Advanced Power Engineering Laboratory

第4期終了報告会 (エネルギー関数法を用いた過渡安定度解析手法)

詳細発電機モデルへの エネルギー関数法適用に関する研究

先端電力工学(東北電力)寄附講座 修士2年 阿部 祐希

1

発表の流れ

1,研究の背景 2.過渡安定度計算と発電機モデル 3.従来のエネルギー関数法 4.提案手法 5.試算結果 5.1.単機脱調の場合 5.2.複数機脱調の場合 6.まとめ

時々刻々の運用状態に対し、多数の想定故障下での 発電機の安定性(とくに過渡安定度)を解析し、 常に系統を安定に維持させる予防制御が重要視

3

研究の背景 :エネルギー関数法

2,過渡安定度解析手法の分類

- Ape 5

発電機モデルによるP-δ曲線の違い

3、エネルギー関数法(=多機系等面積法)

電気的出力 凡

機械的入力 Pm (=初期出力 Pの)

時間領域手法より P-δ曲線を算出

P-δ曲線に囲まれた領域 V_p,V_kの比較より安定判別

$$V_p > V_k$$
のとき安定
 $V_p = V_k$ のとき安定限界
 $V_p < V_k$ のとき不安定

9

PEBS法 ①CCTの算出

PEBS法 ②故障継続に伴う問題点

エネルギー関数法 Hybrid法

12

時間領域手法とエネルギー関数法を組み合わせたら?

エネルギー関数法 概念図

エネルギー関数法 まとめ

PEBS法 ○ 1秒程度のシミュレーションを一度行うだけで 安定度判別とCCTを求めることができる × 詳細モデル適用時、背後電圧が著しく低下する **Hybrid法** ○ 実際の故障シーケンスに沿っているため 精度が高い × 安定判別を目的としているため CCTの算出が出来ない

この2つの利点を組み合わせることは出来ないか?

4,提案手法 ①エネルギー関数法の組み合わせ

①PEBS法にHybrid法の手法を組み込むことは出来ないか? ②背後電圧の過剰な低下を防げないか?

提案手法 ②背後電圧補正

提案手法 ③個別エネルギー関数の採用

提案手法 ④全体の計算フロー

5,試算結果

East10モデル系統における検証

5,1 単機脱調の場合

2機モデル試算結果 P-δ曲線

2機モデル試算結果 CCTの算出

C C T (s)				
真値	PEBS法	無補正	提案法	
0.11		0.10 (-0.01)	0.10 (-0.01)	
0.14		0.10 (-0.04)	0.13 (-0.01)	
0.20		0.12 (-0.08)	0.19 (-0.01)	

 PEBS法
 単なる一回線開放で不安定(≒定態不安定)と推定
 無補正の場合
 PEBS法よりも精度よく算出でき、
 エネルギー関数法の組み合わせの効果を確認できた
 提案手法
 無補正の場合と比較するとt_c=0.1sから離れたケースで 推定精度が高く、背後電圧補正の効果を確認

単機脱調 East10モデルでの検証

提案手法をEast10 1Line3LG $\frac{1}{0.1 \text{ sec}}$ 3LO G9 G8 モデルに対して適用 G2 G4 G7 G6 (G3){ (G5); 53 大規模系統における、 提案手法妥当性の 33 検討を行う East10モデル系統図

至近端の発電機出力を変化させることにより
 ①真値が規定t_c=0.1sに近いもの(補正の影響が小さい)
 ②真値が規定t_cから離れているもの(補正の影響が大きい)
 の2グループに分け、算出を行った

試算結果 手法によるCCTの差

5,2複数機脱調の場合

36番送電線において 3LG(0.10s)を想定 このときG8,G9.G10が脱調 するので、 1)個別エネルギー算出法 2)全体エネルギー算出法 よりそれぞれCCTを算出し 比較する

以下の試算にはエネルギー関数法として 単機脱調において精度が確認できた提案手法を用いた

複数機脱調の場合の脱調発電機の選定

個別エネルギー算出法は最速脱調発電機に 着目するため脱調傾向による場合わけが必要

26

試算結果 算出されたCCT

	臨界故障除去時間 CCT(s)		
	真値	全体法	個別法
単独脱調	0.14	0.06 (-0.08)	0.11(G8) (-0.03)
一様脱調	0.13	0.11 (-0.02)	0.14(G8) (+0.01)

単独脱調、一様脱調それぞれ個別エネルギー算 出法の精度が高かった

計算時間も考慮に入れると個別エネルギー 算出法のほうに優位性がある

まとめ

詳細発電機モデルに対して適用可能なエネルギー 関数法を提案

 1)Hybrid法とPEBS法それぞれの長所を組合せた手法
 2)背後電圧の補正により、詳細発電機モデルにおいて十分 な精度を持ったCCT算出が可能
 3)個別エネルギーを用いることにより、複数機脱調の場合に も全体エネルギー法に比べCCTの高精度な推定が可能

以下、予備

5.2複数機脱調の場合

5,2複数機脱調の場合

