;) of the bending-vibration of a bone is
determined for one of the resonant frequencies, f,.

In this letter we propose a new method of measuring the fre-
quency characteristics of phase velocity ¢,(f) and the propagation
velocity of the longitudinal wave, ¢, is determined from the gradi-
ent of the frequency characteristics of ¢,(f), which is proportional
to f2, The principle of velocity measurement, simulation experi-
ments with a metal beam, and in vivo experiments with a human
radius bone are described.

“gggggmc ultrasonic Doppler | o v (8 x)
diagnostic equipment
x .
2 radius
' P ./
—
ulna
\\ﬁ » aftx)
. accelerometer
vibrator
bandpass white noise
amplifier filter 4 generator

Fig. 1 Block diagram of in vivo measurement of forced bending vibration
of surface of radius using ultrasonic Doppler diagnosis equipment

articulation
I(x}) I

bone (radius)

Y :
0 Xmin Xmax X { b
Thai2)

Fig. 2 Distributed-constant-network model and standing-wave distribution
a Radius of bone is approximated by a uniform beam, and bending
vibration of bone surface is described by distributed-constant-network
model

b Wavelength is determined from distribution of a standing wave

Principle: Fig. 1 illustrates measurement of the spatial distribution
of the velocity component v(f; x), which is perpendicular to the
bone axis on the surface of the radius due to the bending vibration
when standard ultrasonic Doppler diagnosis equipment is used.
Let us assume that the radius in Fig. 1 is expressed by a uniform
beam with length / and a mechanical characteristic impedance Z;,
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and that both ends are terminated by mechanical impedances Z,
and Z,. Thus, the bending vibration in the bone is described by a
distributed-constant-network model in Fig. 2a. At the point x = 0,
where the distal ulna is in contact with the distal radius, bending
vibration is induced by a large-scale actuator. Since the actuator
employed is of large scale, it is described by a constant current
source having infinite internal impedance. Let us describe the force
and the vibration velocity v(z; x) of the bending vibration at point
x by voltage W(x) and current I(x), respectively, in Fig. 2a as
follows:

V(z) = ZoIF exp(vz) + Zoly exp(—~x)

ot - | (1)
I{x) = I exp(yx) — Iy exp(—~x)

where I, and I are the currents of the incident and reflected
waves at x = 0, respectively, and vy is the propagation constant. To
compensate the phase of the driving signal, the transfer function
H(f, x), from the output signal a(z; x) of the acceleration pick-up
on the actuator head to v(z; x), is introduced by

BA(fi0) B(a)]
HU0) = =R o

where E[] and * are the average operation and complex conjugate,
respectively, and A(f; x) and B(f; x) are the Fourier spectra of a(t;
x) and w(f; x). respectively. From the distance between the maxi-
mum point X,,,. and the local minimum point x,,, around x,,, on
the spatial distribution |H(f: x)| in Fig. 25, the wavelength A,(f) of
the standing wave on the surface of the bone is determined by
M) = 4X,ue — Xal- Thus, the phase velocity ¢,(f) is obtained by
() = M()-f- On the other hand, it is theoretically well known
that ¢,(f) is given by

2)

a(f)=vmraf (3)

where r and ¢, are the radius of the columnar beam and the veloc-
ity of the longitudinal wave, respectively. Thus, from the fre-
quency characteristics of ¢,(f), ¢; is determined.

30 —r T y
- 4
—_ o4 [ N ]
= s . e, ]
'>(. e [ ] Py -
o [ o p
< . ° . ¢ 1
I 20 . ¢ . . -
5 C
= [ . hd
:S ._ ° [ ] -
= [ °
v [ 1
T 10F o . . ]
? |
-~ L
a F * -
n [»
(0] 2NN TS S ST S S
0 10 20 30
distance x, cm

Fig. 3 Spatial distribution of magnitude of transfer function, |H(fy x)|
at fy = 136.25 Hz, obtained in experiment using a brass beam

Simulation experiments: The spatial distribution of the bending
vibration of a brass beam (length / = 29.7cm, diameter 2r = 2mm)
is measured using laser Doppler velocimetry. The beam is pin-
ended and actuated at its centre (x = 15¢m) by a small vibrator
driven by white noise n(f). Fig. 3 shows the spatial distribution of
the magnitude of the transfer function H(f,; x) for the frequency f;
= 136.25Hz, which corresponds to the standing wave with the sec-
ond mode. Since wavelength A(f;)) = 0.297m, the phase velocity
e{fo) at fy = 40.5m/s, by which ¢, is determined as being 3826m/s
from eqn. 3.

In vivo measurements. The proposed method is applied to the
radius (/ = 24cm) of the left hand of a normal young individual.
The vibrator in Fig. 1 is driven by band-limited noise from 80Hz
to 4kHz. Fig. 4a shows |H(f;; x)| of eqn. 2 for the frequency com-
ponent f, = 111Hz. When the vibration on the skin surface is
measured by laser Doppler velocimetry there is no correlation with
the driving signal. As shown in Fig. 4b, however, the squared
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Fig. 4 In vivo experimental results for radius of a bone in a normal
young human subject

a Spatial distribution of magnitude of transfer function |H(f;; x)| at f;
=111Hz

b Squared magnitude of coherence function, [Y(fy; x)°, between driving
white noise »(7) and velocity signal w(t; x) for f, = 111Hz )

¢ Frequency characteristics of measured velocity ¢,(f) of bending
vibration

magnitude of the coherence function, [Y(f; x)I°, between n(t) and
wt; x) is almost one at points other than the proximal radius,
where [Y(f;; X)P is defined by
ot = g e Bl
o E[|A(fo: 2)? - E[ B(fo; x)|?]

Thus, the measurement of the velocity on the bone surface using
an ultrasonic probe on the skin surface is effective. From Fig. 45,
the wavelength A,(f;) is determined as being 0.78m at f; = 111Hz.
Thus, the propagation velocity ¢,(f;) of the radius is 86.6 m/s.
Since the spatial distribution is determined by the average opera-
tion E[-] in eqn. 2, high accuracy is realised for small vibrations
because the velocity at x,,, = 2cm in Fig. 4a is 0.084my/s for f; =
111Hz, which corresponds to a small displacement of 120um. Fig.
4d shows the frequency characteristics of the phase velocity ¢,(f) in
the frequency range from 80Hz to 4kHz. The measured values are
exactly on the straight line of eqn. 3, and from the gradient, ¢, is
determined to be 2150m/s by assuming that the diameter 2r of the
radius is uniform at 20mm. The obtained ¢, almost coincides with
the value of the longitudinal wave of the bone [3].

Conclusions. We have proposed a method for in vivo measurement
of phase velocity of the bending vibration of a bone to diagnose
its mechanical characteristics. This new method is expected to be
applied for noninvasive diagnosis of osteoporosis.
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Applicability of Walfisch-type urban
propagation models

N. Cardona, P. Méller and F. Alonso

Indexing terms: Radiowave propagation, Mobile radio systems

The applicability of different propagation models based on the
Walfisch-Bertoni or the Walfisch-Ikegami formulations is studied.
When this type of model is applied to real urban cells, large areas
with errors often appear. The origin of some errors and a
proposal to improve the applicability of Walfisch-type models,
based on a measurement campaign, are described.

Over-building propagation: The numerical solution developed by
Walfisch [1] yields a value for the settled field against the parame-
ter v = od/A, where o is the incidence angle and d is the mean
building distance. It is assumed that for cellular mobile radio the
usual parameters make v range from 0.02 to 0.5, and the I/R"?
dependence is accepted as an approximation for the over-building
propagation loss Q(v). This term appears in both models [1, 2]:

Walfisch-Bertoni :
18log R — 18log AHpase — 9logd + 9log A
Walfisch-Ikegami :
18log R — 18log(l + AHyyse) — 9logd + kylog A
With a simple analysis the range validity of this approximation
can be found. For tlie available digital map (Valencia urban area),
mean values for AH and d are 20 m and 100m, respectively, and

therefore the approximation becomes valid for distances from the
transmitter over 730m.

1 Jé"’\

N

0-1

0-01 01 1
v
Fig. 1 Proposed linear approximation for over-building propagation

Sfactor Q(v)

A more detailed study for this urban area showed that a value
for v = 0.5 is exceeded in more than 60% of the points and the
value 1 in more than 25%. The error due to the approximation is
> 3dB for v = 1 points and > 6dB for v = 2 locations. It seems
that a more accurate approximation for the over-building propa-
gation term is needed. Two possible solutions are to adopt an
explicit theoretical solution [3] or to define a simple linear approx-
imation with four intervals (see Fig. 1)
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2.340%% 2 < 0.38
, o ) 1400937 038 <v < 0.7
Qlosp = v 057 0.7<v <1

1 1<w
Using the best fit expression to eliminate the free space and dif-
fraction terms influence, the improvement due to the new linear
approximation has been compared with both models:

Mean(error) Std{error)

dB dB

W — Bertoni +0.66 6.13
W — lkegami +0.67 5.21
Valencia —-0.19 4.75

The assumption of homogeneous regular height for the build-
ings in the mobile area is not accomplished in general. Measure-
ments in areas with similar characteristics for the final-building
diffraction but irregular building heights in the TX-RX plane have
been carried out. As a result, it has been proved that for small val-
ues of the standard deviation o, of the building height the error is
not much affected. A range of variations up to two floors can be
accepted to fit in with the assumption of regular building heights.
If a uniform distribution is assumed, the compensation term is
similar to that obtained in [4], i.e.

AF = —0.525Ah 005
where A#h,,,, is the range of building heights.

Final building diffraction: The final diffraction has been formu-
lated in different ways [1 — 3], but in this study just the Walfisch-
type models are considered:

W-Bertoni Lpgp =
—11.8 + 10logry + 10log f(MHz) + 20log v(rad) [dB]
W-Ikegami Lpgp =
~16.9 — 10logw + 10log f(MHz) + 20log(Ah,) [dB]

where w is the street width and r, is the distance between the dif-
fraction edge and the receiver.

The parameters used in these models are different but geometri-
cally correlated. In our case the horizontal resolution defining the
wall’s location is high, but the vertical resolution for the building
height is ~t1.5m. This means a range of errors due to vertical res-
olution of £1.5dB in the Walfisch-Bertoni model and of £3dB in
the Walfisch-Tkegami model (measured with the Valencia data-
base). Then the Walfisch-Tkegami model 1s slightly more sensitive
to vertical resolution errors.

In the Walfisch-Bertoni model the term

o VA (1 1
T2an \B 2+ 73

oz ()

where ¥ = o + B, and it is assumed that o is small compared to v,
and B << 2m, where B is the diffraction angle.

These approximations produce some errors when the model is
applied to real urban areas. In an important percentage of points
o cannot be neglected in the y expression. The difference between
using the F factor and the approximation F* produces errors in the
range of 10dB for small values of B, as is shown in Fig. 2 for the
measured locations.

This error is easily corrected by using § instead of v in the
Walfisch-Bertoni factor:

Lppp = —11.8+10logrs + 101og f(MHz) + 20 log 3(rad)
[dB]

Concerning the § << 2r assumption, the error introduced is not
very significant: a maximum error of 1.1dB has been calculated
for the measured points.

If the dependencies of the Walfisch-Bertoni model are analysed,
it can be seen that for big values of the diffraction angle f >
0.5rad) the error is centred around 0dB and more uncorrelated.
These are the values of B for which the Walfisch-Bertoni solution
is correct, but they correspond to only 40% of the tested points in
Valencia. For lower values of 3 the slope of the error in terms of
the diffraction factor is almost 1, which leads to the conclusion
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